# Talk by Janna Burman: « Time-Optimal Self-Stabilizing Leader Election in Population Protocols »

**Speaker:**Janna Burman

**Location:**Online

**Date:**Thu, 8 Apr 2021, 14:30-15:30

For a new seminar of the proofs and algorithms pole of LIX, we are happy to welcome Janna Burman.

**Abstract:** We consider the standard population protocol model, where (a priori) indistinguishable and anonymous agents interact in pairs according to uniformly random scheduling. The self-stabilizing leader election problem requires the protocol to converge on a single leader agent from any possible initial configuration. We initiate the study of time complexity of population protocols solving this problem in its original setting: with probability 1, in a complete communication graph. The only previously known protocol by Cai, Izumi, and Wada [Theor. Comput. Syst. 50] runs in expected parallel time (n2) and has the optimal number of n states in a population of n agents. The existing protocol has the additional property that it becomes silent, i.e., the agents’ states eventually stop changing.

Observing that any silent protocol solving self-stabilizing leader election requires (n) expected parallel time, we introduce a silent protocol that uses optimal O(n) parallel time and states. Without any silence constraints, we show that it is possible to solve self-stabilizing leader election in asymptotically optimal expected parallel time of O(log n), but using at least exponential states (a quasi-polynomial number of bits). All of our protocols (and also that of Cai et al.) work by solving the more difficult ranking problem: assigning agents the ranks 1, … ,n.

The list of next seminars can be found at: https://smimram.gitlabpages.inria.fr/proofs-algorithms/seminar/

The calendar of seminars can be found at: https://smimram.gitlabpages.inria.fr/proofs-algorithms/seminar.ics