Laboratoire d'informatique de l'École polytechnique

Marie Albenque

Chercheur, Cnrs

Contact information

Email albenque lix.polytechnique.fr
Web page http://www.lix.polytechnique.fr/Labo/Marie.Albenque

Présentation

Marie Albenque est chargée de recherche CNRS affectée dans l’équipe Combi du LIX. Ses thématiques de recherche sont principalement la combinatoire énumérative et bijective, et l’analyse probabiliste des structures discrètes.

Bibliography

[1] M. Albenque and K. Knauer, Convexity in partial cubes: The hull number, Discret. Math., vol. 339, no. 2, pp. 866–876, 2016 [Online]. Available: https://doi.org/10.1016/j.disc.2015.10.032

[2] M. Albenque and D. Poulalhon, A generic method for bijections between blossoming trees and planar maps, Electr. J. Comb., vol. 22, no. 2, p. P2.38, 2015 [Online]. Available: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i2p38

[3] M. Albenque, Éric Fusy, and D. Poulalhon, On symmetric quadrangulations and triangulations, Eur. J. Comb., vol. 35, pp. 13–31, 2014 [Online]. Available: https://doi.org/10.1016/j.ejc.2013.06.031

[4] M. Albenque and K. B. Knauer, Convexity in partial cubes: The hull number, in LATIN 2014: Theoretical informatics - 11th latin american symposium, montevideo, uruguay, march 31 - april 4, 2014. Proceedings, 2014, vol. 8392, pp. 421–432 [Online]. Available: https://doi.org/10.1007/978-3-642-54423-1\_37

[5] M. Albenque and K. B. Knauer, Convexity in partial cubes: The hull number, CoRR, vol. abs/1309.5724, 2013 [Online]. Available: http://arxiv.org/abs/1309.5724

[6] M. Albenque and L. Gerin, On the algebraic numbers computable by some generalized ehrenfest urns, Discret. Math. Theor. Comput. Sci., vol. 14, no. 2, pp. 271–284, 2012 [Online]. Available: http://dmtcs.episciences.org/565

[7] M. Albenque, Éric Fusy, and D. Poulalhon, On symmetric quadrangulations, Electron. Notes Discret. Math., vol. 38, pp. 17–24, 2011 [Online]. Available: https://doi.org/10.1016/j.endm.2011.09.004

[8] M. Albenque and L. Gerin, On the algebraic numbers computable by some generalized ehrenfest urns, CoRR, vol. abs/1104.5643, 2011 [Online]. Available: http://arxiv.org/abs/1104.5643

[9] M. Albenque, Bijective combinatorics of positive braids, Electron. Notes Discret. Math., vol. 29, pp. 225–229, 2007 [Online]. Available: https://doi.org/10.1016/j.endm.2007.07.038