Laboratoire d'informatique de l'École polytechnique

Samuel Mimram

Contact information

Email smimram lix.polytechnique.fr
Web page http://www.lix.polytechnique.fr/Labo/Samuel.Mimram
Phone 12 08 75 77 10
Office 2162

Bibliography

[1] P.-L. Curien and S. Mimram, Coherent Presentations of Monoidal Categories, Logical Methods in Computer Science, vol. 13, no. 3, 2017 [Online]. Available: http://lmcs.episciences.org/3955

[2] E. Finster and S. Mimram, A Type-Theoretical Definition of Weak ω-Categories, in 2017 32nd annual acm/ieee symposium on logic in computer science (lics), 2017, pp. 1–12 [Online]. Available: http://arxiv.org/abs/1706.02866

[3] P. Malbos and S. Mimram, Homological Computations for Term Rewriting Systems, in 1st international conference on formal structures for computation and deduction (fscd 2016), 2016, vol. 52, pp. 27:1–27:17 [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2016/5982

[4] S. Mimram, Geometric Models of Concurrent Computations. Université Paris Diderot – Paris 7, Sep-2016.

[5] L. Fajstrup, Éric Goubault, E. Haucourt, S. Mimram, and M. Raussen, Directed Algebraic Topology and Concurrency. Springer International Publishing, 2016 [Online]. Available: http://www.springer.com/fr/book/9783319153971

[6] É. Goubault, S. Mimram, and C. Tasson, From geometric semantics to asynchronous computability, in Distributed computing, vol. 9363, Y. Moses, Ed. Springer Berlin Heidelberg, 2015, pp. 436–451 [Online]. Available: http://dx.doi.org/10.1007/978-3-662-48653-5_29

[7] F. Clerc and S. Mimram, Presenting a Category Modulo a Rewriting System, in 26th international conference on rewriting techniques and applications (rta 2015), 2015, vol. 36, pp. 89–105 [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2015/5191

[8] S. Mimram, Presenting finite posets, in Proceedings 8th International Workshop on computing with terms and graphs, Vienna, Austria, July 13, 2014, 2015, vol. 183, pp. 1–17.

[9] S. Mimram, Towards 3-Dimensional Rewriting Theory, Logical Methods in Computer Science, vol. 10, no. 1, pp. 1–47, 2014 [Online]. Available: http://arxiv.org/abs/1403.4094

[10] É. Goubault, S. Mimram, and C. Tasson, Iterated chromatic subdivisions are collapsible, Applied Categorical Structures, pp. 1–42, 2014 [Online]. Available: http://dx.doi.org/10.1007/s10485-014-9383-6

[11] Y. Guiraud, P. Malbos, and S. Mimram, A Homotopical Completion Procedure with Applications to Coherence of Monoids, in 24th international conference on rewriting techniques and applications (rta 2013), 2013, vol. 21, pp. 223–238 [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2013/4064

[12] S. Mimram, The Structure of First-Order Causality (extended version), Mathematical Structures in Computer Science, vol. 21, no. 01, pp. 65–110, 2011 [Online]. Available: http://journals.cambridge.org/article_S0960129510000459

[13] S. Mimram, Computing Critical Pairs in 2-Dimensional Rewriting Systems, in Proceedings of the 21st international conference on rewriting techniques and applications, 2010, vol. 6, pp. 227–242 [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2010/2655

[14] S. Mimram, The Structure of First-Order Causality, in Logic in computer science, 2009. lics ’09. 24th annual ieee symposium on, 2009, pp. 212–221 [Online]. Available: http://arxiv.org/abs/0908.3994

[15] S. Mimram and C. D. Giusto, A Categorical Theory of Patches, Electronic Notes in Theoretical Computer Science, vol. 298, no. 0, pp. 283–307, 2013 [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1571066113000649