Multigraded Castelnuovo-Mumford regularity and Gröbner bases

Matías Bender

Inria - CMAP, École Polytechnique

March 25, 2024

- On-going joint work with
- Laurent Busé (Inria - Université Côte d'Azur),
- Carles Checa (ATHENA - NKU Athens), and
- Elias Tsigardias (Inria, IMJ-PRG).
- Questions:
- How hard is to compute a Gröbner bases for a multihomogeneous ideal?
- What determines this hardness?
- Our answer:
- Multigraded Castelnuovo-Mumford regularity (+ other invariants...)

Computational Algebraic Geometry

Castelnuovo-

Geometry
Algebra

Computations
(Projective varieties)
(Homogeneous ideals)

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x_{0}^{2}-2 x_{1} x_{0}-2 x_{2} x_{0}+2 x_{1} x_{2}, \\
-50_{0}^{2}+2 x_{1}^{2}+2 x_{2}^{2}, \\
2 x_{0}^{3}-3 x_{0}^{2} x_{1}-x_{0}^{2} x_{2}-2 x_{0} x_{1}^{2}+2 x_{1}^{3}
\end{array}\right. \\
& \left\{\begin{array}{l}
2 x_{1}^{2}+2 x_{2}^{2}-5 x_{0}^{2}=0, \\
x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}- \\
x_{1} x_{0}-x_{2} x_{0}-x_{0}^{2}=0
\end{array}\right.
\end{aligned}
$$

Geometry \leftrightarrow Algebra: Empty case

Hilbert's nullstellensatz

Given homogeneous ideal $I \subset S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$,

$$
V_{\mathbb{P} n}(I)=\emptyset \Longleftrightarrow \exists \text { sufficiently big } d_{0} \text { st }\left(\forall d \geq d_{0}\right) I_{d}=S_{d}
$$

Geometry \leftrightarrow Algebra: Empty case

Hilbert's nullstellensatz

Given homogeneous ideal $I \subset S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$,

$$
V_{\mathbb{P}^{n}}(I)=\emptyset \Longleftrightarrow \exists \text { sufficiently big } d_{0} \text { st }\left(\forall d \geq d_{0}\right) I_{d}=S_{d}
$$

Examples

$$
\left\langle x_{0}, x_{1}^{2}\right\rangle_{d}=C\left[x_{0}, x_{1}\right]_{d} \text { for } d \geq 2 \quad\left\langle x_{0}^{3}, x_{1}^{2}\right\rangle_{d}=C\left[x_{0}, x_{1}\right]_{d} \text { for } d \geq 4
$$

Geometry \leftrightarrow Algebra: Empty case

Hilbert's nullstellensatz

Given homogeneous ideal $I \subset S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$,

$$
V_{\mathbb{P}^{n}}(I)=\emptyset \Longleftrightarrow \exists \text { sufficiently big } d_{0} \text { st }\left(\forall d \geq d_{0}\right) I_{d}=S_{d}
$$

Examples

$$
\left\langle x_{0}, x_{1}^{2}\right\rangle_{d}=C\left[x_{0}, x_{1}\right]_{d} \text { for } d \geq 2 \quad\left\langle x_{0}^{3}, x_{1}^{2}\right\rangle_{d}=C\left[x_{0}, x_{1}\right]_{d} \text { for } d \geq 4
$$

Castelnuovo-Mumford regularity in empty case

 Smallest d_{0} such that $I_{d_{0}}=S_{d_{0}}$
Geometry \leftrightarrow Algebra: Hilbert function = polynomial

Hilbert polynomial

Consider homogeneous $I \subset S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$.

$$
\text { HilbertFunction }_{S / I}(d):=\operatorname{dim}_{\mathbb{C}}\left((S / I)_{d}\right)
$$

There exist a polynomial HilbertPolynomial $S_{S / I}(d) \in \mathbb{Z}[d]$ and a sufficiently big d_{0} such that, if $d \geq d_{0}$,

HilbertFunction $_{S / I}(d)=$ HilbertPolynomial $_{S / I}(d)$.

Geometry \leftrightarrow Algebra: Hilbert function = polynomial

Hilbert polynomial

Consider homogeneous $I \subset S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$.

$$
\text { HilbertFunction }_{S / I}(d):=\operatorname{dim}_{\mathbb{C}}\left((S / I)_{d}\right)
$$

There exist a polynomial HilbertPolynomial $S_{S / I}(d) \in \mathbb{Z}[d]$ and a sufficiently big d_{0} such that, if $d \geq d_{0}$,

$$
\text { HilbertFunction }_{S / I}(d)=\text { HilbertPolynomial }_{S / I}(d)
$$

If $V_{\mathbb{P}^{n}}(I)$ is a finite set of δ points (counted multiplicities), then
HilbertPolynomial $_{S / I}(d)=\delta$.

$$
I=\left\langle x_{0}^{2}\left(x_{0}^{2}-x_{1}^{2}\right), x_{1}^{2}\left(x_{0}^{2}-x_{1}^{2}\right)\right\rangle
$$

$$
\operatorname{dim}_{\mathbb{C}}\left(\left(\mathbb{C}\left[x_{0}, x_{1}\right] / I\right)_{d}\right)=2, \text { for } d \geq 5
$$

Geometry \leftrightarrow Algebra: Hilbert function = polynomial

Hilbert polynomial

Consider homogeneous $I \subset S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$.

$$
\text { HilbertFunction }_{S / I}(d):=\operatorname{dim}_{\mathbb{C}}\left((S / I)_{d}\right)
$$

There exist a polynomial HilbertPolynomial ${ }_{S / I}(d) \in \mathbb{Z}[d]$ and a sufficiently big d_{0} such that, if $d \geq d_{0}$,

$$
\text { HilbertFunction }_{S / I}(d)=\text { HilbertPolynomial }_{S / I}(d)
$$

If $V_{\mathbb{P}^{n}}(I)$ is a finite set of δ points, HilbertPolynomial ${ }_{S / I}(d)=\delta$.

$$
\left.\begin{array}{l}
I=\left\langle x_{0}^{2}\left(x_{0}^{2}-x_{1}^{2}\right), x_{1}^{2}\left(x_{0}^{2}-x_{1}^{2}\right)\right\rangle \\
V_{\mathbb{P}^{n}}(I)=\{(1: 1),(1:-1)\}
\end{array}\right\}
$$

$$
\operatorname{dim}_{\mathbb{C}}\left(\left(\mathbb{C}\left[x_{0}, x_{1}\right] / I\right)_{d}\right)=2, \text { for } d \geq 5
$$

Geometry \leftrightarrow Algebra: Hilbert function = polynomial

Hilbert polynomial

Consider homogeneous $I \subset S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$.

$$
\text { HilbertFunction }_{S / I}(d):=\operatorname{dim}_{\mathbb{C}}\left((S / I)_{d}\right)
$$

There exist a polynomial HilbertPolynomial $S_{S / I}(d) \in \mathbb{Z}[d]$ and a sufficiently big d_{0} such that, if $d \geq d_{0}$,

$$
\text { HilbertFunction }_{S / I}(d)=\text { HilbertPolynomial }_{S / I}(d)
$$

If $V_{\mathbb{P}^{n}}(I)$ is a finite set of δ points, HilbertPolynomial ${ }_{S / I}(d)=\delta$.

$$
\left.\begin{array}{l}
I=\left\langle x_{0}^{2}\left(x_{0}^{2}-x_{1}^{2}\right), x_{1}^{2}\left(x_{0}^{2}-x_{1}^{2}\right)\right\rangle \\
V_{\mathbb{P}^{n}}(I)=\{(1: 1),(1:-1)\}
\end{array}\right\} \quad \operatorname{dim}_{\mathbb{C}}\left(\left(\mathbb{C}\left[x_{0}, x_{1}\right] / I\right)_{d}\right)=2, \text { for } d \geq 5
$$

Castelnuovo-Mumford regularity \geq smallest d_{0}.

Geometry \leftrightarrow Algebra: Saturation

Equality of projective schemes

Let $\mathfrak{m}_{x}:=\left\langle x_{0}, \ldots, x_{n}\right\rangle$ be irrelevant ideal of $S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$. Given homogeneous $I, J \subset S$,

$$
\operatorname{Proj}(I)=\operatorname{Proj}(J) \Longleftrightarrow \exists \text { sufficiently big } d_{0} \text { st }\left(\forall d \geq d_{0}\right) I_{d}=J_{d}
$$

In particular, there is big enough d_{0} st $\left(\forall d \geq d_{0}\right)$ the ideal I is saturated at degree d, that is,

$$
I_{d}=\left(I: \mathfrak{m}_{x}^{\infty}\right)_{d}
$$

Geometry \leftrightarrow Algebra: Saturation

Equality of projective schemes

Let $\mathfrak{m}_{x}:=\left\langle x_{0}, \ldots, x_{n}\right\rangle$ be irrelevant ideal of $S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$. Given homogeneous $I, J \subset S$,

$$
\operatorname{Proj}(I)=\operatorname{Proj}(J) \Longleftrightarrow \exists \text { sufficiently big } d_{0} \text { st }\left(\forall d \geq d_{0}\right) I_{d}=J_{d}
$$

In particular, there is big enough d_{0} st $\left(\forall d \geq d_{0}\right)$ the ideal I is saturated at degree d, that is,

$$
I_{d}=\left(I: \mathfrak{m}_{x}^{\infty}\right)_{d}
$$

$$
\left.\begin{array}{c}
I=\left\langle x_{0}^{2}\left(x_{0}^{2}-x_{1}^{2}\right), x_{1}^{2}\left(x_{0}^{2}-x_{1}^{2}\right)\right\rangle \\
\left(I: \mathfrak{m}_{x}^{\infty}\right)=\left\langle\left(x_{0}-x_{1}\right)\left(x_{0}+x_{1}\right)\right\rangle \\
V_{\mathbb{P}^{n}}(I)=\{(1: 1),(1:-1)\}
\end{array}\right\} \quad \leftrightarrow \quad I_{d}=\left(I: \mathfrak{m}_{x}^{\infty}\right)_{d}, \text { for } d \geq 5
$$

Geometry \leftrightarrow Algebra: Saturation

Equality of projective schemes

Let $\mathfrak{m}_{x}:=\left\langle x_{0}, \ldots, x_{n}\right\rangle$ be irrelevant ideal of $S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$. Given homogeneous $I, J \subset S$,

$$
\operatorname{Proj}(I)=\operatorname{Proj}(J) \Longleftrightarrow \exists \text { sufficiently big } d_{0} \text { st }\left(\forall d \geq d_{0}\right) I_{d}=J_{d}
$$

In particular, there is big enough d_{0} st $\left(\forall d \geq d_{0}\right)$ the ideal I is saturated at degree d, that is,

$$
I_{d}=\left(I: \mathfrak{m}_{x}^{\infty}\right)_{d}
$$

$$
\left.\begin{array}{c}
I=\left\langle x_{0}^{2}\left(x_{0}^{2}-x_{1}^{2}\right), x_{1}^{2}\left(x_{0}^{2}-x_{1}^{2}\right)\right\rangle \\
\left(I: \mathfrak{m}_{x}^{\infty}\right)=\left\langle\left(x_{0}-x_{1}\right)\left(x_{0}+x_{1}\right)\right\rangle \\
V_{\mathbb{P}^{n}}(I)=\{(1: 1),(1:-1)\}
\end{array}\right\} \quad \leftrightarrow \quad I_{d}=\left(I: \mathfrak{m}_{x}^{\infty}\right)_{d}, \text { for } d \geq 5
$$

Castelnuovo-Mumford regularity \geq smallest d_{0}.

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

CM regularity in terms of the Betti numbers

[Eisenbud-Goto '84]
Let $S:=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ and $\left\{\beta_{i, j}\right\}_{i, j}$ be the graded Betti numbers of I (shifts in minimal free resolution).

$$
0 \rightarrow \bigoplus_{j} S(-j)^{\beta_{r, j}} \rightarrow \cdots \rightarrow \bigoplus_{j} S(-j)^{\beta_{1, j}} \rightarrow \bigoplus_{j} S(-j)^{\beta_{0, j}} \rightarrow I \rightarrow 0
$$

CM regularity \sim maximal shift in minimal free resolution

$$
\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j} \neq 0\right)
$$

$$
\begin{aligned}
& I=\left\langle x_{0}^{4}-x_{0}^{2} x_{1}^{2}, x_{0}^{2} x_{1}^{2}-x_{1}^{4}\right\rangle \\
& \quad 0 \rightarrow S(-6) \xrightarrow{\left(\begin{array}{cc}
-x_{1}^{2} & x_{0}^{2}
\end{array}\right)} S(-4)^{2} \xrightarrow{\binom{x_{0}^{4}-x_{0}^{2} x_{1}^{2}}{x_{0}^{2} x_{1}^{2}-x_{1}^{4}}} I \rightarrow 0 \\
& \\
& \operatorname{reg}(I)=\max (6-1,4-0)=5
\end{aligned}
$$

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

- Betti numbers: $\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j}(I) \neq 0\right)$

CM regularity in terms of linear resolution
[Eisenbud-Goto '84]
Given a degreed and an ideal homogeneous $I \subset S$, its d-truncated ideal is

$$
I_{\geq d}:=\bigoplus_{i \geq d} I_{d}
$$

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

- Betti numbers: $\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j}(I) \neq 0\right)$

CM regularity in terms of linear resolution

[Eisenbud-Goto '84]
Given a degreed and an ideal homogeneous $I \subset S$, its d-truncated ideal is

$$
I_{\geq d}:=\bigoplus_{i \geq d} I_{d}
$$

$I_{\geq d}$ has linear resolutions, if its minimal resolution is

$$
0 \rightarrow S(-d-r)^{\beta_{r, d+r}} \rightarrow \cdots \rightarrow S(-d-1)^{\beta_{1, d+1}} \rightarrow S(-d)^{\beta_{0, d}} \rightarrow I_{\geq d} \rightarrow 0
$$

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

- Betti numbers: $\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j}(I) \neq 0\right)$

CM regularity in terms of linear resolution

[Eisenbud-Goto '84]
Given a degreed and an ideal homogeneous $I \subset S$, its d-truncated ideal is

$$
I_{\geq d}:=\bigoplus_{i \geq d} I_{d}
$$

$I_{\geq d}$ has linear resolutions, if its minimal resolution is

$$
0 \rightarrow S(-d-r)^{\beta_{r, d+r}} \rightarrow \cdots \rightarrow S(-d-1)^{\beta_{1, d+1}} \rightarrow S(-d)^{\beta_{0, d}} \rightarrow I_{\geq d} \rightarrow 0
$$

CM regularity $=$ minimal d st d-truncation has linear resolution.

$$
\operatorname{reg}(I)=\min \left(d: I_{\geq d} \text { has a linear resolution }\right)
$$

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

- Betti numbers: $\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j}(I) \neq 0\right)$

CM regularity in terms of linear resolution

[Eisenbud-Goto '84]
Given d and an ideal $I \subset S$, its d-truncated ideal is $I_{\geq d}:=\bigoplus_{i \geq d} I_{d}$. $I_{\geq d}$ has linear resolutions, if its minimal resolution is

$$
0 \rightarrow S(-d-r)^{\beta_{r, d+r}} \rightarrow \cdots \rightarrow S(-d-1)^{\beta_{1, d+1}} \rightarrow S(-d)^{\beta_{0, d}} \rightarrow I_{\geq d} \rightarrow 0
$$

CM regularity $=$ minimal d st d-truncation has linear resolution.

$$
\operatorname{reg}(I)=\min \left(d: I_{\geq d} \text { has a linear resolution }\right)
$$

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

- Betti numbers: $\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j}(I) \neq 0\right)$

CM regularity in terms of linear resolution

[Eisenbud-Goto '84]
Given d and an ideal $I \subset S$, its d-truncated ideal is $I_{\geq d}:=\bigoplus_{i \geq d} I_{d}$. $I_{\geq d}$ has linear resolutions, if its minimal resolution is

$$
0 \rightarrow S(-d-r)^{\beta_{r, d+r}} \rightarrow \cdots \rightarrow S(-d-1)^{\beta_{1, d+1}} \rightarrow S(-d)^{\beta_{0, d}} \rightarrow I_{\geq d} \rightarrow 0
$$

CM regularity $=$ minimal d st d-truncation has linear resolution.

$$
\operatorname{reg}(I)=\min (d: I \geq d \text { has a linear resolution })
$$

$$
0 \rightarrow S(-5-1)^{3} \xrightarrow{\left(\begin{array}{cccc}
-x_{1} & x_{0} & 0 & 0 \\
0 & -x_{1} & x_{0} & 0 \\
0 & 0 & -x_{1} & x_{0}
\end{array}\right)} S(-5)^{4} \xrightarrow{\left(\begin{array}{c}
x_{0}^{5}-x_{0}^{3} x_{1}^{2} \\
x_{0}^{4} x_{1}-x_{0}^{2} x_{1}^{3} \\
x_{0}^{3} x_{1}^{2}-x_{0} x_{1}^{4} \\
x_{0}^{2} x_{1}^{3}-x_{1}^{5}
\end{array}\right)} I_{\geq 5} \rightarrow 0
$$

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

- Betti numbers: $\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j}(I) \neq 0\right)$
- Linear resolutions: $\operatorname{reg}(I)=\min \left(d: I_{\geq d}\right.$ has linear res $)$

CM reg via local cohomology

[Castelnuovo'1896] [Mumford'66]
CM regularity \sim minimal shift st local cohomology wrt \mathfrak{m}_{x} vanishes.

$$
\operatorname{reg}(I)=\min \left(d:(\forall i)\left(H_{\mathfrak{m}_{x}}^{i}(I)\right)_{d+i-1}=0\right)
$$

Vanishing of first local cohomology module $=$ Ideal is saturated wrt \mathfrak{m}_{x}

$$
\begin{gathered}
H_{\mathfrak{m}_{x}}^{1}(I)=\left(I: \mathfrak{m}_{x}^{\infty}\right) / I \\
\left(\left\langle x_{0}^{2}-x_{1}^{2}\right\rangle /\left\langle x_{0}^{4}-x_{0}^{2} x_{1}^{2}, x_{0}^{2} x_{1}^{2}-x_{1}^{4}\right\rangle\right)_{5}=0
\end{gathered}
$$

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

- Betti numbers: $\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j}(I) \neq 0\right)$
- Linear resolutions: $\operatorname{reg}(I)=\min \left(d: I_{\geq d}\right.$ has linear res $)$
- Vanishing of local cohom.: $\operatorname{reg}(I)=\min \left(d:(\forall i)\left(H_{\mathfrak{m}_{x}}^{i}(I)\right)_{d+i-1}=0\right)$

CM regularity in terms of colon ideals
[Bayer-Stillman '87]
CM regularity of an ideal / generated in degree k, is the minimal degree $d \geq k$ st there are (generic) linear forms $\ell_{0}, \ldots, \ell_{n} \in S$ satisfying

$$
\left\{\begin{array}{c}
(\forall i \geq 0)\left(\left\langle I, \ell_{0}, \ldots, \ell_{i-1}\right\rangle: \ell_{i}\right)_{d}=\left\langle I, \ell_{0}, \ldots, \ell_{i-1}\right\rangle_{d} \\
\left\langle I, \ell_{0}, \ldots, \ell_{n}\right\rangle_{d}=S_{d}
\end{array}\right.
$$

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

- Betti numbers: $\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j}(I) \neq 0\right)$
- Linear resolutions: $\operatorname{reg}(I)=\min \left(d: I_{\geq d}\right.$ has linear res $)$
- Vanishing of local cohom.: $\operatorname{reg}(I)=\min \left(d:(\forall i)\left(H_{\mathfrak{m}_{x}}^{i}(I)\right)_{d+i-1}=0\right)$

CM regularity in terms of colon ideals
[Bayer-Stillman '87]
CM regularity of an ideal I generated in degree k, is the minimal degree $d \geq k$ st there are (generic) linear forms $\ell_{0}, \ldots, \ell_{n} \in S$ satisfying

$$
\left\{\begin{array}{c}
(\forall i \geq 0)\left(\left\langle I, \ell_{0}, \ldots, \ell_{i-1}\right\rangle: \ell_{i}\right)_{d}=\left\langle I, \ell_{0}, \ldots, \ell_{i-1}\right\rangle_{d} \\
\left\langle I, \ell_{0}, \ldots, \ell_{n}\right\rangle_{d}=S_{d}
\end{array}\right.
$$

Consider $I=\left\langle x_{0}^{4}-x_{0}^{2} x_{1}^{2}, x_{0}^{2} x_{1}^{2}-x_{1}^{4}\right\rangle$ and let $\ell_{0}=x_{0}, \ell_{1}=x_{1}$. $\left(I: x_{0}\right)=\left\langle x_{0}^{3}-x_{0} x_{1}^{2}, x_{0}^{2} x_{1}^{2}-x_{1}^{4}\right\rangle, \quad\left\langle I, x_{0}\right\rangle=\left\langle x_{0}, x_{1}^{4}\right\rangle, \quad\left(\left\langle I, x_{0}\right\rangle: x_{1}\right)=\left\langle x_{0}, x_{1}^{3}\right\rangle$
CM Regularity is 5 as $\left\{\begin{array}{l}x_{1}\left(x_{0}^{3}-x_{0} x_{1}^{2}\right) \in\left(I: x_{0}\right)_{4} \nsubseteq I_{4} \\ \left(I: x_{0}\right)_{5}=I_{5} \\ \left(\left\langle I, x_{0}\right\rangle: x_{1}\right)_{5}=\left\langle I, x_{0}\right\rangle_{5}\end{array}\right.$

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

- Betti numbers: $\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j}(I) \neq 0\right)$
- Linear resolutions: $\operatorname{reg}(I)=\min \left(d: I_{\geq d}\right.$ has linear resolution $)$
- Vanishing of local cohom.: $\operatorname{reg}(I)=\min \left(d:(\forall i)\left(H_{\mathfrak{m}_{x}}^{i}(I)\right)_{d+i-1}=0\right)$
- Equalities in sequence of colon ideals.

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

- Betti numbers: $\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j}(I) \neq 0\right)$
- Linear resolutions: $\operatorname{reg}(I)=\min \left(d: I_{\geq d}\right.$ has linear res $)$
- Vanishing of local cohom.: $\operatorname{reg}(I)=\min \left(d:(\forall i)\left(H_{\mathfrak{m}_{x}}^{i}(I)\right)_{d+i-1}=0\right)$
- Equalities in sequence of colon ideals.

Geometry \leftrightarrow Algebra: Castelnuovo-Mumford (CM) regularity

- Betti numbers: $\operatorname{reg}(I)=\max _{i, j}\left(j-i: \beta_{i, j}(I) \neq 0\right)$
- Linear resolutions: $\operatorname{reg}(I)=\min \left(d: I_{\geq d}\right.$ has linear res $)$
- Vanishing of local cohom.: $\operatorname{reg}(I)=\min \left(d:(\forall i)\left(H_{\mathfrak{m}_{x}}^{i}(I)\right)_{d+i-1}=0\right)$
- Equalities in sequence of colon ideals.

CM regularity is independent of the coordinates x_{0}, \ldots, x_{n}

Geometry \leftrightarrow Algebra: Bounds on CM regularity

The Castelnuovo-Mumford regularity can be big...
...very big
[Galligo '79] [Giusti '84]
Consider homogeneous $I \subset \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ generated in degree $\leq d$. Then,

$$
\operatorname{reg}(I) \leq(2 d)^{2^{n-1}}
$$

Geometry \leftrightarrow Algebra: Bounds on CM regularity

The Castelnuovo-Mumford regularity can be big...

...very big
 [Galligo '79] [Giusti '84]

Consider homogeneous $I \subset \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ generated in degree $\leq d$. Then,

$$
\operatorname{reg}(I) \leq(2 d)^{2^{n-1}}
$$

...and it can not be avoided

[Mayr-Meyer '82]
There is an ideal generated in degree 4 st its regularity $\geq 2^{2^{n / 10}}+1$.

Geometry \leftrightarrow Algebra: Bounds on CM regularity

The Castelnuovo-Mumford regularity can be big...

...very big

Consider homogeneous $I \subset \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ generated in degree $\leq d$. Then,

$$
\operatorname{reg}(I) \leq(2 d)^{2^{n-1}}
$$

...and it can not be avoided

[Mayr-Meyer '82]
There is an ideal generated in degree 4 st its regularity $\geq 2^{2^{n / 10}}+1$.
...but generically is small
If $f_{1}, \ldots, f_{r} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ is a regular sequence of degs $\leq d$, then

$$
\operatorname{reg}\left(\left\langle f_{1}, \ldots, f_{r}\right\rangle\right) \leq \sum_{i} \operatorname{degree}\left(f_{i}\right)-r+1 \leq d(n+1)
$$

Algebra \leftrightarrow Computations: Gröbner bases

We fix degree reverse lexicographical monomial order $>$ (GREVLEX) st

$$
x_{0}<\cdots<x_{n}
$$

Initial ideal of I wrt GRevLex

$$
\operatorname{in}_{>}(I):=\left\langle\text { LeadingMonomial }_{>}(f): f \in I\right\rangle
$$

A set of generators $\left\{f_{1}, \ldots, f_{r}\right\}$ of an ideal l is a Gröbner basis (GB) if

$$
\operatorname{in}_{>}(I)=\left\langle\text { LeadingMonomial }_{>}\left(f_{i}\right): 1 \leq i \leq r\right\rangle
$$

Algebra \leftrightarrow Computations: Maximal degrees in GB

 $\operatorname{reg}_{0}(J):=m a x$ degree in a min generating set of homogeneous ideal J. How hard is to compute a GB for I$$
\operatorname{reg}_{0}\left(\mathrm{in}_{>}(I)\right)=\text { maximal degree of an element in a GB }
$$

Algebra \leftrightarrow Computations: Maximal degrees in GB

 $\operatorname{reg}_{0}(J):=$ max degree in a min generating set of homogeneous ideal J. How hard is to compute a GB for I$$
\begin{gathered}
\operatorname{reg}_{0}\left(\operatorname{in}_{>}(I)\right)=\text { maximal degree of an element in a GB } \\
\operatorname{reg}_{0}(I) \leq \operatorname{reg}(I) \quad \operatorname{reg}\left(\operatorname{in}_{>}(I)\right) \geq \operatorname{reg}_{0}\left(\operatorname{in}_{>}(I)\right)
\end{gathered}
$$

Algebra \leftrightarrow Computations: Maximal degrees in GB

 $\operatorname{reg}_{0}(J):=$ max degree in a min generating set of homogeneous ideal J. How hard is to compute a GB for I$$
\begin{gathered}
\operatorname{reg}_{0}\left(\operatorname{in}_{>}(I)\right)=\text { maximal degree of an element in a GB } \\
\operatorname{reg}_{0}(I) \leq \operatorname{reg}(I) \leq \operatorname{reg}\left(\operatorname{in}_{>}(I)\right) \geq \operatorname{reg}_{0}\left(\operatorname{in}_{>}(I)\right)
\end{gathered}
$$

Algebra \leftrightarrow Computations: Maximal degrees in GB

 $\operatorname{reg}_{0}(J):=m a x$ degree in a min generating set of homogeneous ideal J. How hard is to compute a GB for I$$
\begin{gathered}
\operatorname{reg}_{0}\left(\operatorname{in}_{>}(I)\right)=\text { maximal degree of an element in a GB } \\
\operatorname{reg}_{0}(I) \leq \operatorname{reg}(I) \leq \operatorname{reg}\left(\operatorname{in}_{>}(I)\right) \geq \operatorname{reg}_{0}\left(\operatorname{in}_{>}(I)\right)
\end{gathered}
$$

Algebra \leftrightarrow Computations: Maximal degrees in GB

$\operatorname{reg}_{0}(J):=$ max degree in a min generating set of homogeneous ideal J.
How hard is to compute a GB for I

$$
\begin{gathered}
\operatorname{reg}_{0}\left(\operatorname{in}_{>}(I)\right)=\text { maximal degree of an element in a GB } \\
\operatorname{reg}_{0}(I) \leq \operatorname{reg}(I) \leq \operatorname{reg}\left(\operatorname{in}_{>}(I)\right) \geq \operatorname{reg}_{0}\left(\operatorname{in}_{>}(I)\right)
\end{gathered}
$$

Maximal deg in GB vs Castelnuovo-Mumford regularity

- I $:=\left\langle x_{2}^{2}+x_{0}^{2}, x_{2} x_{1}+x_{0}^{2}\right\rangle$
- $V * I$, where V be change of coord: $\left\{x_{0}=x_{1}^{\prime}, x_{1}=x_{0}^{\prime}, x_{2}=x_{2}^{\prime}\right\}$
- $\boldsymbol{U} * \boldsymbol{I}, \boldsymbol{U}$ change of coord: $\left\{x_{0}=x_{0}^{\prime}+x_{1}^{\prime}+x_{2}^{\prime}, x_{1}=x_{1}^{\prime}+x_{2}^{\prime}, x_{2}=x_{2}^{\prime}\right\}$

We have that, $\operatorname{reg}(\boldsymbol{I})=\operatorname{reg}(V * \boldsymbol{I})=\operatorname{reg}(\boldsymbol{U} * \boldsymbol{I})=3$; but

Geometry \leftrightarrow Computations: Generic initial ideal

The maximal degree $\operatorname{reg}_{0}\left(\mathrm{in}_{>}(I)\right)$ depends on the coordinates x_{0}, \ldots, x_{n}.

Generic initial ideal

[Galligo '74]
For each homogeneous ideal I, there exist a monomial ideal gin $_{>}(I)$ st, for every generic change of coordinates $U \in \mathrm{GL}_{n+1}$, we have that

$$
\operatorname{gin}_{>}(I)=\operatorname{in}(U * I)
$$

Geometry \leftrightarrow Computations: Generic initial ideal

The maximal degree $\operatorname{reg}_{0}\left(\mathrm{in}_{>}(I)\right)$ depends on the coordinates x_{0}, \ldots, x_{n}.

Generic initial ideal

 [Galligo '74]For each homogeneous ideal I, there exist a monomial ideal gin $_{>}(I)$ st, for every generic change of coordinates $U \in \mathrm{GL}_{n+1}$, we have that

$$
\operatorname{gin}_{>}(I)=\operatorname{in}(U * I)
$$

Regularity and maximal degree of GB
[Bayer-Stillman '87]
Consider homogeneous $I \subset \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ and monomial order GREVLEX.

$$
\operatorname{reg}(I)=\operatorname{reg}\left(\operatorname{gin}_{>}(I)\right)=\operatorname{reg}_{0}\left(\operatorname{gin}_{>}(I)\right)
$$

In particular, if I is in generic coordinates, $\operatorname{in}_{>}(I)=\operatorname{gin}_{>}(I)$ and $r e g(I)$ is the maximal degree of a polynomial in a minimal GB of I.

Multihomogeneous systems

Generalized Eigenvalue Problem

$$
\begin{gathered}
\left(x_{0} \cdot\left[\begin{array}{cc}
2 & 6 \\
-1 & 20
\end{array}\right]+x_{1} \cdot\left[\begin{array}{cc}
-2 & 4 \\
0 & 20
\end{array}\right]\right) \cdot\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]=0 \\
\left\{\begin{array}{c}
2 x_{0} y_{0}+6 x_{0} y_{1}-2 x_{1} y_{0}+4 x_{1} y_{1}=0 \\
-1 x_{0} y_{0}+20 x_{0} y_{1}+0 x_{1} y_{0}+20 x_{1} y_{1}=0
\end{array} \in \mathbb{C}\left[x_{0}, x_{1}\right]_{1} \otimes \mathbb{C}\left[y_{0}, y_{1}\right]_{1}\right.
\end{gathered}
$$

Multihomogeneous systems

Generalized Eigenvalue Problem

$$
\begin{gathered}
\left(x_{0} \cdot\left[\begin{array}{cc}
2 & 6 \\
-1 & 20
\end{array}\right]+x_{1} \cdot\left[\begin{array}{cc}
-2 & 4 \\
0 & 20
\end{array}\right]\right) \cdot\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]=0 \\
\left\{\begin{array}{c}
2 x_{0} y_{0}+6 x_{0} y_{1}-2 x_{1} y_{0}+4 x_{1} y_{1}=0 \\
-1 x_{0} y_{0}+20 x_{0} y_{1}+0 x_{1} y_{0}+20 x_{1} y_{1}=0
\end{array} \in \mathbb{C}\left[x_{0}, x_{1}\right]_{1} \otimes \mathbb{C}\left[y_{0}, y_{1}\right]_{1}\right.
\end{gathered}
$$

$$
\text { We look for solutions in } \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Multihomogeneous systems

Generalized Eigenvalue Problem

$$
\begin{gathered}
\left(x_{0} \cdot\left[\begin{array}{cc}
2 & 6 \\
-1 & 20
\end{array}\right]+x_{1} \cdot\left[\begin{array}{cc}
-2 & 4 \\
0 & 20
\end{array}\right]\right) \cdot\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]=0 \\
\left\{\begin{array}{c}
2 x_{0} y_{0}+6 x_{0} y_{1}-2 x_{1} y_{0}+4 x_{1} y_{1}=0 \\
-1 x_{0} y_{0}+20 x_{0} y_{1}+0 x_{1} y_{0}+20 x_{1} y_{1}=0
\end{array} \in \mathbb{C}\left[x_{0}, x_{1}\right]_{1} \otimes \mathbb{C}\left[y_{0}, y_{1}\right]_{1}\right.
\end{gathered}
$$

$$
\text { We look for solutions in } \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

The bihomogeneous coordinate ring of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is

$$
R:=\bigoplus_{(d, e) \in \mathbb{Z}^{2}} \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \otimes \mathbb{C}\left[y_{0}, \ldots, y_{m}\right]_{e}
$$

Irrelevant ideal of R is $\mathfrak{b}=\mathfrak{m}_{\boldsymbol{x}} \cap \mathfrak{m}_{\boldsymbol{y}}$, where

$$
\mathfrak{m}_{\boldsymbol{x}}=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathfrak{m}_{\boldsymbol{y}}=\left\langle y_{0}, \ldots, y_{m}\right\rangle .
$$

The bihomogeneous coordinate ring of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is

$$
R:=\bigoplus_{(d, e) \in \mathbb{Z}^{2}} \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \otimes \mathbb{C}\left[y_{0}, \ldots, y_{m}\right]_{e}
$$

Irrelevant ideal of R is $\mathfrak{b}=\mathfrak{m}_{\boldsymbol{x}} \cap \mathfrak{m}_{\boldsymbol{y}}$, where

$$
\mathfrak{m}_{\boldsymbol{x}}=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathfrak{m}_{\boldsymbol{y}}=\left\langle y_{0}, \ldots, y_{m}\right\rangle
$$

Geometry \leftrightarrow Algebra

$$
I=\left\langle x_{0}-x_{1}, x_{1} y_{0}, x_{1} y_{1}, x_{0} y_{1}, x_{0}^{2} y_{0}, x_{0} y_{0}^{2}\right\rangle \quad V_{\mathbb{P}^{n} \times \mathbb{P}^{m}}(I)=\emptyset
$$

The bihomogeneous coordinate ring of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is

$$
R:=\bigoplus_{(d, e) \in \mathbb{Z}^{2}} \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \otimes \mathbb{C}\left[y_{0}, \ldots, y_{m}\right]_{e}
$$

Irrelevant ideal of R is $\mathfrak{b}=\mathfrak{m}_{\boldsymbol{x}} \cap \mathfrak{m}_{\boldsymbol{y}}$, where

$$
\mathfrak{m}_{x}=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathfrak{m}_{y}=\left\langle y_{0}, \ldots, y_{m}\right\rangle
$$

Geometry \leftrightarrow Algebra

$$
I=\left\langle x_{0}-x_{1}, x_{1} y_{0}, x_{1} y_{1}, x_{0} y_{1}, x_{0}^{2} y_{0}, x_{0} y_{0}^{2}\right\rangle \quad V_{\mathbb{P}^{n} \times \mathbb{P}^{m}}(I)=\emptyset
$$

$$
\left\{\begin{array}{lr}
l_{0, e}=0 & \text { for } e \geq 0 \\
I_{d, 0}=\left\langle x_{0}-x_{1}\right\rangle_{d, 0} & \text { for } d \geq 1 \\
I_{1,1}=\operatorname{Span}_{\mathbb{C}}\left(\left\{x_{0} y_{1}, x_{1} y_{0}, x_{1} y_{1}\right\}\right) \\
& \not \supset x_{0} y_{1} \\
I_{2,1}=R_{2,1}, l_{1,2}=R_{1,2}, & \\
l_{e, d}=R_{e, d}, & \text { for } d \geq 2 \text { and } e \geq 2 .
\end{array}\right.
$$

The bihomogeneous coordinate ring of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is

$$
R:=\bigoplus_{(d, e) \in \mathbb{Z}^{2}} \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \otimes \mathbb{C}\left[y_{0}, \ldots, y_{m}\right]_{e}
$$

Irrelevant ideal of R is $\mathfrak{b}=\mathfrak{m}_{\boldsymbol{x}} \cap \mathfrak{m}_{\boldsymbol{y}}$, where

$$
\mathfrak{m}_{x}=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathfrak{m}_{\boldsymbol{y}}=\left\langle y_{0}, \ldots, y_{m}\right\rangle
$$

Geometry \leftrightarrow Algebra

$$
I=\left\langle x_{0}-x_{1}, x_{1} y_{0}, x_{1} y_{1}, x_{0} y_{1}, x_{0}^{2} y_{0}, x_{0} y_{0}^{2}\right\rangle \quad V_{\mathbb{P}^{n} \times \mathbb{P}^{m}}(I)=\emptyset
$$

$$
\left\{\begin{array}{lr}
l_{0, e}=0 & \text { for } e \geq 0 \\
I_{d, 0}=\left\langle x_{0}-x_{1}\right\rangle_{d, 0} & \text { for } d \geq 1 \\
I_{1,1}=\operatorname{Span}_{\mathbb{C}}\left(\left\{x_{0} y_{1}, x_{1} y_{0}, x_{1} y_{1}\right\}\right) \\
& \not \supset x_{0} y_{1} \\
I_{2,1}=R_{2,1}, l_{1,2}=R_{1,2}, & \\
l_{e, d}=R_{e, d}, & \text { for } d \geq 2 \text { and } e \geq 2 .
\end{array}\right.
$$

Regularity is a region (unbounded complement)

The bihomogeneous coordinate ring of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is

$$
R:=\bigoplus_{(d, e) \in \mathbb{Z}^{2}} \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \otimes \mathbb{C}\left[y_{0}, \ldots, y_{m}\right]_{e}
$$

Irrelevant ideal of R is $\mathfrak{b}=\mathfrak{m}_{\boldsymbol{x}} \cap \mathfrak{m}_{\boldsymbol{y}}$, where

$$
\mathfrak{m}_{\boldsymbol{x}}=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathfrak{m}_{\boldsymbol{y}}=\left\langle y_{0}, \ldots, y_{m}\right\rangle
$$

Geometry \leftrightarrow Algebra

Regularity is a region (unbounded complement)

The bihomogeneous coordinate ring of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is

$$
R:=\bigoplus_{(d, e) \in \mathbb{Z}^{2}} \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \otimes \mathbb{C}\left[y_{0}, \ldots, y_{m}\right]_{e}
$$

Irrelevant ideal of R is $\mathfrak{b}=\mathfrak{m}_{\boldsymbol{x}} \cap \mathfrak{m}_{\boldsymbol{y}}$, where

$$
\mathfrak{m}_{\boldsymbol{x}}=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathfrak{m}_{\boldsymbol{y}}=\left\langle y_{0}, \ldots, y_{m}\right\rangle
$$

Geometry \leftrightarrow Algebra

Regularity is a region (unbounded complement)

Algebra \leftrightarrow Computations

Change of coordinates $U \in G L_{n+m+2}$ destroy multigraded structure.

$$
U=\left\{x_{0}=x_{0}^{\prime}+x_{1}^{\prime}+y_{0}^{\prime}+y_{1}^{\prime}, \ldots\right\}
$$

The bihomogeneous coordinate ring of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ is

$$
R:=\bigoplus_{(d, e) \in \mathbb{Z}^{2}} \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \otimes \mathbb{C}\left[y_{0}, \ldots, y_{m}\right]_{e}
$$

Irrelevant ideal of R is $\mathfrak{b}=\mathfrak{m}_{\boldsymbol{x}} \cap \mathfrak{m}_{\boldsymbol{y}}$, where

$$
\mathfrak{m}_{x}=\left\langle x_{0}, \ldots, x_{n}\right\rangle, \mathfrak{m}_{y}=\left\langle y_{0}, \ldots, y_{m}\right\rangle
$$

Geometry \leftrightarrow Algebra

Regularity is a region (unbounded complement)

Algebra \leftrightarrow Computations

Change of coordinates $U \in G L_{n+m+2}$ destroy multigraded structure.

$$
U=\left\{x_{0}=x_{0}^{\prime}+x_{1}^{\prime}+y_{0}^{\prime}+y_{1}^{\prime}, \ldots\right\}
$$

We need to restrict to $(U, V) \in \mathrm{GL}_{n+1} \times \mathrm{GL}_{m+1}$

$$
\left\{\begin{array}{l}
U=\left\{x_{0}=x_{0}^{\prime}+x_{1}^{\prime}, x_{0}^{\prime}-x_{1}^{\prime}\right\} \\
V=\left\{y_{0}=3 y_{0}^{\prime}-y_{1}^{\prime}, 2 y_{0}^{\prime}+y_{1}^{\prime}\right\}
\end{array}\right.
$$

Geometry \leftrightarrow Algebra: Multigraded CM regularity

- Defined in terms of vanishing of local cohomology wrt \mathfrak{b}

Bigraded Castelnuovo-Mumford regularity
 [Maclagan-Smith '04]

We say that $(a, b) \in \operatorname{reg}(I) \subset \mathbb{Z}^{2}$ iff, for every $i \geq i$ and every shift $\lambda_{x}, \lambda_{y} \in \mathbb{Z}_{\geq 0}$ st $\lambda_{x}+\lambda_{y}=i-1$

$$
\left(\forall\left(a^{\prime}, b^{\prime}\right) \geq\left(a-\lambda_{x}, b-\lambda_{y}\right)\right) \quad H_{\mathfrak{b}}^{i}(I)_{\left(a^{\prime}, b^{\prime}\right)}=0
$$

Geometry \leftrightarrow Algebra: Multigraded CM regularity

- Defined in terms of vanishing of local cohomology wrt \mathfrak{b}

Bigraded Castelnuovo-Mumford regularity
 [Maclagan-Smith '04]

We say that $(a, b) \in \operatorname{reg}(I) \subset \mathbb{Z}^{2}$ iff, for every $i \geq i$ and every shift $\lambda_{x}, \lambda_{y} \in \mathbb{Z}_{\geq 0}$ st $\lambda_{x}+\lambda_{y}=i-1$

$$
\left(\forall\left(a^{\prime}, b^{\prime}\right) \geq\left(a-\lambda_{x}, b-\lambda_{y}\right)\right) \quad H_{\mathfrak{b}}^{i}(I)_{\left(a^{\prime}, b^{\prime}\right)}=0
$$

- Equiv. to existence of quasilinear resolution [Bruce-Heller-Sayrafi '21]

Geometry \leftrightarrow Algebra: Multigraded CM regularity

- Defined in terms of vanishing of local cohomology wrt \mathfrak{b}

Bigraded Castelnuovo-Mumford regularity
 [Maclagan-Smith '04]

We say that $(a, b) \in \operatorname{reg}(I) \subset \mathbb{Z}^{2}$ iff, for every $i \geq i$ and every shift $\lambda_{x}, \lambda_{y} \in \mathbb{Z}_{\geq 0}$ st $\lambda_{x}+\lambda_{y}=i-1$

$$
\left(\forall\left(a^{\prime}, b^{\prime}\right) \geq\left(a-\lambda_{x}, b-\lambda_{y}\right)\right) \quad H_{\mathfrak{b}}^{i}(I)_{\left(a^{\prime}, b^{\prime}\right)}=0
$$

- Equiv. to existence of quasilinear resolution [Bruce-Heller-Sayrafi '21]
- This def does NOT agree with Betti numbers! Still there is relation.
[Botbol-Chardin '17], [Bruce-Heller-Sayrafi '21], [Chardin-Holanda '22].

Geometry \leftrightarrow Algebra: Multigraded CM regularity

- Defined in terms of vanishing of local cohomology wrt \mathfrak{b}

Bigraded Castelnuovo-Mumford regularity [Maclagan-Smith '04]

We say that $(a, b) \in \operatorname{reg}(I) \subset \mathbb{Z}^{2}$ iff, for every $i \geq i$ and every shift $\lambda_{x}, \lambda_{y} \in \mathbb{Z}_{\geq 0}$ st $\lambda_{x}+\lambda_{y}=i-1$

$$
\left(\forall\left(a^{\prime}, b^{\prime}\right) \geq\left(a-\lambda_{x}, b-\lambda_{y}\right)\right) \quad H_{b}^{i}(I)_{\left(a^{\prime}, b^{\prime}\right)}=0
$$

- Equiv. to existence of quasilinear resolution [Bruce-Heller-Sayrafi '21]
- This def does NOT agree with Betti numbers! Still there is relation.
[Botbol-Chardin '17], [Bruce-Heller-Sayrafi '21], [Chardin-Holanda '22].
- Not known criterion in terms of colon ideals à la Bayer \& Stillman.

Geometry \leftrightarrow Algebra: Multigraded CM regularity

- Defined in terms of vanishing of local cohomology wrt \mathfrak{b}

Bigraded Castelnuovo-Mumford regularity [Maclagan-Smith '04]

We say that $(a, b) \in \operatorname{reg}(I) \subset \mathbb{Z}^{2}$ iff, for every $i \geq i$ and every shift $\lambda_{x}, \lambda_{y} \in \mathbb{Z}_{\geq 0}$ st $\lambda_{x}+\lambda_{y}=i-1$

$$
\left(\forall\left(a^{\prime}, b^{\prime}\right) \geq\left(a-\lambda_{x}, b-\lambda_{y}\right)\right) \quad H_{b}^{i}(I)_{\left(a^{\prime}, b^{\prime}\right)}=0
$$

- Equiv. to existence of quasilinear resolution [Bruce-Heller-Sayrafi '21]
- This def does NOT agree with Betti numbers! Still there is relation.
[Botbol-Chardin '17], [Bruce-Heller-Sayrafi '21], [Chardin-Holanda '22].
- Not known criterion in terms of colon ideals à la Bayer \& Stillman.

Algebra \leftrightarrow Computations: Bigeneric initial ideals

Bigeneric initial ideal

[Aramovaa-Crona-De Negri '00]

For each bihomogeneous ideal I, \exists monomial ideal bigin (I) st, for every bigeneric change of coordinates $U \in \mathrm{GL}_{n+1} \times \mathrm{GL}_{m+1}$, we have that

$$
\operatorname{bigin}_{>}(I)=\operatorname{in}(U * I)
$$

Algebra \leftrightarrow Computations: Bigeneric initial ideals

Bigeneric initial ideal

[Aramovaa-Crona-De Negri '00]

For each bihomogeneous ideal I, \exists monomial ideal bigin (I) st, for every bigeneric change of coordinates $U \in \mathrm{GL}_{n+1} \times \mathrm{GL}_{m+1}$, we have that

$$
\operatorname{bigin}_{>}(I)=\operatorname{in}(U * I)
$$

Careful, not unique bigin even for GREvLEx.

GRevLex st $x_{i}<y_{j}$

GRevLex st $y_{i}<x_{j}$

Algebra \leftrightarrow Computations: Bigeneric initial ideals

Bigeneric initial ideal
 [Aramovaa-Crona-De Negri '00]

For I, \exists bigin (I) st, for generic $U \in \mathrm{GL}_{n+1} \times \mathrm{GL}_{m+1}$, bigin $(I)=\operatorname{in}(U * I)$

Algebra \leftrightarrow Computations: Bigeneric initial ideals

Bigeneric initial ideal [Aramovaa-Crona-De Negri '00]

For $I, \exists \operatorname{bigin}(I)$ st, for generic $U \in \mathrm{GL}_{n+1} \times \mathrm{GL}_{m+1}$, $\operatorname{bigin}(I)=\operatorname{in}(U * I)$
Betti numbers of bigin(I) and GB [Aramovaa-Crona-De Negri '00]

$$
\begin{aligned}
& \mathfrak{R}_{x}(J)=\max \left(a \in \mathbb{Z}: \beta_{i,(a+i, b)}(J) \text { for some } i, b \in \mathbb{Z}\right) \\
& \mathfrak{R}_{y}(J)=\max \left(b \in \mathbb{Z}: \beta_{i,(a, b+i)}(J) \text { for some } i, a \in \mathbb{Z}\right)
\end{aligned}
$$

For GRevLex order, $\mathfrak{R}_{x}(\operatorname{bigin}(I))$ and $\mathfrak{R}_{y}(\operatorname{bigin}(I))$ bound GB of I.

Algebra \leftrightarrow Computations: Bigeneric initial ideals

Bigeneric initial ideal [Aramovaa-Crona-De Negri '00]

For $I, \exists \operatorname{bigin}(I)$ st, for generic $U \in \mathrm{GL}_{n+1} \times \mathrm{GL}_{m+1}$, $\operatorname{bigin}(I)=\operatorname{in}(U * I)$
Betti numbers of bigin(I) and GB [Aramovaa-Crona-De Negri '00]

$$
\begin{aligned}
& \mathfrak{R}_{x}(J)=\max \left(a \in \mathbb{Z}: \beta_{i,(a+i, b)}(J) \text { for some } i, b \in \mathbb{Z}\right) \\
& \mathfrak{R}_{y}(J)=\max \left(b \in \mathbb{Z}: \beta_{i,(a, b+i)}(J) \text { for some } i, a \in \mathbb{Z}\right)
\end{aligned}
$$

For GRevLex order, $\mathfrak{R}_{x}(\operatorname{bigin}(I))$ and $\mathfrak{R}_{y}(\operatorname{bigin}(I))$ bound GB of I.

Algebra \leftrightarrow Computations: Bigeneric initial ideals

Bigeneric initial ideal [Aramovaa-Crona-De Negri '00]

For $I, \exists \operatorname{bigin}(I)$ st, for generic $U \in \mathrm{GL}_{n+1} \times \mathrm{GL}_{m+1}$, $\operatorname{bigin}(I)=\operatorname{in}(U * I)$
Betti numbers of bigin(I) and GB [Aramovaa-Crona-De Negri '00]

$$
\begin{aligned}
& \mathfrak{R}_{x}(J)=\max \left(a \in \mathbb{Z}: \beta_{i,(a+i, b)}(J) \text { for some } i, b \in \mathbb{Z}\right) \\
& \mathfrak{R}_{y}(J)=\max \left(b \in \mathbb{Z}: \beta_{i,(a, b+i)}(J) \text { for some } i, a \in \mathbb{Z}\right)
\end{aligned}
$$

For GRevLex order, $\mathfrak{R}_{x}(\operatorname{bigin}(I))$ and $\mathfrak{R}_{y}(\operatorname{bigin}(I))$ bound GB of I.

- minimal generator of I
- minimal generator of bigin(I)

Algebra \leftrightarrow Computations: Bigeneric initial ideals

Bigeneric initial ideal [Aramovaa-Crona-De Negri '00]

For $I, \exists \operatorname{bigin}(I)$ st, for generic $U \in \mathrm{GL}_{n+1} \times \mathrm{GL}_{m+1}$, $\operatorname{bigin}(I)=\operatorname{in}(U * I)$
Betti numbers of bigin(I) and GB [Aramovaa-Crona-De Negri '00]

$$
\begin{aligned}
& \mathfrak{R}_{x}(J)=\max \left(a \in \mathbb{Z}: \beta_{i,(a+i, b)}(J) \text { for some } i, b \in \mathbb{Z}\right) \\
& \mathfrak{R}_{y}(J)=\max \left(b \in \mathbb{Z}: \beta_{i,(a, b+i)}(J) \text { for some } i, a \in \mathbb{Z}\right)
\end{aligned}
$$

For GRevLex order, $\mathfrak{R}_{x}(\operatorname{bigin}(I))$ and $\mathfrak{R}_{y}(\operatorname{bigin}(I))$ bound GB of I.

Betti of I and GB [Römmer '01]

If GREvLex st $x_{0}<\cdots<x_{n}<y_{0}<\cdots<y_{m}$,

$$
\begin{aligned}
& \mathfrak{R}_{x}(I)=\mathfrak{R}_{x}(\operatorname{bigin}(I)), \\
& \mathfrak{R}_{y}(I) \neq \mathfrak{R}_{y}(\operatorname{bigin}(I)) .
\end{aligned}
$$

- minimal generator of I
- minimal generator of bigin(I)

Algebra \leftrightarrow Computations: Bigeneric initial ideals

If GRevLex st $x_{0}<\cdots<x_{n}<y_{0}<\cdots<y_{m}$

- minimal generator of I
- minimal generator of bigin (I)

Geometry \leftrightarrow Computations: x-regularity and GB

Definition of x-regularity

Consider bihomogeneous I. The x -reg (I) is the region of bi-degrees $(a, b) \in \mathbb{Z}^{2}$ st for every $i \geq 1$ and $\left(a^{\prime}, b^{\prime}\right) \geq(a-i+1, b), H_{\mathbf{m}_{x}}^{i}(I)_{\left(a^{\prime}, b^{\prime}\right)}=0$.

Geometry \leftrightarrow Computations: x-regularity and GB

Definition of x-regularity

Consider bihomogeneous I. The x-reg(I) is the region of bi-degrees $(a, b) \in \mathbb{Z}^{2}$ st for every $i \geq 1$ and $\left(a^{\prime}, b^{\prime}\right) \geq(a-i+1, b), H_{\mathfrak{m}_{x}}^{i}(I)_{\left(a^{\prime}, b^{\prime}\right)}=0$.

Relation between GB and x-reg

[B.-Busé-Checa-Tsigaridas '24+]
Consider bihomogeneous I and GRevLex st $x_{0}<\cdots<x_{n}<y_{0}<\cdots<y_{m}$.
If $(a, b) \in \mathrm{x}-\mathrm{reg}(I)$ and $a \geq 0$, then

- min generator of I
- min generator of bigin $(I)^{1}$

Geometry \leftrightarrow Computations: x-regularity and GB

Definition of x-regularity

Consider bihomogeneous I. The x-reg (I) is the region of bi-degrees $(a, b) \in \mathbb{Z}^{2}$ st for every $i \geq 1$ and $\left(a^{\prime}, b^{\prime}\right) \geq(a-i+1, b), H_{\mathfrak{m}_{x}}^{i}(I)_{\left(a^{\prime}, b^{\prime}\right)}=0$.

Relation between GB and x-reg

[B.-Busé-Checa-Tsigaridas '24+]
Consider bihomogeneous I and GRevLex st $x_{0}<\cdots<x_{n}<y_{0}<\cdots<y_{m}$.
If $(a, b) \in \mathrm{x}-\mathrm{reg}(I)$ and $a \geq 0$, then

- For every $\left(a^{\prime}, b^{\prime}\right) \geq(a+1, b)$, there is no generator of bigin (I) of degree $\left(a^{\prime}, b^{\prime}\right)$
- min generator of I
- min generator of $\operatorname{bigin}(I)^{1}$

Geometry \leftrightarrow Computations: x-regularity and GB

Definition of x-regularity

Consider bihomogeneous I. The x-reg (I) is the region of bi-degrees $(a, b) \in \mathbb{Z}^{2}$ st for every $i \geq 1$ and $\left(a^{\prime}, b^{\prime}\right) \geq(a-i+1, b), H_{\mathfrak{m}_{x}}^{i}(I)_{\left(a^{\prime}, b^{\prime}\right)}=0$.

Relation between GB and x -reg

[B.-Busé-Checa-Tsigaridas '24+]
Consider bihomogeneous I and GRevLex st $x_{0}<\cdots<x_{n}<y_{0}<\cdots<y_{m}$. If $(a, b) \in \mathrm{x}-\mathrm{reg}(I)$ and $a \geq 0$, then

- For every $\left(a^{\prime}, b^{\prime}\right) \geq(a+1, b)$, there is no generator of $\operatorname{bigin}(I)$ of degree $\left(a^{\prime}, b^{\prime}\right)$
- If $a \geq 1$ and $(a-1, b) \notin \operatorname{x-reg}(I)$, exists $b^{\prime} \leq b$ and a min gen of $\operatorname{bigin}(I)$ of $\operatorname{deg}\left(a, b^{\prime}\right)$.
- min generator of I
- min generator of bigin $(I)^{1}$

Geometry \leftrightarrow Computations: GB and CM regularity

Relation x-reg and multigraded CM reg [Chardin-Holanda '22]

There is $0 \leq s \leq n$ st, for every $(a, b) \in \operatorname{reg}(I),(a+s, b) \in \mathrm{x}-\mathrm{reg}(I)$.

Geometry \leftrightarrow Computations: GB and CM regularity

Relation x-reg and multigraded CM reg

[Chardin-Holanda '22]
There is $0 \leq s \leq n$ st, for every $(a, b) \in \operatorname{reg}(I),(a+s, b) \in \mathrm{x}-\mathrm{reg}(I)$.

Corollary

[B.-Busé-Checa-Tsigaridas '24+]

Fix GRevLex st $x_{0}<\cdots<x_{n}<y_{0}<\cdots<y_{m}$. There is $1 \leq s<n+1$ st, if $(a, b) \in \operatorname{reg}(I)$, then there is no generator of bigin (I) of degree $\geq(a+s, b)$.

- minimal generator of I - minimal generator of $\operatorname{bigin}(I)$

Geometry \leftrightarrow Computations: Extra comments

- The results holds for multihomogeneous systems, not only bihomog.

Geometry \leftrightarrow Computations: Extra comments

- The results holds for multihomogeneous systems, not only bihomog.
- We do not need generic coordinates wrt every block of variables, only generic coordinates wrt to smallest block (i.e., x_{i} 's).

Geometry \leftrightarrow Computations: Extra comments

- The results holds for multihomogeneous systems, not only bihomog.
- We do not need generic coordinates wrt every block of variables, only generic coordinates wrt to smallest block (i.e., x_{i} 's).
- It is not clear how to get tight bounds in terms of regularity.

Summing-up

What was known

- In homogeneous setting:
- Hardness of GB computation $=$ Castelnuovo-Mumford regularity
- In multihomogeneous setting
- Different notions of Castelnuovo-Mumford regularity
- No relation with known bounds for degrees in GB

Results

- New region x-reg(I) where there are not elements in the GB of I
- Near boundary of x-reg(I), there are elements in GB of I
- We relate CM regularity of I with its GB

Questions

- Tighter bound between GB and CM regularity
- Better bound for GB using other invariants of I
- Criterion for multigraded reg. à la Bayer\&Stillman

Summing-up

What was known

- In homogeneous setting:
- Hardness of GB computation $=$ Castelnuovo-Mumford regularity
- In multihomogeneous setting
- Different notions of Castelnuovo-Mumford regularity
- No relation with known bounds for degrees in GB

Results

- New region x-reg(I) where there are not elements in the GB of I
- Near boundary of x-reg(I), there are elements in GB of I
- We relate CM regularity of I with its GB

Questions

- Tighter bound between GB and CM regularity
- Better bound for GB using other invariants of I

Thank you!

- Criterion for multigraded reg. à la Bayer\&Stillman

