An introduction to computer-assisted proofs via a posteriori validation

Maxime Breden

CMAP, Ecole polytechnique

MAX team seminar, March 18, 2024

Computer-assisted proofs / a posteriori validation

Computer-assisted proofs / a posteriori validation

- Objective: prove quantitative theorems about some specific solutions of a given ODE or PDE, using numerical simulations.

Computer-assisted proofs / a posteriori validation

- Objective: prove quantitative theorems about some specific solutions of a given ODE or PDE, using numerical simulations.
- steady states
- periodic orbits
- eigenvalues/eigenfunctions
- invariant manifolds
- connecting orbits
- traveling waves
- ...

Computer-assisted proofs / a posteriori validation

- Objective: prove quantitative theorems about some specific solutions of a given ODE or PDE, using numerical simulations.
- steady states
- periodic orbits
- eigenvalues/eigenfunctions
- invariant manifolds
- connecting orbits
- traveling waves
- ...
- Starting from a numerical approximation, we prove the existence of an exact solution nearby.

Computer-assisted proofs / a posteriori validation

- Objective: prove quantitative theorems about some specific solutions of a given ODE or PDE, using numerical simulations.
- steady states
- periodic orbits
- eigenvalues/eigenfunctions
- invariant manifolds
- connecting orbits
- traveling waves
- ...
- Starting from a numerical approximation, we prove the existence of an exact solution nearby.
- Such computer-assisted approaches use ideas going back to [Lanford '82; Nakao '88; Plum '90; ...].

Computer-assisted proofs / a posteriori validation

- Objective: prove quantitative theorems about some specific solutions of a given ODE or PDE, using numerical simulations.
- steady states
- periodic orbits
- eigenvalues/eigenfunctions
- invariant manifolds
- connecting orbits
- traveling waves
- ...
- Starting from a numerical approximation, we prove the existence of an exact solution nearby.
- Such computer-assisted approaches use ideas going back to [Lanford '82; Nakao '88; Plum '90; ...].
- Possible motivation: prove theorems that cannot be proven by "classical" pen-and-paper methods.

Computer-assisted proofs / a posteriori validation

- Objective: prove quantitative theorems about some specific solutions of a given ODE or PDE, using numerical simulations.
- steady states
- periodic orbits
- eigenvalues/eigenfunctions
- invariant manifolds
- connecting orbits
- traveling waves
- ...
- Starting from a numerical approximation, we prove the existence of an exact solution nearby.
- Such computer-assisted approaches use ideas going back to [Lanford '82; Nakao '88; Plum '90; ...].
- Possible motivation: prove theorems that cannot be proven by "classical" pen-and-paper methods.
- Alternate viewpoint: these computer-assisted techniques can be seen as a way to guarantee/certify the output of some numerical simulations.

Outline

(1) A simple example
(2) Validated integration of ODEs using Chebyshev series
(3) Alternate strategy

Outline

(1) A simple example

(2) Validated integration of ODEs using Chebyshev series

3 Alternate strategy

Motivation: periodic orbits and chaos

Consider the sequence given by the logistic map: $x_{n+1}=\mu x_{n}\left(1-x_{n}\right)$.

Motivation: periodic orbits and chaos

Consider the sequence given by the logistic map: $x_{n+1}=\mu x_{n}\left(1-x_{n}\right)$.

Motivation: periodic orbits and chaos

Consider the sequence given by the logistic map: $x_{n+1}=\mu x_{n}\left(1-x_{n}\right)$.

- How to characterize the observed dynamics, which becomes more and more complex when μ gets close to 4 ?

Motivation: periodic orbits and chaos

Consider the sequence given by the logistic map: $x_{n+1}=\mu x_{n}\left(1-x_{n}\right)$.

- How to characterize the observed dynamics, which becomes more and more complex when μ gets close to 4 ? Notion of chaos.

Motivation: periodic orbits and chaos

Consider the sequence given by the logistic map: $x_{n+1}=\mu x_{n}\left(1-x_{n}\right)$.

- How to characterize the observed dynamics, which becomes more and more complex when μ gets close to 4 ? Notion of chaos.

Theorem [Sharkovsky '64, Li York '75]

"The existence of a period 3 orbit implies chaos"

Motivation: periodic orbits and chaos

Consider the sequence given by the logistic map: $x_{n+1}=\mu x_{n}\left(1-x_{n}\right)$.

- How to characterize the observed dynamics, which becomes more and more complex when μ gets close to 4 ? Notion of chaos.

Theorem [Sharkovsky '64, Li York '75]

"The existence of a period 3 orbit implies chaos"

- For a given value of μ, how can we prove the existence of a period 3 orbit, in order to apply the above theorem?

On the hunt for period 3 orbits

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

On the hunt for period 3 orbits

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

- We start by looking numerically for a period 3 orbit.

On the hunt for period 3 orbits

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

- We start by looking numerically for a period 3 orbit.
- To do so, we can consider the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
F\left(x_{0}, x_{1}, x_{2}\right)=\left(\begin{array}{l}
\mu x_{0}\left(1-x_{0}\right)-x_{1} \\
\mu x_{1}\left(1-x_{1}\right)-x_{2} \\
\mu x_{2}\left(1-x_{2}\right)-x_{0}
\end{array}\right)
$$

If we manage to find a zero of F (such that $x_{0} \neq x_{1} \neq x_{2}$), we then have a period 3 orbit.

On the hunt for period 3 orbits

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

- We start by looking numerically for a period 3 orbit.
- To do so, we can consider the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
F\left(x_{0}, x_{1}, x_{2}\right)=\left(\begin{array}{l}
\mu x_{0}\left(1-x_{0}\right)-x_{1} \\
\mu x_{1}\left(1-x_{1}\right)-x_{2} \\
\mu x_{2}\left(1-x_{2}\right)-x_{0}
\end{array}\right) .
$$

If we manage to find a zero of F (such that $x_{0} \neq x_{1} \neq x_{2}$), we then have a period 3 orbit.

- Numerically, it is easy to find an "approximate solution" $\bar{X}=\left(\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{2}\right)$ such that $F(\bar{X}) \approx 0$.

On the hunt for period 3 orbits

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

- We start by looking numerically for a period 3 orbit.
- To do so, we can consider the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
F\left(x_{0}, x_{1}, x_{2}\right)=\left(\begin{array}{l}
\mu x_{0}\left(1-x_{0}\right)-x_{1} \\
\mu x_{1}\left(1-x_{1}\right)-x_{2} \\
\mu x_{2}\left(1-x_{2}\right)-x_{0}
\end{array}\right) .
$$

If we manage to find a zero of F (such that $\left.x_{0} \neq x_{1} \neq x_{2}\right)$, we then have a period 3 orbit.

- Numerically, it is easy to find an "approximate solution" $\bar{X}=\left(\bar{x}_{0}, \bar{x}_{1}, \bar{x}_{2}\right)$ such that $F(\bar{X}) \approx 0$.
- How to rigorously prove the existence of this zero of F ?

We need proof!

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad F(\bar{X}) \approx 0 .
$$

We need proof!

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad F(\bar{X}) \approx 0 .
$$

- We want to prove a posteriori the existence of a zero of F close to \bar{X}.

We need proof!

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad F(\bar{X}) \approx 0 .
$$

- We want to prove a posteriori the existence of a zero of F close to \bar{X}.

Theorem (à la Newton-Kantorovich)

Let $\varepsilon, K, L>0$ such that

$$
\begin{aligned}
\|F(\bar{X})\| & \leq \varepsilon \\
\left\|D F(\bar{X})^{-1}\right\| & \leq \kappa \\
\|D F(X)-D F(\bar{X})\| & \leq L\|X-\bar{X}\| \quad \forall X \in \mathbb{R}^{3} .
\end{aligned}
$$

If

$$
\varepsilon<\frac{1}{2 \kappa^{2} L},
$$

then F has a unique zero X^{*} satisfying $\left\|X^{*}-\bar{X}\right\| \leq r, r=\frac{1-\sqrt{1-2 \kappa^{2} L \varepsilon}}{\kappa L}$.

We need proof!

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad F(\bar{X}) \approx 0 .
$$

- We want to prove a posteriori the existence of a zero of F close to \bar{X}.

Theorem (à la Newton-Kantorovich)

Let $\varepsilon, K, L>0$ such that

$$
\begin{aligned}
\|F(\bar{X})\| & \leq \varepsilon \\
\left\|D F(\bar{X})^{-1}\right\| & \leq \kappa \\
\|D F(X)-D F(\bar{X})\| & \leq L\|X-\bar{X}\| \quad \forall X \in \mathbb{R}^{3} .
\end{aligned}
$$

If

$$
\varepsilon<\frac{1}{2 \kappa^{2} L}
$$

then F has a unique zero X^{*} satisfying $\left\|X^{*}-\bar{X}\right\| \leq r, r=\frac{1-\sqrt{1-2 \kappa^{2} L \varepsilon}}{\kappa L}$.
Proof : $T: X \mapsto X-D F(\bar{X})^{-1} F(X)$ is a contraction on the closed ball of center \bar{X} and radius r.

A frightening example

- Can we really trust floating-point arithmetic?

A frightening example

- Can we really trust floating-point arithmetic?
- Consider the following expression [Rump '94]

$$
g(a, b)=333.75 b^{6}+a^{2}\left(11 a^{2} b^{2}-b^{6}-121 b^{4}-2\right)+5.5 b^{8}+\frac{a}{2 b},
$$

evaluated for $a=77617$ and $b=33096$, with various precisions.

A frightening example

- Can we really trust floating-point arithmetic?
- Consider the following expression [Rump '94]

$$
g(a, b)=333.75 b^{6}+a^{2}\left(11 a^{2} b^{2}-b^{6}-121 b^{4}-2\right)+5.5 b^{8}+\frac{a}{2 b},
$$

evaluated for $a=77617$ and $b=33096$, with various precisions.

- We have to be wary of round-off errors, especially if we claim to have proven a theorem based on some numerical computations!

A frightening example

- Can we really trust floating-point arithmetic?
- Consider the following expression [Rump '94]

$$
g(a, b)=333.75 b^{6}+a^{2}\left(11 a^{2} b^{2}-b^{6}-121 b^{4}-2\right)+5.5 b^{8}+\frac{a}{2 b},
$$

evaluated for $a=77617$ and $b=33096$, with various precisions.

- We have to be wary of round-off errors, especially if we claim to have proven a theorem based on some numerical computations!
- In our "proof" of existence of a period 3 orbit, how can we be certain that the quantity ε that we numerically evaluated really bounds $\|F(\bar{X})\|$, or that $\varepsilon<\frac{1}{2 \kappa^{2} L}$?

Calling interval arithmetic to the rescue

Calling interval arithmetic to the rescue

- Let \mathbb{F} bet a set of floating point numbers, corresponding to the (finite!) set of real numbers that the computer can represent with a given precision, and

$$
\nabla, \triangle: \mathbb{R} \rightarrow \mathbb{F}
$$

the round-down and round-up operators.

Calling interval arithmetic to the rescue

- Let \mathbb{F} bet a set of floating point numbers, corresponding to the (finite!) set of real numbers that the computer can represent with a given precision, and

$$
\nabla, \triangle: \mathbb{R} \rightarrow \mathbb{F}
$$

the round-down and round-up operators.

- Example: consider $x=0.1$. In base 2, x writes

$$
x=(1.1001100110011001100 \ldots)_{2} \times 2^{-4}
$$

With 8 bits of precision (for the mantissa), we have

$$
\nabla(x)=(1.1001100)_{2} \times 2^{-4} \quad \text { and } \quad \triangle(x)=(1.1001101)_{2} \times 2^{-4}
$$

Calling interval arithmetic to the rescue

- Let \mathbb{F} bet a set of floating point numbers, corresponding to the (finite!) set of real numbers that the computer can represent with a given precision, and

$$
\nabla, \Delta: \mathbb{R} \rightarrow \mathbb{F}
$$

the round-down and round-up operators.

- Instead of using floats, we now represent each real number by an interval which contains it:

$$
x \in \mathbb{R} \quad \rightarrow \quad[x]:=[\nabla(x), \Delta(x)] .
$$

Calling interval arithmetic to the rescue

- Let \mathbb{F} bet a set of floating point numbers, corresponding to the (finite!) set of real numbers that the computer can represent with a given precision, and

$$
\nabla, \Delta: \mathbb{R} \rightarrow \mathbb{F}
$$

the round-down and round-up operators.

- Instead of using floats, we now represent each real number by an interval which contains it:

$$
x \in \mathbb{R} \quad \rightarrow \quad[x]:=[\nabla(x), \Delta(x)] .
$$

- On can then extend the elementary operations (,,$+- \times, \div$) to intervals, in such a way that the result always contain the true value:

$$
x+y \quad \rightarrow \quad[x][+][y],
$$

where $[+]$ is defined as follows

$$
[x][+][y]:=[\nabla(\nabla(x)+\nabla(y)), \Delta(\Delta(x)+\Delta(y))] .
$$

Calling interval arithmetic to the rescue

- Let \mathbb{F} bet a set of floating point numbers, corresponding to the (finite!) set of real numbers that the computer can represent with a given precision, and

$$
\nabla, \triangle: \mathbb{R} \rightarrow \mathbb{F}
$$

the round-down and round-up operators.

- Instead of using floats, we now represent each real number by an interval which contains it:

$$
x \in \mathbb{R} \quad \rightarrow \quad[x]:=[\nabla(x), \triangle(x)]
$$

- On can then extend the elementary operations (,,$+- \times, \div$) to intervals, in such a way that the result always contain the true value:

$$
x+y \quad \rightarrow \quad[x][+][y]
$$

where $[+]$ is defined as follows (doable in practice, IEEE 754 standard)

$$
[x][+][y]:=[\nabla(\nabla(x)+\nabla(y)), \triangle(\triangle(x)+\triangle(y))] .
$$

Calling interval arithmetic to the rescue

- Let \mathbb{F} bet a set of floating point numbers, corresponding to the (finite!) set of real numbers that the computer can represent with a given precision, and

$$
\nabla, \triangle: \mathbb{R} \rightarrow \mathbb{F}
$$

the round-down and round-up operators.

- Instead of using floats, we now represent each real number by an interval which contains it:

$$
x \in \mathbb{R} \quad \rightarrow \quad[x]:=[\nabla(x), \triangle(x)]
$$

- On can then extend the elementary operations (,,$+- \times, \div$) to intervals, in such a way that the result always contain the true value:

$$
x+y \quad \rightarrow \quad[x][+][y]
$$

where $[+]$ is defined as follows (doable in practice, IEEE 754 standard)

$$
[x][+][y]:=[\nabla(\nabla(x)+\nabla(y)), \triangle(\triangle(x)+\triangle(y))] .
$$

- We then have $\boldsymbol{x}+\boldsymbol{y} \in[\boldsymbol{x}][+][\boldsymbol{y}]$.

A computer-assisted proof a chaos, summary

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

A computer-assisted proof a chaos, summary

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

(1) We reformulate the search of a period 3 orbit as a zero-finding problem $F(X)=0$.

A computer-assisted proof a chaos, summary

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

(1) We reformulate the search of a period 3 orbit as a zero-finding problem $F(X)=0$.
(2) We numerically find an approximate solution.

A computer-assisted proof a chaos, summary

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

(1) We reformulate the search of a period 3 orbit as a zero-finding problem $F(X)=0$.
(2) We numerically find an approximate solution.
(3) We estimate a posteriori

$$
\|F(\bar{X})\|, \quad\left\|D F(\bar{X})^{-1}\right\| \quad \text { and } \quad\left\|D^{2} F(X)\right\|
$$

and do so rigorously using interval arithmetic.

A computer-assisted proof a chaos, summary

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right)
$$

(1) We reformulate the search of a period 3 orbit as a zero-finding problem $F(X)=0$.
(2) We numerically find an approximate solution.
(3) We estimate a posteriori

$$
\|F(\bar{X})\|, \quad\left\|D F(\bar{X})^{-1}\right\| \quad \text { and } \quad\left\|D^{2} F(X)\right\|
$$

and do so rigorously using interval arithmetic.
(9) We use these estimates to prove that

$$
T: X \mapsto X-D F(\bar{X})^{-1} F(X)
$$

is a contraction on a small neighborhood of \bar{X}.

Outline

(1) A simple example

(2) Validated integration of ODEs using Chebyshev series
(3) Alternate strategy
(1) Reformulate the problem we are interested in (ODE, PDE, etc) in the form $F(X)=0$.

- Several possible choices for F.
- We also need to chose a Banach space \mathcal{X}, and in particular a norm.

How to use these ideas in a broader context?

(1) Reformulate the problem we are interested in (ODE, PDE, etc) in the form $F(X)=0$.

- Several possible choices for F.
- We also need to chose a Banach space \mathcal{X}, and in particular a norm.
(2) Find numerically an approximate zero \bar{X}.
- Choice of discretization method, of a finite dimensional space \mathcal{X}_{h} in which we look for the approximate solution.

How to use these ideas in a broader context?

(1) Reformulate the problem we are interested in (ODE, PDE, etc) in the form $F(X)=0$.

- Several possible choices for F.
- We also need to chose a Banach space \mathcal{X}, and in particular a norm.
(2) Find numerically an approximate zero \bar{X}.
- Choice of discretization method, of a finite dimensional space \mathcal{X}_{h} in which we look for the approximate solution.
(3) Estimate a posteriori

$$
\|F(\bar{X})\|, \quad\left\|D F(\bar{X})^{-1}\right\| \quad \text { and } \quad\left\|D^{2} F(X)\right\|
$$

How to use these ideas in a broader context?

(1) Reformulate the problem we are interested in (ODE, PDE, etc) in the form $F(X)=0$.

- Several possible choices for F.
- We also need to chose a Banach space \mathcal{X}, and in particular a norm.
(2) Find numerically an approximate zero \bar{X}.
- Choice of discretization method, of a finite dimensional space \mathcal{X}_{h} in which we look for the approximate solution.
(3) Estimate a posteriori

$$
\|F(\bar{X})\|, \quad\left\|D F(\bar{X})^{-1}\right\| \quad \text { and } \quad\left\|D^{2} F(X)\right\|
$$

- The main difficulty lies in controlling \|DF($\bar{X})^{-1} \|$.

A new validation criteria

Theorem à la Newton-Kantorovich bis
Let $\varepsilon, \kappa, L, \delta>0$ such that

$$
\begin{gathered}
\|F(\bar{X})\| \leq \varepsilon, \quad\|A\| \leq \kappa, \quad\|D F(X)-D F(\bar{X})\| \leq L\|X-\bar{X}\| \\
\|I-A D F(\bar{X})\| \leq \delta<1
\end{gathered}
$$

If

$$
\varepsilon<\frac{(1-\delta)^{2}}{2 \kappa^{2} L}
$$

then F has a unique zero X^{*} satisfying $\left\|X^{*}-\bar{X}\right\| \leq r, r=\frac{1-\delta-\sqrt{(1-\delta)^{2}-2 \kappa^{2} L}}{\kappa L}$.

A new validation criteria

Theorem à la Newton-Kantorovich bis

Let $\varepsilon, \kappa, L, \delta>0$ such that

$$
\begin{gathered}
\|F(\bar{X})\| \leq \varepsilon, \quad\|A\| \leq \kappa, \quad\|D F(X)-D F(\bar{X})\| \leq L\|X-\bar{X}\| \\
\|I-A D F(\bar{X})\| \leq \delta<1
\end{gathered}
$$

If

$$
\varepsilon<\frac{(1-\delta)^{2}}{2 \kappa^{2} L}
$$

then F has a unique zero X^{*} satisfying $\left\|X^{*}-\bar{X}\right\| \leq r, r=\frac{1-\delta-\sqrt{(1-\delta)^{2}-2 \kappa^{2} L}}{\kappa L}$.

- An equivalent way to interpret this strategy is to say that we replace the former fixed-point operator $T: x \mapsto x-D F(\bar{x})^{-1} F(x)$ by

$$
\tilde{T}: x \mapsto x-A F(x)
$$

Setting for validated integration of ODEs

$$
\left\{\begin{aligned}
u^{\prime}(t) & =f(u(t)) \quad t \in[0,2 \tau] \\
u(0) & =u^{\text {in }}
\end{aligned}\right.
$$

with $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ smooth and $\tau>0$ fixed.

$$
\left\{\begin{aligned}
u^{\prime}(t) & =f(u(t)) \quad t \in[0,2 \tau] \\
u(0) & =u^{\text {in }}
\end{aligned}\right.
$$

with $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ smooth and $\tau>0$ fixed.

- Goal: given an approximate solution $\bar{u}:[0,2 \tau] \rightarrow \mathbb{R}^{d}$, prove that the exact solution u satisfies $\|u-\bar{u}\| \leq r$ for some explicit r.

$$
\left\{\begin{aligned}
u^{\prime}(t) & =f(u(t)) \quad t \in[0,2 \tau] \\
u(0) & =u^{\text {in }}
\end{aligned}\right.
$$

with $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ smooth and $\tau>0$ fixed.

- Goal: given an approximate solution $\bar{u}:[0,2 \tau] \rightarrow \mathbb{R}^{d}$, prove that the exact solution u satisfies $\|u-\bar{u}\| \leq r$ for some explicit r.
- Main idea for the zero-finding problem:

$$
F(u)(t)=u(t)-\left(u^{i n}+\int_{0}^{t} f(u(s)) \mathrm{d} s\right) .
$$

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f(u(t)) \quad t \in[0,2 \tau] \\
u(0)=u^{\text {in }}
\end{array}\right.
$$

with $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ smooth and $\tau>0$ fixed.

- Goal: given an approximate solution $\bar{u}:[0,2 \tau] \rightarrow \mathbb{R}^{d}$, prove that the exact solution u satisfies $\|u-\bar{u}\| \leq r$ for some explicit r.
- Main idea for the zero-finding problem:

$$
F(u)(t)=u(t)-\left(u^{i n}+\int_{0}^{t} f(u(s)) \mathrm{d} s\right) .
$$

- Key observation:

$$
D F(\bar{u})(h)(t)=h(t)-\int_{0}^{t} D f(\bar{u}(s)) h(s) \mathrm{d} s,
$$

i.e., $\operatorname{DF}(\bar{u})$ is a compact perturbation of the identity.

Chebyshev series

$$
\left\{\begin{aligned}
u^{\prime}(t) & =\tau f(u(t)) \quad t \in[-1,1] \\
u(-1) & =u^{i n}
\end{aligned}\right.
$$

Chebyshev series

$$
\left\{\begin{aligned}
u^{\prime}(t) & =\tau f(u(t)) \quad t \in[-1,1] \\
u(-1) & =u^{i n}
\end{aligned}\right.
$$

- Look for the solution as a Chebyshev series:

$$
u(t)=u_{0}+2 \sum_{n=1}^{\infty} u_{n} T_{n}(t), \quad T_{n}(\cos \theta)=\cos (n \theta)
$$

Chebyshev series

$$
\left\{\begin{aligned}
u^{\prime}(t) & =\tau f(u(t)) \quad t \in[-1,1] \\
u(-1) & =u^{i n}
\end{aligned}\right.
$$

- Look for the solution as a Chebyshev series:

$$
u(t)=u_{0}+2 \sum_{n=1}^{\infty} u_{n} T_{n}(t), \quad T_{n}(\cos \theta)=\cos (n \theta) .
$$

- The unknown is the sequence $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ of Chebyshev coefficients.

Chebyshev series

$$
\left\{\begin{aligned}
u^{\prime}(t) & =\tau f(u(t)) \quad t \in[-1,1] \\
u(-1) & =u^{\text {in }}
\end{aligned}\right.
$$

- Look for the solution as a Chebyshev series:

$$
u(t)=u_{0}+2 \sum_{n=1}^{\infty} u_{n} T_{n}(t), \quad T_{n}(\cos \theta)=\cos (n \theta) .
$$

- The unknown is the sequence $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ of Chebyshev coefficients.
- By plugging the Chebyshev series ansatz into

$$
u(t)-\left(u^{i n}+\tau \int_{-1}^{t} f(u(s)) \mathrm{d} s\right)=0
$$

we obtain our $F(\boldsymbol{u})=0$ problem.

Chebyshev series

$$
\left\{\begin{aligned}
u^{\prime}(t) & =\tau f(u(t)) \quad t \in[-1,1] \\
u(-1) & =u^{\text {in }}
\end{aligned}\right.
$$

- Look for the solution as a Chebyshev series:

$$
u(t)=u_{0}+2 \sum_{n=1}^{\infty} u_{n} T_{n}(t), \quad T_{n}(\cos \theta)=\cos (n \theta)
$$

- The unknown is the sequence $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ of Chebyshev coefficients.
- By plugging the Chebyshev series ansatz into

$$
u(t)-\left(u^{i n}+\tau \int_{-1}^{t} f(u(s)) \mathrm{d} s\right)=0
$$

we obtain our $F(\boldsymbol{u})=0$ problem.

- The approximate solution $\overline{\boldsymbol{u}}$ is taken as a truncated Chebyshev series.

Chebyshev series

$$
\left\{\begin{aligned}
u^{\prime}(t) & =\tau f(u(t)) \quad t \in[-1,1] \\
u(-1) & =u^{\text {in }}
\end{aligned}\right.
$$

- Look for the solution as a Chebyshev series:

$$
u(t)=u_{0}+2 \sum_{n=1}^{\infty} u_{n} T_{n}(t), \quad T_{n}(\cos \theta)=\cos (n \theta)
$$

- The unknown is the sequence $\boldsymbol{u}=\left(u_{n}\right)_{n \geq 0}$ of Chebyshev coefficients.
- By plugging the Chebyshev series ansatz into

$$
u(t)-\left(u^{i n}+\tau \int_{-1}^{t} f(u(s)) \mathrm{d} s\right)=0
$$

we obtain our $F(\boldsymbol{u})=0$ problem.

- The approximate solution $\overline{\boldsymbol{u}}$ is taken as a truncated Chebyshev series.
- We look for the exact solution in the space $\ell_{\nu}^{1}:=\left\{\boldsymbol{u},\|\boldsymbol{u}\|_{\nu}<\infty\right\}$,

$$
\|\boldsymbol{u}\|_{\nu}:=\left|u_{0}\right|+2 \sum_{n=1}^{\infty}\left|u_{n}\right| \nu^{n}, \quad \nu \geq 1
$$

$$
u(t)-\left(u^{i n}+\tau \int_{-1}^{t} f(u(s)) \mathrm{d} s\right)=0 .
$$

$$
u(t)-\left(u^{i n}+\tau \int_{-1}^{t} f(u(s)) \mathrm{d} s\right)=0
$$

- Excellent approximation properties (similar to Fourier series for periodic functions).

$$
u(t)-\left(u^{\text {in }}+\tau \int_{-1}^{t} f(u(s)) \mathrm{d} s\right)=0 .
$$

- Excellent approximation properties (similar to Fourier series for periodic functions).
- Easy formulation of the antiderivative allowing to "see" the compactness

$$
\int T_{n}=\frac{1}{2}\left(\frac{1}{n+1} T_{n+1}-\frac{1}{n-1} T_{n-1}\right) .
$$

$$
u(t)-\left(u^{\text {in }}+\tau \int_{-1}^{t} f(u(s)) \mathrm{d} s\right)=0 .
$$

- Excellent approximation properties (similar to Fourier series for periodic functions).
- Easy formulation of the antiderivative allowing to "see" the compactness

$$
\int T_{n}=\frac{1}{2}\left(\frac{1}{n+1} T_{n+1}-\frac{1}{n-1} T_{n-1}\right) .
$$

- Efficient computations of nonlinearities using the FFT.

$$
u(t)-\left(u^{i n}+\tau \int_{-1}^{t} f(u(s)) \mathrm{d} s\right)=0
$$

- Excellent approximation properties (similar to Fourier series for periodic functions).
- Easy formulation of the antiderivative allowing to "see" the compactness

$$
\int T_{n}=\frac{1}{2}\left(\frac{1}{n+1} T_{n+1}-\frac{1}{n-1} T_{n-1}\right) .
$$

- Efficient computations of nonlinearities using the FFT.
- Computing $\|F(\bar{u})\|_{\nu}$ is rather straightforward.

$$
u(t)-\left(u^{i n}+\tau \int_{-1}^{t} f(u(s)) \mathrm{d} s\right)=0 .
$$

- Excellent approximation properties (similar to Fourier series for periodic functions).
- Easy formulation of the antiderivative allowing to "see" the compactness

$$
\int T_{n}=\frac{1}{2}\left(\frac{1}{n+1} T_{n+1}-\frac{1}{n-1} T_{n-1}\right) .
$$

- Efficient computations of nonlinearities using the FFT.
- Computing $\|F(\bar{u})\|_{\nu}$ is rather straightforward.
- ℓ_{ν}^{1} is a Banach algebra: $\|\boldsymbol{u} * \boldsymbol{v}\|_{\nu} \leq\|\boldsymbol{u}\|_{\nu}\|\boldsymbol{v}\|_{\nu}$.

$$
u(t)-\left(u^{i n}+\tau \int_{-1}^{t} f(u(s)) \mathrm{d} s\right)=0
$$

- Excellent approximation properties (similar to Fourier series for periodic functions).
- Easy formulation of the antiderivative allowing to "see" the compactness

$$
\int T_{n}=\frac{1}{2}\left(\frac{1}{n+1} T_{n+1}-\frac{1}{n-1} T_{n-1}\right) .
$$

- Efficient computations of nonlinearities using the FFT.
- Computing $\|F(\overline{\boldsymbol{u}})\|_{\nu}$ is rather straightforward.
- ℓ_{ν}^{1} is a Banach algebra: $\|\boldsymbol{u} * \boldsymbol{v}\|_{\nu} \leq\|\boldsymbol{u}\|_{\nu}\|\boldsymbol{v}\|_{\nu}$.
- Simplifies the estimation of $\left\|D^{2} F(\boldsymbol{u})\right\|_{\nu}$ for \boldsymbol{u} in a neighborhood of $\overline{\boldsymbol{u}}$.

H
 ow to construct the
 approximate inverse A

Abstract

 - e н由t 人 ere e e e e e e e e e e e e e

How to construct the approximate inverse A

How to construct the approximate inverse A

Quality of this approximate inverse

Quality of this approximate inverse

- Using this constructing, when keeping the first N Chebyshev modes in the finite block, we get

$$
\|I-A D F(\overline{\boldsymbol{u}})\|_{\nu} \approx \frac{\tau\left\|f^{\prime}(\overline{\boldsymbol{u}})\right\|_{\nu}}{N}
$$

Quality of this approximate inverse

- Using this constructing, when keeping the first N Chebyshev modes in the finite block, we get

$$
\|I-A D F(\overline{\boldsymbol{u}})\|_{\nu} \approx \frac{\tau\left\|f^{\prime}(\overline{\boldsymbol{u}})\right\|_{\nu}}{N}
$$

- Up to taking N large enough, we can therefore get $\|I-A D F(\overline{\boldsymbol{u}})\|_{\nu}<1$, and hope to apply the entire a posteriori validation procedure.

Quality of this approximate inverse

- Using this constructing, when keeping the first N Chebyshev modes in the finite block, we get

$$
\|I-A D F(\overline{\boldsymbol{u}})\|_{\nu} \approx \frac{\tau\left\|f^{\prime}(\overline{\boldsymbol{u}})\right\|_{\nu}}{N}
$$

- Up to taking N large enough, we can therefore get $\|I-A D F(\overline{\boldsymbol{u}})\|_{\nu}<1$, and hope to apply the entire a posteriori validation procedure.
- [Lessard Reinhardt '14]

Domain decomposition

Domain decomposition

- It can be helpful to split the solution into several "Chebyshev pieces", by decomposing the time interval: $0=\tau_{0}<\tau_{1}<\ldots<\tau_{M}=\tau$.

Domain decomposition

- It can be helpful to split the solution into several "Chebyshev pieces", by decomposing the time interval: $0=\tau_{0}<\tau_{1}<\ldots<\tau_{M}=\tau$.
- We then look for $u=\left(u^{(1)}, u^{(2)}, \ldots, u^{(M)}\right)$ so that each $u^{(m)}$ solves the equation on $\left[\tau_{m-1}, \tau_{m}\right]$:

Domain decomposition

- It can be helpful to split the solution into several "Chebyshev pieces", by decomposing the time interval: $0=\tau_{0}<\tau_{1}<\ldots<\tau_{M}=\tau$.
- We then look for $u=\left(u^{(1)}, u^{(2)}, \ldots, u^{(M)}\right)$ so that each $u^{(m)}$ solves the equation on $\left[\tau_{m-1}, \tau_{m}\right]$:

$$
\begin{array}{rlrl}
u^{(1)}(t)-\left(u^{i n}+\int_{0}^{t} f\left(u^{(1)}(s)\right) \mathrm{d} s\right)=0 & t \in\left[0, \tau_{1}\right], \\
u^{(2)}(t)-\left(u^{(1)}\left(\tau_{1}\right)+\int_{\tau_{1}}^{t} f\left(u^{(2)}(s)\right) \mathrm{d} s\right)=0 & t \in\left[\tau_{1}, \tau_{2}\right], \\
\vdots & \\
u^{(M)}(t)-\left(u^{(M-1)}\left(\tau_{M-1}\right)+\int_{\tau_{M-1}}^{t} f\left(u^{(M)}(s)\right) \mathrm{d} s\right)=0 & t \in\left[\tau_{M-1}, \tau\right] .
\end{array}
$$

Domain decomposition

- It can be helpful to split the solution into several "Chebyshev pieces", by decomposing the time interval: $0=\tau_{0}<\tau_{1}<\ldots<\tau_{M}=\tau$.
- We then look for $u=\left(u^{(1)}, u^{(2)}, \ldots, u^{(M)}\right)$ so that each $u^{(m)}$ solves the equation on $\left[\tau_{m-1}, \tau_{m}\right]$:

$$
\begin{array}{rlrl}
u^{(1)}(t)-\left(u^{i n}+\int_{0}^{t} f\left(u^{(1)}(s)\right) \mathrm{d} s\right)=0 & t \in\left[0, \tau_{1}\right], \\
u^{(2)}(t)-\left(u^{(1)}\left(\tau_{1}\right)+\int_{\tau_{1}}^{t} f\left(u^{(2)}(s)\right) \mathrm{d} s\right)=0 & t \in\left[\tau_{1}, \tau_{2}\right], \\
\vdots & \\
u^{(M)}(t)-\left(u^{(M-1)}\left(\tau_{M-1}\right)+\int_{\tau_{M-1}}^{t} f\left(u^{(M)}(s)\right) \mathrm{d} s\right)=0 & t \in\left[\tau_{M-1}, \tau\right] .
\end{array}
$$

- Each $u^{(m)}$ is then represented by a Chebyshev series, and this leads to a $\operatorname{big} F(\boldsymbol{u})=0$ problem.

Domain decomposition

- It can be helpful to split the solution into several "Chebyshev pieces", by decomposing the time interval: $0=\tau_{0}<\tau_{1}<\ldots<\tau_{M}=\tau$.
- We then look for $u=\left(u^{(1)}, u^{(2)}, \ldots, u^{(M)}\right)$ so that each $u^{(m)}$ solves the equation on $\left[\tau_{m-1}, \tau_{m}\right]$:

$$
\begin{array}{rlrl}
u^{(1)}(t)-\left(u^{i n}+\int_{0}^{t} f\left(u^{(1)}(s)\right) \mathrm{d} s\right)=0 & t \in\left[0, \tau_{1}\right], \\
u^{(2)}(t)-\left(u^{(1)}\left(\tau_{1}\right)+\int_{\tau_{1}}^{t} f\left(u^{(2)}(s)\right) \mathrm{d} s\right)=0 & t \in\left[\tau_{1}, \tau_{2}\right], \\
\vdots & \\
u^{(M)}(t)-\left(u^{(M-1)}\left(\tau_{M-1}\right)+\int_{\tau_{M-1}}^{t} f\left(u^{(M)}(s)\right) \mathrm{d} s\right)=0 & t \in\left[\tau_{M-1}, \tau\right] .
\end{array}
$$

- Each $u^{(m)}$ is then represented by a Chebyshev series, and this leads to a $\operatorname{big} F(\boldsymbol{u})=0$ problem.
- [van den Berg Sheombarsing '21]

Some examples from [van den Berg Sheombarsing '21]

$$
\begin{aligned}
& x^{\prime}=10(x-y) \\
& y^{\prime}=28 x-y-x z \\
& z^{\prime}=-8 z / 3+x y
\end{aligned}
$$

Integration time $\tau \approx 25$

Some examples from [van den Berg Sheombarsing '21]

$$
\begin{aligned}
& x^{\prime}=10(x-y) \\
& y^{\prime}=28 x-y-x z \\
& z^{\prime}=-8 z / 3+x y
\end{aligned}
$$

Integration time $\tau \approx 100$

Some examples from [van den Berg Sheombarsing '21]

$$
\begin{aligned}
x^{\prime} & =10(x-y) \\
y^{\prime} & =28 x-y-x z \\
z^{\prime} & =-8 z / 3+x y
\end{aligned}
$$

Integration time $\tau \approx 100$

Some related works

- Chebyshev methods for linear ODEs, with special emphasis on studying and potentially reducing computational complexity [Benoit Joldes Mezzarobba '17; Brehard Brisebarre Joldes '18; Brehard '21].
- Chebyshev methods for linear ODEs, with special emphasis on studying and potentially reducing computational complexity [Benoit Joldes Mezzarobba '17; Brehard Brisebarre Joldes '18; Brehard '21].
- Many other methods, some of which are more in the spirit of traditional numerical methods for ODEs. A particularly successful one is the CAPD::DynSys library [Kapela Mrozek Wilczak Zgliczynski '21].

Outline

(1) A simple example

(2) Validated integration of ODEs using Chebyshev series

(3) Alternate strategy

A different fixed point reformulation

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f(u(t)) \quad t \in[0, \tau] \\
u(0)=u^{i n}
\end{array}\right.
$$

A different fixed point reformulation

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f(u(t)) \quad t \in[0, \tau] \\
u(0)=u^{\text {in }}
\end{array}\right.
$$

- We started by converting the equation into an $F(u)=0$ problem:

$$
F(u)(t)=u(t)-\left(u^{i n}+\int_{0}^{t} f(u(s)) \mathrm{d} s\right)
$$

and then into a fixed point problem $T(u)=u-A F(u)$.

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f(u(t)) \quad t \in[0, \tau] \\
u(0)=u^{\text {in }}
\end{array}\right.
$$

- We started by converting the equation into an $F(u)=0$ problem:

$$
F(u)(t)=u(t)-\left(u^{i n}+\int_{0}^{t} f(u(s)) \mathrm{d} s\right)
$$

and then into a fixed point problem $T(u)=u-A F(u)$.

- One could also directly get a fixed point problem:

$$
\tilde{T}(u)(t)=u^{i n}+\int_{0}^{t} f(u(s)) \mathrm{d} s
$$

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f(u(t)) \quad t \in[0, \tau] \\
u(0)=u^{\text {in }}
\end{array}\right.
$$

- We started by converting the equation into an $F(u)=0$ problem:

$$
F(u)(t)=u(t)-\left(u^{i n}+\int_{0}^{t} f(u(s)) \mathrm{d} s\right)
$$

and then into a fixed point problem $T(u)=u-A F(u)$.

- One could also directly get a fixed point problem:

$$
\tilde{T}(u)(t)=u^{i n}+\int_{0}^{t} f(u(s)) \mathrm{d} s
$$

- \tilde{T} has no reason to be contracting near \bar{u}, except for τ small.

A different fixed point reformulation

$$
\left\{\begin{array}{l}
u^{\prime}(t)-L u(t)=f(u(t))-L u(t) \quad t \in[0, \tau] \\
u(0)=u^{i n}
\end{array}\right.
$$

A different fixed point reformulation

$$
\left\{\begin{array}{l}
u^{\prime}(t)-L u(t)=f(u(t))-L u(t) \quad t \in[0, \tau] \\
u(0)=u^{i n}
\end{array}\right.
$$

- Using Duhamel's principle/the variation of constants formula, we get

$$
\tilde{T}(u)(t)=e^{t L} u^{i n}+\int_{0}^{t} e^{(t-s) L}(f(u(s))-L u(s)) \mathrm{d} s
$$

$$
\left\{\begin{array}{l}
u^{\prime}(t)-L u(t)=f(u(t))-L u(t) \quad t \in[0, \tau] \\
u(0)=u^{i n}
\end{array}\right.
$$

- Using Duhamel's principle/the variation of constants formula, we get

$$
\tilde{T}(u)(t)=e^{t L} u^{i n}+\int_{0}^{t} e^{(t-s) L}(f(u(s))-L u(s)) \mathrm{d} s .
$$

- Looking at the derivative of \tilde{T} at \bar{u}

$$
\tilde{D} T(\bar{u})(h)(t)=\int_{0}^{t} e^{(t-s) L}(D f(\bar{u}(s))-L) h(s) \mathrm{d} s,
$$

we see that \tilde{T} should be contracting if $L \approx \operatorname{Df}(\bar{u}(s))$.

$$
\left\{\begin{array}{l}
u^{\prime}(t)-L u(t)=f(u(t))-L u(t) \quad t \in[0, \tau] \\
u(0)=u^{i n}
\end{array}\right.
$$

- Using Duhamel's principle/the variation of constants formula, we get

$$
\tilde{T}(u)(t)=e^{t L} u^{i n}+\int_{0}^{t} e^{(t-s) L}(f(u(s))-L u(s)) \mathrm{d} s .
$$

- Looking at the derivative of \tilde{T} at \bar{u}

$$
\tilde{D} T(\bar{u})(h)(t)=\int_{0}^{t} e^{(t-s) L}(D f(\bar{u}(s))-L) h(s) \mathrm{d} s,
$$

we see that \tilde{T} should be contracting if $L \approx \operatorname{Df}(\bar{u}(s))$.

- We again split the time interval $0=\tau_{0}<\tau_{1}<\ldots<\tau_{M}=\tau$, and take a different approximation on each smaller subinterval:

$$
L^{(m)} \approx \operatorname{Df}\left(\bar{u}^{(m)}\right)(s), \quad s \in\left[\tau_{m}, \tau_{m+1}\right] .
$$

Application to parabolic PDEs 1: Fisher-KPP

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u(1-u) \quad(t, x) \in(0,4] \times \mathbb{T}_{4 \pi} \\
u(0, \cdot)=u^{i n}
\end{array}\right.
$$

Theorem
 $$
\|\bar{u}-u\| \leq 5 e^{-2}
$$

$$
N=14
$$

$$
K=2
$$

$$
M=25
$$

Application to parabolic PDEs 2: Swift-Hohenberg

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=-\left(\frac{\partial^{2}}{\partial x^{2}}+1\right)^{2} u+5 u-u^{3} \\
u(0, \cdot)=u^{i n} .
\end{array}\right.
$$

Theorem

$$
\|\bar{u}-u\| \leq 4 e^{-8}
$$

$$
\begin{gathered}
N=30 \\
K=5 \\
M=100
\end{gathered}
$$

Application to parabolic PDEs 2: Swift-Hohenberg

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=-\left(\frac{\partial^{2}}{\partial x^{2}}+1\right)^{2} u+5 u-u^{3} \quad(t, x) \in(0,1.5] \times \mathbb{T}_{6 \pi} \\
u(0, \cdot)=u^{i n}
\end{array}\right.
$$

Theorem

$$
\|\bar{u}-u\| \leq 4 e^{-8}
$$

$$
\begin{gathered}
N=30 \\
K=5 \\
M=100
\end{gathered}
$$

THANK YOU FOR YOUR ATTENTION!

