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Computer-assisted proofs / a posteriori validation

▶ Objective: prove quantitative theorems about some specific solutions of
a given ODE or PDE, using numerical simulations.

steady states
periodic orbits
eigenvalues/eigenfunctions
invariant manifolds
connecting orbits
traveling waves
...

▶ Starting from a numerical approximation, we prove the existence of an
exact solution nearby.

▶ Such computer-assisted approaches use ideas going back to [Lanford ’82;
Nakao ’88; Plum ’90; ...].

▶ Possible motivation: prove theorems that cannot be proven by “classical”
pen-and-paper methods.

▶ Alternate viewpoint: these computer-assisted techniques can be seen as
a way to guarantee/certify the output of some numerical simulations.
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Outline

1 A simple example

2 Validated integration of ODEs using Chebyshev series

3 Alternate strategy
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Motivation: periodic orbits and chaos
Consider the sequence given by the logistic map: xn+1 = µxn(1 − xn).
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Motivation: periodic orbits and chaos
Consider the sequence given by the logistic map: xn+1 = µxn(1 − xn).

µ

x

▶ How to characterize the observed dynamics, which becomes more and
more complex when µ gets close to 4?

Notion of chaos.

Theorem [Sharkovsky ’64, Li York ’75]
“The existence of a period 3 orbit implies chaos”

▶ For a given value of µ, how can we prove the existence of a period 3
orbit, in order to apply the above theorem?
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On the hunt for period 3 orbits

xn+1 = µxn(1 − xn)

▶ We start by looking numerically for a period 3 orbit.

▶ To do so, we can consider the map F : R3 → R3 defined by

F (x0, x1, x2) =

µx0(1 − x0) − x1
µx1(1 − x1) − x2
µx2(1 − x2) − x0

 .

If we manage to find a zero of F (such that x0 ̸= x1 ̸= x2), we then have
a period 3 orbit.

▶ Numerically, it is easy to find an “approximate solution” X̄ = (x̄0, x̄1, x̄2)
such that F (X̄ ) ≈ 0.

▶ How to rigorously prove the existence of this zero of F?
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We need proof!

F : R3 → R3 F (X̄ ) ≈ 0.

▶ We want to prove a posteriori the existence of a zero of F close to X̄ .

Theorem (à la Newton-Kantorovich)
Let ε, K , L > 0 such that

∥F (X̄ )∥ ≤ ε

∥DF (X̄ )−1∥ ≤ κ

∥DF (X ) − DF (X̄ )∥ ≤ L∥X − X̄∥ ∀ X ∈ R3.

If
ε <

1
2κ2L ,

then F has a unique zero X ∗ satisfying ∥X ∗ − X̄∥ ≤ r , r = 1−
√

1−2κ2Lε
κL .

Proof : T : X 7→ X − DF (X̄ )−1F (X ) is a contraction on the closed ball of
center X̄ and radius r .
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A frightening example

▶ Can we really trust floating-point arithmetic?

▶ Consider the following expression [Rump ’94]

g(a, b) = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 + a
2b ,

evaluated for a = 77617 and b = 33096, with various precisions.

▶ We have to be wary of round-off errors, especially if we claim to have
proven a theorem based on some numerical computations!

▶ In our “proof” of existence of a period 3 orbit, how can we be certain
that the quantity ε that we numerically evaluated really bounds ∥F (X̄ )∥,
or that ε < 1

2κ2L?
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Calling interval arithmetic to the rescue

▶ Let F bet a set of floating point numbers, corresponding to the (finite!)
set of real numbers that the computer can represent with a given preci-
sion, and

▽, △ : R → F,

the round-down and round-up operators.
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▶ Let F bet a set of floating point numbers, corresponding to the (finite!)

set of real numbers that the computer can represent with a given preci-
sion, and

▽, △ : R → F,

the round-down and round-up operators.
▶ Example: consider x = 0.1. In base 2, x writes

x = (1.1001100110011001100...)2 × 2−4.

With 8 bits of precision (for the mantissa), we have

▽(x) = (1.1001100)2 × 2−4 and △ (x) = (1.1001101)2 × 2−4.
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Calling interval arithmetic to the rescue
▶ Let F bet a set of floating point numbers, corresponding to the (finite!)

set of real numbers that the computer can represent with a given preci-
sion, and

▽, △ : R → F,

the round-down and round-up operators.
▶ Instead of using floats, we now represent each real number by an interval

which contains it:
x ∈ R → [x ] := [▽(x) , △(x)] .

▶ On can then extend the elementary operations (+, −, ×, ÷) to intervals,
in such a way that the result always contain the true value:

x + y → [x ] [+] [y ],

where [+] is defined as follows

(doable in practice, IEEE 754 standard)

[x ] [+] [y ] := [▽ (▽(x) + ▽(y)) , △ (△(x) + △(y))] .

▶ We then have x + y ∈ [x] [+] [y].
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A computer-assisted proof a chaos, summary

xn+1 = µxn(1 − xn)

1 We reformulate the search of a period 3 orbit as a zero-finding problem
F(X) = 0.

2 We numerically find an approximate solution.

3 We estimate a posteriori

∥F (X̄ )∥, ∥DF (X̄ )−1∥ and ∥D2F (X )∥,

and do so rigorously using interval arithmetic.

4 We use these estimates to prove that

T : X 7→ X − DF(X̄)−1F(X)

is a contraction on a small neighborhood of X̄ .
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How to use these ideas in a broader context?

1 Reformulate the problem we are interested in (ODE, PDE, etc) in the
form F (X ) = 0.
▶ Several possible choices for F .
▶ We also need to chose a Banach space X , and in particular a norm.

2 Find numerically an approximate zero X̄ .
▶ Choice of discretization method, of a finite dimensional space Xh in

which we look for the approximate solution.

3 Estimate a posteriori

∥F (X̄ )∥, ∥DF (X̄ )−1∥ and ∥D2F (X )∥.

▶ The main difficulty lies in controlling ∥DF(X̄)−1∥.
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3 Estimate a posteriori

∥F (X̄ )∥, ∥DF (X̄ )−1∥ and ∥D2F (X )∥.

▶ The main difficulty lies in controlling ∥DF(X̄)−1∥.
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A new validation criteria

Theorem à la Newton-Kantorovich bis
Let ε, κ, L, δ > 0 such that

∥F (X̄ )∥ ≤ ε, ∥A∥ ≤ κ, ∥DF (X ) − DF (X̄ )∥ ≤ L∥X − X̄∥,

∥I − ADF (X̄ )∥ ≤ δ < 1.

If
ε <

(1 − δ)2

2κ2L ,

then F has a unique zero X ∗ satisfying ∥X ∗ − X̄∥ ≤ r , r = 1−δ−
√

(1−δ)2−2κ2L
κL .

▶ An equivalent way to interpret this strategy is to say that we replace the
former fixed-point operator T : x 7→ x − DF (x̄)−1F (x) by

T̃ : x 7→ x − AF (x).

Maxime Breden Computer-assisted proofs MAX team seminar



A new validation criteria

Theorem à la Newton-Kantorovich bis
Let ε, κ, L, δ > 0 such that

∥F (X̄ )∥ ≤ ε, ∥A∥ ≤ κ, ∥DF (X ) − DF (X̄ )∥ ≤ L∥X − X̄∥,

∥I − ADF (X̄ )∥ ≤ δ < 1.

If
ε <

(1 − δ)2

2κ2L ,

then F has a unique zero X ∗ satisfying ∥X ∗ − X̄∥ ≤ r , r = 1−δ−
√

(1−δ)2−2κ2L
κL .

▶ An equivalent way to interpret this strategy is to say that we replace the
former fixed-point operator T : x 7→ x − DF (x̄)−1F (x) by

T̃ : x 7→ x − AF (x).

Maxime Breden Computer-assisted proofs MAX team seminar



Setting for validated integration of ODEs

{
u′(t) = f (u(t)) t ∈ [0, 2τ ]
u(0) = uin

with f : Rd → Rd smooth and τ > 0 fixed.

▶ Goal: given an approximate solution ū : [0, 2τ ] → Rd , prove that the
exact solution u satisfies ∥u − ū∥ ≤ r for some explicit r .

▶ Main idea for the zero-finding problem:

F (u)(t) = u(t) −
(

uin +
∫ t

0
f (u(s))ds

)
.

▶ Key observation:

DF (ū)(h)(t) = h(t) −
∫ t

0
Df (ū(s))h(s)ds,

i.e., DF (ū) is a compact perturbation of the identity.
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Chebyshev series
{

u′(t) = τ f (u(t)) t ∈ [−1, 1]
u(−1) = uin

▶ Look for the solution as a Chebyshev series:

u(t) = u0 + 2
∞∑

n=1
unTn(t), Tn(cos θ) = cos(nθ).

▶ The unknown is the sequence u = (un)n≥0 of Chebyshev coefficients.
▶ By plugging the Chebyshev series ansatz into

u(t) −
(

uin + τ

∫ t

−1
f (u(s))ds

)
= 0,

we obtain our F (u) = 0 problem.
▶ The approximate solution ū is taken as a truncated Chebyshev series.
▶ We look for the exact solution in the space ℓ1

ν := {u, ∥u∥ν < ∞},

∥u∥ν := |u0| + 2
∞∑

n=1
|un| νn, ν ≥ 1.
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Why Chebyshev series?

u(t) −
(

uin + τ

∫ t

−1
f (u(s))ds

)
= 0.

▶ Excellent approximation properties (similar to Fourier series for periodic
functions).

▶ Easy formulation of the antiderivative allowing to “see” the compactness∫
Tn = 1

2

( 1
n + 1Tn+1 − 1

n − 1Tn−1

)
.

▶ Efficient computations of nonlinearities using the FFT.
Computing ∥F (ū)∥ν is rather straightforward.

▶ ℓ1
ν is a Banach algebra: ∥u ∗ v∥ν ≤ ∥u∥ν ∥v∥ν .

Simplifies the estimation of
∥∥D2F (u)

∥∥
ν

for u in a neighborhood of ū.
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Computing ∥F (ū)∥ν is rather straightforward.

▶ ℓ1
ν is a Banach algebra: ∥u ∗ v∥ν ≤ ∥u∥ν ∥v∥ν .

Simplifies the estimation of
∥∥D2F (u)

∥∥
ν

for u in a neighborhood of ū.

Maxime Breden Computer-assisted proofs MAX team seminar



Why Chebyshev series?

u(t) −
(

uin + τ

∫ t

−1
f (u(s))ds

)
= 0.

▶ Excellent approximation properties (similar to Fourier series for periodic
functions).

▶ Easy formulation of the antiderivative allowing to “see” the compactness∫
Tn = 1

2

( 1
n + 1Tn+1 − 1

n − 1Tn−1

)
.

▶ Efficient computations of nonlinearities using the FFT.
Computing ∥F (ū)∥ν is rather straightforward.

▶ ℓ1
ν is a Banach algebra: ∥u ∗ v∥ν ≤ ∥u∥ν ∥v∥ν .

Simplifies the estimation of
∥∥D2F (u)

∥∥
ν

for u in a neighborhood of ū.
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How to construct the approximate inverse A

A :=
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Quality of this approximate inverse

▶ Using this constructing, when keeping the first N Chebyshev modes in
the finite block, we get

∥I − A DF (ū)∥ν ≈ τ ∥f ′(ū)∥ν

N .

▶ Up to taking N large enough, we can therefore get ∥I − A DF (ū)∥ν < 1,
and hope to apply the entire a posteriori validation procedure.

▶ [Lessard Reinhardt ’14]
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N .

▶ Up to taking N large enough, we can therefore get ∥I − A DF (ū)∥ν < 1,
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Domain decomposition

▶ It can be helpful to split the solution into several “Chebyshev pieces”, by
decomposing the time interval: 0 = τ0 < τ1 < . . . < τM = τ .

▶ We then look for u = (u(1), u(2), . . . , u(M)) so that each u(m) solves the
equation on [τm−1, τm]:

u(1)(t) −
(

uin +
∫ t

0
f (u(1)(s))ds

)
= 0 t ∈ [0, τ1],

u(2)(t) −
(

u(1)(τ1) +
∫ t

τ1
f (u(2)(s))ds

)
= 0 t ∈ [τ1, τ2],

...

u(M)(t) −
(

u(M−1)(τM−1) +
∫ t

τM−1
f (u(M)(s))ds

)
= 0 t ∈ [τM−1, τ ].

▶ Each u(m) is then represented by a Chebyshev series, and this leads to a
big F (u) = 0 problem.

▶ [van den Berg Sheombarsing ’21]
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Some examples from [van den Berg Sheombarsing ’21]

x ′ = 10(x − y)
y ′ = 28x − y − xz
z ′ = −8z/3 + xy
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Integration time τ ≈ 25
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Some examples from [van den Berg Sheombarsing ’21]

x ′ = 10(x − y)
y ′ = 28x − y − xz
z ′ = −8z/3 + xy
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Some related works

▶ Chebyshev methods for linear ODEs, with special emphasis on studying
and potentially reducing computational complexity [Benoit Joldes Mez-
zarobba ’17; Brehard Brisebarre Joldes ’18; Brehard ’21].

▶ Many other methods, some of which are more in the spirit of tradi-
tional numerical methods for ODEs. A particularly successful one is the
CAPD::DynSys library [Kapela Mrozek Wilczak Zgliczynski ’21].
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Outline

1 A simple example

2 Validated integration of ODEs using Chebyshev series

3 Alternate strategy
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A different fixed point reformulation

{
u′(t) = f (u(t)) t ∈ [0, τ ]
u(0) = uin

▶ We started by converting the equation into an F (u) = 0 problem:

F (u)(t) = u(t) −
(

uin +
∫ t

0
f (u(s))ds

)
,

and then into a fixed point problem T (u) = u − AF (u).

▶ One could also directly get a fixed point problem:

T̃ (u)(t) = uin +
∫ t

0
f (u(s))ds.

▶ T̃ has no reason to be contracting near ū, except for τ small.
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A different fixed point reformulation

{
u′(t) − Lu(t) = f (u(t)) − Lu(t) t ∈ [0, τ ]
u(0) = uin

▶ Using Duhamel’s principle/the variation of constants formula, we get

T̃ (u)(t) = etLuin +
∫ t

0
e(t−s)L (f (u(s)) − Lu(s)) ds.

▶ Looking at the derivative of T̃ at ū

D̃T (ū)(h)(t) =
∫ t

0
e(t−s)L (Df (ū(s)) − L) h(s)ds,

we see that T̃ should be contracting if L ≈ Df (ū(s)).

▶ We again split the time interval 0 = τ0 < τ1 < . . . < τM = τ , and take
a different approximation on each smaller subinterval:

L(m) ≈ Df (ū(m))(s), s ∈ [τm, τm+1].
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D̃T (ū)(h)(t) =
∫ t

0
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Application to parabolic PDEs 1: Fisher-KPP


∂u
∂t = ∂2u

∂x2 + u(1 − u) (t, x) ∈ (0, 4] × T4π,

u(0, ·) = uin.

Theorem
∥ū − u∥ ≤ 5e−2

N = 14
K = 2

M = 25
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Application to parabolic PDEs 2: Swift-Hohenberg
∂u
∂t = −

(
∂2

∂x2 + 1
)2

u + 5u − u3 (t, x) ∈ (0, 1.5] × T6π,

u(0, ·) = uin.

Theorem
∥ū − u∥ ≤ 4e−8

N = 30
K = 5

M = 100
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THANK YOU FOR YOUR ATTENTION!
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