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Introduction The CPS context

Cyber-Physical Systems ?

Some examples

Autonomous systems, such as autonomous cars (e.g. robotics)

Health systems

Energy production (e.g. smart grids)

All safety critical control systems (e.g. primary flight computers) etc.

In this course

We consider “formal” verification of robotics systems mostly :

“low-level” control systems

“high-level” planification and navigation algorithms

More and more of these aspects are implemented using AI-based (learning) mechanisms
(localization through vision, even control through learning - some other talk)

All these systems are programmed systems with numerically-intensive aspects, in relation
with physical aparatus.
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Introduction The CPS context

Example: the automotive industry

Security functions: ABS, airbags, opening policy of doors

Comfort functions (cruise control, rain sensing control, etc), with interactions with
the security functions

Embedded navigation system (some communication)

Towards autonomous vehicles (parking assistance, collision avoidance, etc) ; lots of
learning based algorithms

Complex mapping of functions onto the ECUs
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Introduction The CPS context

Example: aeronautics

Airplanes rely heavily on computer-enabled control
Fly-by-Wire vs. cable/hydraulic
Collision avoidance

Flight computers can override pilot commands

We must ensure that safe envelopes are maintained, for every possible configuration.
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Introduction The CPS context

Closed-loop medical devices
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Introduction The CPS context

Closed-loop medical devices

They present all the challenges of safe CPS design:

Complex modeling

Modeling the relevant aspects of human physiology: insulin-glucose regulatory
models, cardiac modeling, etc.

Reasoning with uncertainties: in models, sensors of limited capacity, human
behavior, etc.

Control: sophisticated algorithms to control critical physiological functions with
sensing/actuation/computing limitations

Find the right level of abstraction to reason efficiently

For example, timed automata may be sufficient for the temporal reasoning to
validate a simple pacemaker model

Safety and security issues

Closed-loop medical devices are safety-critical: malfunctions result in serious injury
or death to the patient

Security issues: August 2017 - hacking risk leads to recall of 500000 pacemaker
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Introduction The CPS context

There is a need for safe design !

Fully autonomous cars soon (with at a higher level, smart road infrastructure)... but their
safety remains a big challenge.
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Introduction Models of such systems

Many possible models

ODEs, switched systems, hybrid systems

DAEs etc.

data based

We will focus on ODE based models, like hybrid systems (next slides) - control may as
well be implemented with a neural network in what we did up to now.
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Introduction Models of such systems

From dynamical to hybrid systems, informally

Simple hybrid system:

smooth dynamics almost all the time, except for state jumps x+ = g(x−) at some
discrete t.

transitions can be time-dependent or state-dependent
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Introduction Models of such systems

Hybrid Automata: the most classical model for hybrid systems

Example (Self-regulating switching thermostat with hysteresis)

State machine with continuous state variable T

Time progresses within modes (ON/OFF) and T changes continuously according to
differential equations

Transitions between modes are instantaneous and enabled by the satisfaction of
guards on T ; T can be discontinuously updated during mode-switches

Invariants constrain how long the system can stay in a discrete mode

A very rich model: even before verification, well-posedness and existence of solutions on
t ∈ [0,∞[ can already be a problem
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Introduction Models of such systems

A classical example: the bouncing ball

Hybrid systems are useful to model also purely physical phenomena such as collisions
(and not only interaction between controller and physical world)

Ball dropped from initial height x0 with
initial vertical velocity v0

Dynamics subject to
ẋ(t) = v , v̇(t) = −g
When the ball hits the ground (x = 0),
velocity changes discretely: v := −a.v ,
with 0 < a < 1 dampening constant
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Introduction Models of such systems

Zeno bouncing ball: simulation in practice
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Introduction Properties of interest for validation of controlled systems

Reachability and invariance

Reachability

(forward) Characterize the set of final states from a given state of initial conditions.

(backward) Characterize the set of initial conditions that reach a desired goal set.

In case there is a control input, possibly design a controller such that the state
trajectory starting from a given initial condition reaches the desired set.

(can be made probabilistic etc.)

Robust Reachability

If both control and disturbance inputs are available, the reachability problem can be
thought of as a pursuit-evasion game, where the controller wins if it can keep the system
from entering a ”bad” subset of the state space, called the capture set, while the
disturbance wins if it can drive the state into the bad set.

Invariance

”Unbounded-time” reachability. The control synthesis concerns with designing a
controller such that the state trajectories remain inside the safe set. In the presence of
uncertainties: viability.
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Introduction Properties of interest for validation of controlled systems

A logical view: safety and liveness properties, as temporal logic formulas

Proof or falsification of general temporal formulas

Temporal logics is a logics building on classical logics, plus ”modal” operators such as
”eventually”, ”always” etc.

Safety properties [invariants]

Informally, for proving that something bad never happens (using modality ”always”). E.g.
never hit an obstacle

Liveness properties [reachability]

Informally, for proving that something good eventually happens (using modality
”eventually”). E.g. eventually reaches target.

An arbitrary property can be expressed as intersection of a safety and a liveness property.
E.g. reach-avoid properties.
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Introduction Properties of interest for validation of controlled systems

Logical specifications (more complex quantified reachability, 2nd part)

E.g. STL ”Signal Temporal Logic”

Properties are temporal relations between signal predicates

ϕ := true | xi ≥ 0 | ¬ϕ | ϕ ∧ ϕ | ϕUIϕ

xi is a system variable

I is an interval [a, b] (of times)

U is the ”until” operator

Common syntactic sugar: �Iϕ = true UI¬ϕ, ♦Iϕ = ¬�I¬ϕ

Examples

Velocity will be non-negative until a collision occurs v ≥ 0U[0,∞]x ≥ L

Collision will not occur �[0,∞]x < L (its negation is a reachability property)

(and extensions of the logics to deal with *sets* of traces)
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Introduction Properties of interest for validation of controlled systems

Semantics of STL

STL formulas are evaluated over execution traces

A trace w is a set of signals t → xi (t)

Signal is the value of a variable as a function of time: R+ → R ∪ {⊥,>}

Rules

w , t |= true
w , t |= xi ≥ 0 iff xi (t) ≥ 0
w , t |= ¬ϕ iff w , t 6|= ϕ
w , t |= ϕ ∧ ψ iff w , t |= ϕ and w , t |= ψ
w , t |= ϕUIψ iff ∃t′ ∈ t + I , w , t′ |= ψ ∧ (∀t′′ ∈ [t, t′], w , t′′ |= ϕ)

Needs interpreting at least, generally quantified formulas (end of this talk)
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Introduction Reachability-based verification

Reachability-based verification (1st part)

Safety verification, temporal properties

Compute (outer) enveloppes of all possible trajectories (not possible to compute
exact envelopes)

If these enveloppes do not intersect with sets of unsafe states, then the system is safe

Compute inner enveloppes, for applications to additional temporal properties (e.g.
reach-avoid)

This talk: focus on robust reachability analysis for uncertain non-linear discrete
dynamical systems and ODEs

Robust reachability: what states can control systems reach, for some class of
disturbance and for some class of control?

How to compute precisely and efficiently inner and outer approximations of these
robust reachable sets?

Applications: using these envelopes for the verification of control systems
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Introduction Reachability-based verification

Inner and outer approximations of reachable sets for uncertain dynamical
systems

Outer or over-approximating (maximal) flowpipes = guaranteed to include all
reachable states

provide safety proof

but conservative (“false alarms”)

Inner or under-approximating (maximal) flowpipes = states guaranteed to be reached
falsification of safety properties, precision estimates

verification of new properties (sweep-avoid ?)

Safety/falsification in presence of disturbances: minimal/robust flowpipes
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Introduction Reachability-based verification

Approximate reachability and verification ?

Example

A cannon shoots bullets. Trajectory (x , y), velocity v
and angle γ of the velocity with respect to the x axis:

v̇ = −gγ − ρv2

2m
aCd

γ̇ = − g(1−γ2/2)
v

ẋ = v(1− γ2/2)
ẏ = vγ

The mass m of the bullet is uncertain (a disturbance).
The initial state is uncertain.
that should be able to reach targets T1 and T2, and
avoid a wall L Height y(t)
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Introduction Reachability-based verification

”Classical” properties for the verification of control systems

Safety verification: if empty intersection of the
outer-approximation and the unsafe region - here
L

Safety falsification: if non-empty intersection of
the inner-approximation and the unsafe region

Robust falsification: if non-empty intersection of
the robust inner-approximation and the unsafe
states (cannot be proved by testing)

Reach-avoid: some point of region T2 (a moving
target) is reachable (while avoiding L), whatever
the mass of the bullet: T2 intersects with the
robust inner-approximation

Sweep-avoid: the whole region T1 is covered
(while avoiding L) whatever the mass of the
bullet, for some initialization: T1 is included in
the robust inner-approximation

Height y(t)
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Introduction Reachable sets

Reachable sets of continuous (and hybrid) dynamics

(S)

{
ẋ(t) = f (x(t), u(t))

x(0) ∈ Z 0, u(t) ∈ U ⊆ Rp

under classical hypotheses, solutions
(flows) ϕf (s; x0, u)

Maximal reachability (”classical” reachability)

[I. M. Mitchell, HSCC 2007] Comparing Forward and Backward Reachability as Tools for Safety Analysis

State xf is (maximally) reachable at time s if
∃x0 ∈ Z 0, ∃u : [0, s]→ U, s.t. ϕf (s; x0, u) = xf

The (maximal) reachable set of system (S) is

R f
E(Z 0,U) = {xf |xf is reachable}

(but not often computed over infinite time)

The reachable tube or flowpipe over [0, t] is

R f
E([0, t]; Z 0,U) = {xf |xf is reachable for some time s ≤ t}
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Introduction Reachable sets

Reachable sets of continuous (and hybrid) dynamics

(S)

{
ẋ(t) = f (x(t), u(t))

x(0) ∈ Z 0, u(t) ∈ U ⊆ Rp

under classical hypotheses, solutions
(flows) ϕf (s; x0, u)

Minimal reachability

[I. M. Mitchell, HSCC 2007] Comparing Forward and Backward Reachability as Tools for Safety Analysis

State xf is (minimally) reachable at time s if
∀u : [0, s]→ U, ∃x0 ∈ Z 0, s.t. ϕf (s; x0, u) = xf

The (minimal) reachable set of system (S) is

R f
A(Z 0,U) = {xf |xf is reachable}

(but not often computed over infinite time)
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Introduction Reachable sets

Reachable sets of continuous (and hybrid) dynamics

(S)

{
ẋ(t) = f (x(t), u(t))

x(0) ∈ Z 0, u(t) ∈ U ⊆ Rp

under classical hypotheses, solutions
(flows) ϕf (s; x0, u)

Robust (forward) reachability

States that trajectories will reach whatever some components uA of the input signal is,
and for some other components uE of the input signal

R f
AE(t; Z 0,U) = {z ∈ D | ∀uA ∈ UA, ∃uE ∈ UE, ∃z0 ∈ Z 0, z = ϕf (t; z0, uA, uE )}
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Introduction Reachable sets

Reachable sets of continuous (and hybrid) dynamics

(S)

{
ẋ(t) = f (x(t), u(t))

x(0) ∈ Z 0, u(t) ∈ U ⊆ Rp
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States that trajectories will reach whatever some components uA of the input signal is,
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R f
AE(t; Z 0,U) = {z ∈ D | ∀uA ∈ UA, ∃uE ∈ UE, ∃z0 ∈ Z 0, z = ϕf (t; z0, uA, uE )}

Think of disturbances for uA, and controls for uE ; classical maximal reachability is for
UA = ∅, minimal reachability is for UE = ∅ as defined in e.g.
Comparing Forward and Backward Reachability as Tools for Safety Analysis, Mitchell, I. M., HSCC 2007
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Introduction Reachable sets

Reachable sets of continuous (and hybrid) dynamics

(S)

{
ẋ(t) = f (x(t), u(t))

x(0) ∈ Z 0, u(t) ∈ U ⊆ Rp

under classical hypotheses, solutions
(flows) ϕf (s; x0, u)

Robust (forward) reachability

States that trajectories will reach whatever some components uA of the input signal is,
and for some other components uE of the input signal

R f
AE(t; Z 0,U) = {z ∈ D | ∀uA ∈ UA, ∃uE ∈ UE, ∃z0 ∈ Z 0, z = ϕf (t; z0, uA, uE )}

We cover also time-dependent inputs - control - and disturbances ; other notion of
robustness is ∃uE , ∀uA see part II!
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Introduction Reachable sets

Reachable sets of continuous (and hybrid) dynamics

(S)

{
ẋ(t) = f (x(t), u(t))

x(0) ∈ Z 0, u(t) ∈ U ⊆ Rp

under classical hypotheses, solutions
(flows) ϕf (s; x0, u)

Robust (forward) reachability

States that trajectories will reach whatever some components uA of the input signal is,
and for some other components uE of the input signal

R f
AE(t; Z 0,U) = {z ∈ D | ∀uA ∈ UA, ∃uE ∈ UE, ∃z0 ∈ Z 0, z = ϕf (t; z0, uA, uE )}

These reachable sets are not computable in general: we compute inner and outer
approximations precisely and efficiently
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Introduction A simple example

A simple example (1st part)

Dubbins vehicle

Its position (px , py ) and its heading θ are given by: ṗx
ṗy
θ̇

 =

 vcos(θ) + b1

vsin(θ) + b2

a + b3


where a is the (angular) control, and b = (b1, b2, b3) is the distur-
bance. (v = 5, a ∈ [−1, 1], −1 ≤ b1 ≤ 1, −1 ≤ b2 ≤ 1, −5 ≤ b3 ≤ 5).

Backward reachable set (BRS)

G(t) = {x0|∀uA, ∃uE ,∃x ∈ G0, x = ϕf (t; x0, u))} from

G0 = {(px , py , θ)||px | ≤ 0.5, |py | ≤ 0.5, 0 ≤ θ ≤ 2π}

We compute BRS as forward reachability (FRS) for the inverse flow:

{x0|∀uA, ∃uE , ∃x ∈ G0, x0 = ϕ−f (t; x , u))}
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Introduction A simple example

Dubbins vehicle

What happens

Without disturbance With disturbance
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Introduction A simple example

Robust approximation of BRS for the Dubbins vehicle

Union of BRS for t ≤ 0.5s

(2 seconds, Taylor order 3, time horizon 0.5 s, step size 0.025 s, 50 subdivisions on heading θ, constant controls)

Maximal inner with no disturbance
Robust inner (with disturbances), maximal

inner (with disturbances)
Joint px , py and θ for Dubbins, constant controls The results, also obtained in 2 seconds
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Introduction A simple example

Robust approximation of BRS for the Dubbins vehicle

Union of BRS for t ≤ 0.5s

Maximal inner with no disturbance
Robust inner (with disturbances),
maximal inner (with disturbances)

Joint px , py and θ for Dubbins, constant controls The results, also obtained in 2 seconds

Very precise results comparable to e.g. Decomposition of Reachable Sets and Tubes for a Class of Nonlinear

Systems, M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal and C. J. Tomlin, IEEE Trans. Aut. Control, 2018

Eric Goubault, Sylvie Putot Analysis of dynamical systems Ecole polytechnique 25 / 90



Introduction A simple example

Generalization (2nd part)

Dubbins vehicle again!  ẋ
ẏ

θ̇

 =

 vcos(θ) + b1

vsin(θ)
a


Control period of t = 0.5, linear velocity v = 1,

Init: X0 = {(x , y , θ) | x ∈ [−0.1, 0.1], y ∈ [−0.1, 0.1], θ ∈ [−0.01, 0.01]},
Control a (angular velocity) in U = [−0.01, 0.01],

disturbance b1 in W = [−0.01, 0.01]

We want to estimate:

R∃∀∃(ϕ) = {z ∈ Rm | ∃u ∈ U, ∃x0 ∈ X0, ∀w ∈W, ∃s ∈ [0,T ], z = ϕ(s; x0, u,w)}

We will find (instantly using our Julia implementation):

[−0.0949993455, 0.5899993275]× [−0.0925, 0.0925]× [−0.01, 0.01] ⊆ R∃∀∃(ϕ)

(timeout using quantifier elimination under Mathematica)
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Fundamentals of our method Ingredients

Ingredients

compute robust inner and outer approximations of 1-D function range (mean-value
theorem)

robust version (robust mean-value theorem) can also be used to produce n-D
inner-approximations

Can be applied to discrete dynamical systems

Can be applied on the flow map for a continuous system
for this, we need to outer-approximate both the flow map and its Jacobian wrt control,
initial states and disturbances (here, using Taylor models)
Robust mean value theorem that produce inner and outer approximations of flowpipes
using trajectory and Jacobian approximants

Improvements using subdivisions and skewing
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Fundamentals of our method Range of functions

Inner-approximation and mean-value theorems

Classical mean-value theorem

f smooth enough: f (x)−f (x0)
x−x0

= f ′(ξ) for some ξ ∈ [x0, x ]

Generalized interval mean-value theorem

f : Rm → R be a continuously differentiable function, x ∈ Im

f 0 = [f0, f0], inclusion of f (c(x))

∆i = [∆i ,∆i ] such that {|f ′i (c(x1), . . . , c(x i−1), xi , . . . , xm)|, x ∈ x} ⊆ ∆i

Then:

range(f , x) ⊆ [f0, f0] +
m∑
i=1

∆i r(x i )[−1, 1]

[f0 −
m∑
i=1

∆i r(x i ), f0 +
m∑
i=1

∆i r(x i )] ⊆ range(f , x)

A. Goldsztejn, “Modal intervals revisited, part 2: A generalized interval mean value extension,” Reliable Computing, vol. 16, 2012.

Eric Goubault, Sylvie Putot Analysis of dynamical systems Ecole polytechnique 29 / 90



Fundamentals of our method Range of functions

Inner-approximation and mean-value theorems

An illustrative example f (x) = x2 − x over x = [2, 3]

f (2.5) = 3.75 and ∇f ([2, 3]) ⊆ [3, 5]. Then,

3.75 + 1.5[−1, 1] ⊆ range(f , [2, 3]) ⊆ 3.75 + 2.5[−1, 1],

from which we deduce

[2.25, 5.25] ⊆ range(f , [2, 3]) ⊆ [1.25, 6.25]
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Fundamentals of our method Range of functions

Robust mean value

Consider now: f (w , u) = u2 − 2w for (w , u) ∈ [2, 3]× [2, 3]

w is a disturbance, we want to compute the robust range:

{z | ∀w ∈ [2, 3], ∃u ∈ [2, 3], z = f (w , u)}

Principle

Disturbances act as an adversary: shrinks down the outer (resp. inner)
approximation by 〈∇w , r(xA〉)[−1, 1] (resp. by 〈∇w , r(xA〉)[−1, 1])

Controls act positively on the range: widens the outer (resp. inner) approximation
by 〈∇u, r(xE〉)[−1, 1] (resp. 〈∇u, r(xE〉)[−1, 1])

See Theorem 2 of the CdC 2020 paper

Calculation

f (2.5, 2.5) = 1.25 and ∇f (x) ⊆ ([−2,−2], [4, 6]), so:

[1.25− 2 + 1, 1.25 + 2− 1] ⊆ range(f , x , 1, 2) ⊆ [1.25− 3 + 1, 1.25 + 3− 1]

i .e. [0.25, 2.25] ⊆ range(f , x , 1, 2) ⊆ [−0.75, 3.25]
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Fundamentals of our method Range of functions

Robust mean-value, more formally

Similar to the generalized interval mean-value theorem, but with adversarial terms

f : Rm → R be continuously differentiable, x = xA × xE ∈ Im

f 0 such that f (c(x)) ⊆ f 0

∇w and ∇u such that {|∇w f (w , c(xE))| , w ∈ xA} ⊆∇w and
{|∇uf (w , u)| ,w ∈ xA, u ∈ xE} ⊆∇u

range(f , x , IA, IE) ⊆ [f 0 − 〈∇u, r(xE)〉+ 〈∇w , r(xA)〉,

f 0 + 〈∇u, r(xE)〉 − 〈∇w , r(xA)〉]

[f 0 − 〈∇u, r(xE)〉+ 〈∇w , r(xA)〉, f 0+

〈∇u, r(xE)〉 − 〈∇w , r(xA)〉] ⊆ range(f , x , IA, IE)
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Fundamentals of our method Joint range

Use of robust mean-value for n-D inner-approximations

Products of 1-D outer-approximations are n-D outer-approximations, but this is not the
case for inner-approximations!

For instance suppose:

∀z1 ∈ z1,∃x1 ∈ x1, ∃x2 ∈ x2, z1 = f1(x)

∀z2 ∈ z2,∃x1 ∈ x1, ∃x2 ∈ x2, z2 = f2(x)

This does not imply ∀z1 ∈ z1 and ∀z2 ∈ z2 there exists x1 and x2 such that z = f (x).
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Fundamentals of our method Joint range

Use of robust mean-value for n-D inner-approximations

A solution (particular case - can be generalized to n-D)

Compute 1-D inner range z1 of f1 robust to x1 and 1-D inner range z2 of f2 robust to x2:

∀z1 ∈ z1,∀x1 ∈ x1, ∃x2 ∈ x2, z1 = f1(x)

∀z2 ∈ z2,∀x2 ∈ x2, ∃x1 ∈ x1, z2 = f2(x)

Then
z1 × z2 ⊆ range(f , x1 × x2)

Example in 2-D: f (x) = (5x2
1 + x2

2 − 2x1x2 − 4, x2
1 +

5x2
2 − 2x1x2 − 4)ᵀ with x = [0.9, 1.1]2

[−0.66, 0.66]× [−0.66, 0.66] ⊆ range(f , x) ⊆ [−0.94, 0.94]× [−0.94, 0.94]

This result can be generalized to functions f : Rm → Rn
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Fundamentals of our method Joint range

Example in 2-D

f (x) = (5x2
1 + x2

2 − 2x1x2 − 4, x2
1 + 5x2

2 − 2x1x2 − 4)ᵀ with x = [0.9, 1.1]2

f (1, 1) = 0, ∇f (x) ⊆ (([6.8, 9.2], [−0.4, 0.4])ᵀ, ([−0.4, 0.4], [6.8, 9.2])ᵀ).

Thus range(f , x) ⊆ [−0.96, 0.96]2 by the mean-value theorem.

1-D inner-approximation

1-D under-approximations: [−0.7, 0.7] ⊆ range(f1, x), [−0.68, 0.68] ⊆ range(f2, x)

2-D inner-approximation

We obtain [−0.64, 0.64]2 ⊆ range(f1, x , 2) interpreting
∀z1 ∈ z1, ∀x2 ∈ x2, ∃x1 ∈ x1, z1 = f (x)
∀z2 ∈ z2, ∀x1 ∈ x1, ∃x2 ∈ x2, z2 = f (x)

E.g. f1(1, 1) + [−0.68 + 0.4 ∗ 0.1, 0.68− 0.4 ∗ 0.1] = [−0.64, 0.64] ⊆ range(f1, x , 2).

Eric Goubault, Sylvie Putot Analysis of dynamical systems Ecole polytechnique 34 / 90



Fundamentals of our method New AE extensions

New AE extensions

Base theorem

Suppose we have an approximation function g for f , elementary function s.t.:

∀w ∈ xA, ∀u ∈ xE , ∃ξ ∈ x, f (w , u) = g(w , u, ξ)

Then any under-approximation (resp. over-approximation) of the robust range of g with
respect to xA and ξ, Ig ⊆ range(g , x× x, IA ∪ {m + 1, . . . , 2m}, IE) is an
under-approximation (resp. over-approximation) of the robust range of f with respect to
xA, i.e. Ig ⊆ range(f , x, IA, IE)

Hence

Let g be an elementary function g(w , u, ξ) = α(w , u) + β(w , u, ξ) over
x = (w , u) ∈ x ⊆ Im and ξ ∈ x.

Let Iα be an under-approximation of the robust range of α with respect to w , i.e.
range(α, x, IA, IE), and Oβ an over-approximation of the range of β, i.e.
range(β, x× x, ∅, {1, . . . , 2m}).

The robust range of g with respect to w ∈ xA and ξ ∈ x, i.e.
range(g , x× x, IA ∪ {m + 1, . . . , 2m}, IE), is under-approximated by

Ig = [Iα +Oβ , Iα +Oβ ]
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Fundamentals of our method New AE extensions

Application and Example

Application to Taylor Models

f continuously (n + 1)-differentiable f , approximant:

g(x , ξ) = f (x0) +
n∑

i=1

(x − x0)i

i !
D i f (x0) + Dn+1f (ξ)

(x − x0)n+1

(n + 1)!

= f (x0) +
n∑

i=1

(x − x0)i

i !
D i f (x0) + β(x , ξ)

Easily applicable for n = 1

Example: f (x) = x3 + x2 + x + 1 on [− 1
4
, 1

4
]

Exact range is: [0.796875, 1.328125].

f (1)(x) = 3x2 + 2x + 1, f (2)(x) = 6x + 2 and g(x , ξ) = 1 + x + x2(3ξ + 1).

The under approximation of 1 + x over [− 1
4
, 1

4
] is [ 3

4
, 5

4
]

[0, 1
16

][ 1
4
, 7

4
] = [0, 7

64
] is over approximation of x2(3ξ + 1) for x , ξ in [− 1

4
, 1

4
]

[0.859375, 1.25] ⊆ range(f , x)

Compare with previous mean-value AE extension method: [0.875, 1.125].
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Fundamentals of our method Skewing

Skewing

In general: compute a skewed box as under-approximation instead of a box

Let C ∈ Rn×n be a non-singular matrix

If z ⊆ range(Cf , x):
{C−1z |z ∈ z}

is in range(f , x) (classical choice: C = (c(∇))−1).

An example: f (x) = (2x2
1 − x1x2 − 1, x2

1 + x2
2 − 2)ᵀ, x = [0.9, 1.1]2

Empty inner boxes with mean-value; Non-empty yellow approx with skewing
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Fundamentals of our method Quadrature

Quadrature

First idea: subdivision

Partition each dimension j = [1 . . .m] of the m-dimensional input box
x = x1 × . . .× xm in 2k sub-intervals

Define, for all j = [1 . . .m], x−k
j ≤ x

−(k−1)
j ≤ . . . ≤ x0

j ≤ . . . ≤ xk
j , with x−k

j = x j ,

x0
j = c(x j), xk

j = x j (dx i = x i − x i−1 the vector-valued deviation)

Compute under-approximation for each sub-box

But convex union of the under-approximating boxes is in general not an
under-approximation of range(f , x), and expensive (not linear in k).

Eric Goubault, Sylvie Putot Analysis of dynamical systems Ecole polytechnique 38 / 90



Fundamentals of our method Quadrature

Quadrature

Partition: principle

Note x1 =
[x−1

1 , x1
1 ]× [x−1

2 , x1
2 ]× . . .× [x−1

m , x1
m],

and for all i between 2 and k,
x i = [x−i

1 , x i
1]× . . .× [x−i

m , x i
m] \ x̊ i−1,

x0 x1

xk = x \ xk−1,∆k = [|∇f |](xk)

x−k
1 x−1

1 x0
1 x1

1 xk
1

x−k
2

x0
2

xk
2

x1,∆1x2,∆2

By mean-value,
∀x ∈ [x−1, x1], ∃ξ1 ∈ [x−1, x1], f (x) = f (x0) + 〈∇f (ξ1), x − x0〉. Let f 0 ⊇ f (x0) and

∇i for i in [1, k] such that {|∇f (x)|, x ∈ x i} ⊆∇i .

So range(f , x1) ⊆ f 0 + 〈∇1
, dx1〉[−1, 1],

[f 0 − 〈∇1, dx1〉, f 0 + 〈∇1, dx1〉] ⊆ range(f , [x−1, x1]).
Iterate on adjacent subdivisions: for x ∈ x2, there exist x1 ∈ x1 ∩ x2, ξ2 ∈ x2 such
that f (x) = f (x1) + 〈∇f (ξ2), x − x1〉 and |x1 − x1

1 | ≤ dx2
1 and |x2 − x1

2 | ≤ dx2
2 .

range(f , x1 ∪ x2) ⊆ f 0 + 〈∇1
, dx1〉[−1, 1] + 〈∇2

, dx2〉[−1, 1]. There exists
(x , x1) ∈ x2×x1 s.t. |x1− x1

1 | = dx2
1 and |x2− x1

2 | = dx2
2 (take corners of boxes x1 and

x2), so [f 0 − 〈∇1, dx1〉 − 〈∇2, dx2〉, f 0 + 〈∇1, dx1〉+ 〈∇2, dx2〉] ⊆ range(f , x1 ∪ x2).
Generalizes to k subdivisions, i.e. under-approximation:

[f 0 −
∑k

i=1〈∇
i , dx〉, f 0 +

∑k
i=1〈∇

i , dx〉] ⊆ range(f , x).

(similarly for robust range)
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Fundamentals of our method Quadrature

Quadrature: example

f (x) = (2x2
1 + 2x2

2 − 2x1x2 − 2, x3
1 − x3

2 + 4x1x2 − 3)ᵀ, x = [0.9, 1.1]2

Skewing without partitioning: over-approximation in green, empty
inner-approximation

quadrature formula for mean-value extension (k = 10 partitions) and order 2
extension: very similar under-approximating in yellow

light green box is order 2 over-approximation without preconditioning.
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Reachability of discrete systems
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Reachability of discrete systems

Application to reachability of discrete systems

Principles

Based on range estimation

Two methods:
Method 1: propagate under-approximations at each step
Method 2: propagates over-approximations of the Jacobian, and deduce
under-approximations at each step (could be empty at some step, and non-empty later)

Method 2 more costly (differentiation of iterated functions)
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Reachability of discrete systems 2 methods

Method 1

Iteratively compute function image, with as input, the previously computed
approximations (under and over-approximations I k and Ok of the reachable set zk):{

I 0 = z0, O0 = z0

I k+1 = I(f , I k , π), Ok+1 = O(f ,Ok , π)

Input: f : Rn → Rn, z0 ⊆ I n initial state, K ∈ N+, an over-approximating extension [∇f ]
Output: I k and Ok for k ∈ [1,K ]

I 0 := z0,O0 := z0; choose π : [1 . . . n] 7→ [1 . . . n]
for k from 0 to K − 1 do

∇k
I := |[∇f ](I k)|, ∇k

O := |[∇f ](Ok)|
Ak

I := c(∇k
I ), Ak

O := c(∇k
O) (supposed non-singular)

C k
I := (Ak

I )−1, C k
O := (Ak

O)−1

zk+1
I := I(C k

I f , I
k , π), zk+1

O := O(C k
O f ,O

k , π)
if zk

I = ∅ then
return

end
I k+1 := Ak

I z
k+1
I , Ok+1 := Ak

Ozk+1
O

end for

Eric Goubault, Sylvie Putot Analysis of dynamical systems Ecole polytechnique 43 / 90



Reachability of discrete systems 2 methods

Method 2

Compute the sensitivity to initial states

At each step k, compute under/over-approximation of range(f k , z0), i.e. the loop
body f iterated k times, starting from z0.

for k from 0 to K − 1 do
I k+1 := I(f k+1, z0, π), Ok+1 := O(f k+1, zO , π)

end for
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Reachability of discrete systems Examples

Test model

xk+1
1 = xk

1 + (0.5(xk
1 )2 − 0.5(xk

2 )2)∆

xk+1
2 = xk

2 + 2xk
1 x

k
2 ∆

with as initial set x1 ∈ [0.05, 0.1] and x2 ∈ [0.99, 1.00], and ∆ = 0.01.

Under- (yellow) and over-approximated (green) reachable sets over time up to 25 steps
with Algorithm 1, skewed boxes (0.02s computation time)
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Reachability of discrete systems Examples

Test model

Box under and over-approximations for 25 steps of the test model
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Reachability of discrete systems Examples

SIR Epidemic Model

Model

x1 healthy; x2 infected; x3 recovered. β, contract. rate, γ, mean infect. period, ∆ step.

xk+1
1 = xk

1 − βxk
1 x

k
2 ∆

xk+1
2 = xk

2 + (βxk
1 x

k
2 − γxk

2 )∆

xk+1
3 = xk

3 + γxk
2 ∆

Algorithm 1: 60 steps from (x1, x2, x3) ∈ [0.79, 0.80]× [0.19, 0.20]× [0, 0.1] (in 0.05s).
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Reachability of discrete systems Examples

SIR Epidemic Model

Model

x1 healthy; x2 infected; x3 recovered. β, contract. rate, γ, mean infect. period, ∆ step.

xk+1
1 = xk

1 − βxk
1 x

k
2 ∆

xk+1
2 = xk

2 + (βxk
1 x

k
2 − γxk

2 )∆

xk+1
3 = xk

3 + γxk
2 ∆

Algorithm 2 finds non-empty, tight approx (in 0.05s, init. x3 ∈ [0, 0.1])

Projections of under and over-approximations for 60 steps
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Reachability of discrete systems Examples

Honeybees Site Choice Model

Model

xk+1
1 = xk

1 − (β1x
k
1 x

k
2 + β2x

k
1 x

k
3 )∆

xk+1
2 = xk

2 + (β1x
k
1 x

k
2 − γxk

2 + δβ1x
k
2 x

k
4 + αβ1x

k
2 x

k
5 )∆

xk+1
3 = xk

3 + (β2x
k
1 x

k
3 − γxk

3 + δβ2x
k
3 x

k
5 + αβ2x

k
3 x

k
4 )∆

xk+1
4 = xk

4 + (γxk
2 − δβ1x

k
2 x

k
4 − αβ2x

k
3 x

k
4 )∆

xk+1
5 = xk

5 + (γxk
3 − δβ2x

k
3 x

k
5 − αβ1x

k
2 x

k
5 )∆

x1 = 500, x2 ∈ [390, 400], x3 ∈ [90, 100], x4 = x5 = 0 and parameters β1 = β2 = 0.001,
γ = 0.3, δ = 0.5, α = 0.7, and ∆ = 0.01.
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Reachability of discrete systems Examples

Honeybees Site Choice Model

Algorithm 1 (1.7s analysis time, 800 steps, but imprecise)
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Reachability of discrete systems Examples

Honeybees Site Choice Model

Algorithm 2 (57s analysis time, 1500 steps)

Very tight projected under-approximations: (slightly faster/tighter than Dreossi 2016)
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Reachability of continuous systems
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Reachability of continuous systems

Application to reachability of continuous systems

For an ODE ẋ = f (x , u), flow ϕf

We compute:

1 a maximal over-approximation Õf
E(t) of the trajectory

ϕf (t; z̃0, ũ) for a given (z̃0, ũ) ∈ Z 0 × U .

2 a maximal over-approximation OF
E (t) of the sensitivity matrix with respect to

uncertain initial condition z0 and input u, over the range Z 0 × U .

We can use any over-approximation method for this ; we use a combination of Taylor
models, affine forms (and skewing and subdivisions in some cases) here.
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Reachability of continuous systems

Taylor models outer-approximated flowpipes (Berz & Makino, Nedialkov,
Chen & Abraham & Sankaranarayanan.)

For ż(t) = f (z), z(t0) ∈ [z0] with f : Rn → Rn, given a time grid t0 < t1 < . . . < tN ,
we use Taylor models at order k to outer-approximate the solution (t, z0) 7→ z(t, z0) on
each time interval [tj , tj+1]:

[z ](t, tj , [z j ]) = [z j ] +
k−1∑
i=1

(t − tj)
i

i !
f [i ]([z j ]) +

(t − tj)
k

k!
f [k]([r j+1]),

the Taylor coefficients f [i ] are defined inductively and can be computed by automatic
differentiation:

f
[1]
k = fk

f
[i+1]
k =

n∑
j=1

∂f
[i ]
k

∂zj
fj

bounding the remainder supposes to first compute a (rough) enclosure [r j+1] of
solution z(t, z0) on [tj , tj+1], classical by Picard iteration: find hj+1, [rj+1] such that

[zj ] + [0, hj+1]f ([rj+1]) ⊆ [rj+1]

initialization of next iterate [z j+1] = [z ](tj+1, tj , [z j ])

Taylor models are efficiently and precisely estimated in ... affine arithmetic / zonotopes!
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Reachability of continuous systems

Inner-approximated flowpipes for uncertain ODEs

Generalized mean-value theorem on the solution z0 7→ z(t, z0) of the ODE:

we need a guaranteed enclosure of z(t, z̃0) for some z̃0 ∈ pro [z0] and{
∂z
∂z0,i

(t, z0), z0 ∈ pro [z0]
}
⊆ [J i ] : Taylor models

Algorithm (Init: j = 0, tj = t0, [z j ] = [z0], [z̃j ] = z̃0 ∈ [z0], [J j ] = Id)

For each time interval [tj , tj+1], build Taylor models for:
[z̃](t, tj , [z̃j ]) outer enclosure of z(t, z̃0) valid on [tj , tj+1]
[z](t, tj , [zj ]) outer enclosure of z(t, [z0])

[J](t, tj , [zj ], [Jj ]) outer enclosure of Jacobian ∂z
∂z0

(t, [z0]) (can be derived from [z])

Deduce an inner-approximation valid for t in [tj , tj+1] : if

]z [(t, tj) = [z̃ ](t, tj , [z̃ j ]) + [J](t, tj , [z j ]) ∗ ([z0, z0]− z̃0)

is an improper interval, then pro ]z [(t, tj) is an inner-approximation of the set of
solutions {z(t, z0), z0(t0) ∈ z0}, otherwise the inner-approximation is empty.

[z j+1] = [z ](tj+1, tj , [z j ]), [z̃ j+1] = [z̃ ](tj+1, tj , [z̃ j ]), [J j+1] = [J](t, tj , [z j ], [Jj ])
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Reachability of continuous systems

Example: simple ODE ż = z with z0 ∈ [z0] = [0, 1], on t ∈ [0, 0.5]

0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

[z0]

Init: [z0] = [0, 1], z̃0 = 0.5, [J0] = 1

A priori enclosures: ∀t ∈ [0, 0.5] , ∀z0 ∈ [0, 1], z(t, z0) ∈ [0, 2] and J(t, z0) ∈ [1, 2]
Taylor Model for the center z(t, z̃0), z̃0 ∈ [z0] = [0, 1] :

z(t, z0) = z(0, z0) + z(0, z0)t +
z(ξ, z0)

2
t2, ξ ∈ [0, 0.5]

[z](t, z̃0) = z̃0 + z̃0t + [0, 1]t2

Taylor model for the Jacobian for all z0 ∈ [z0] = [0, 1]

J(t, z0) = 1 + J(0, z0)t +
J(ξ, z0)

2
t2, ξ ∈ [0, 0.5]

[J] (t, [z0]) = = 1 + t + [0.5, 1] t2
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Reachability of continuous systems

Mean-value theorem, with z̃0 = mid([z0]) = 0.5 for inner tube:

]z [ = [z̃ ](t, tj , [z̃ j ]) + [J](t, tj , [z j ])× ([z0, z0]− z̃0)

= [z̃ ](t, 0.5) + [J](t, [z0]) ∗ ([1, 0]− 0.5)

= 0.5 + 0.5t + [0, 1]t2︸ ︷︷ ︸
proper

+ [(1 + t + [0.5, 1]t2)× [0.5,−0.5]︸ ︷︷ ︸
improper

= improper?

= [0.5 + 0.5t, 0.5 + 0.5t + t2] + [1 + t + 0.5t21 + t + 0.5t2, 1 + t + t2]︸ ︷︷ ︸
∈P

× [0.5,−0.5]︸ ︷︷ ︸
∈dual Z

= [0.5 + 0.5t, 0.5 + 0.5t + t2]︸ ︷︷ ︸
proper x1

+ [0.5 + 0.5t + 0.25t2,−0.5− 0.5t − 0.25t2]︸ ︷︷ ︸
x2 improper (iff 0/∈[J])

= [1 + t + 0.25t2, 0.75t2] is improper! (width ]z[ = width x2 - width x1)

0.1 0.2 0.3 0.4 0.5

−0.5

0.5

1

1.5
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Reachability of continuous systems Examples

6D quadrotor

6 dim simplified quadcopter : coordinates (px , py ), pitch φ

Control T1 (resp. T2): cumulated thrust of the two left (resp. right) motors left
(resp. right); T1 ∈ [9, 9.5125], T2 ∈ [9, 9.5125]

C v
D = 0.25, CφD = 0.02255, g = 9.81, m = 1.25, l = 0.5, Iyy = 0.03 .

Target set: G0 = {(px , vx , py , vy , φ, ω)| − 1 ≤ px ≤ 1, −1 ≤ py ≤ 1, vx = 0, vy = 1,
−0.01 ≤ φ ≤ 0.01, −0.01 ≤ ω ≤ 0.01}.

Reachable set for time horizon t = 0.5 s, computed in 0.42 seconds for Taylor order 4,
step size of 0.01, no disturbance, constant controls

px as a function of time py as a function of time
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Reachability of continuous systems Examples

10D quadcopter

Model 

ṗx
v̇x
θ̇x
ω̇x

ṗy
v̇y
θ̇y
ω̇y

ṗz
v̇z


=



vx + dx
gtanθx

−d1θx + ωx

−d0θx + n0Sx

vy + dy
gtanθy

−d1θy + ωy

−d0θy + n0Sy

vz + dz
kTTz − g


defining position (px , py , pz); velocities (vx , vy , vz); pitch, roll (θx , θy ); pitch, roll
rates (ωx , ωy ); − π

18
≤ Sx ≤ π

18
, − π

18
≤ Sy ≤ π

18
, 0 ≤ Tz ≤ 2g = 19.62.

Wind disturbances (dx , dy , dz); n0 = 10, d1 = 8, d0 = 10, kT = 0.91

controls Sx , Sy in [− π
180
, π

180
] (target pitch, roll); Tz ∈ [0, 19.62], vertical thrust

Target set: −1 ≤ px , py ≤ 1, −2.5 ≤ pz ≤ 2.5, vx = −1.5, θx = 0, ωx = 0,
vy = −1.8, θy = 0, ωy = 0, vz = 1.2.
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Reachability of continuous systems Examples

10D quadrotor

No disturbances, constant controls (1.28s comp. time, order 4, horizon 0.5s, step 0.01s)

θx as a function of time ωx as a function of time
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Reachability of continuous systems Examples

10D quadrotor

No disturbances, constant controls (1.28s comp. time, order 4, horizon 0.5s, step 0.01s)

Joint range for px and py

Joint py and pz

Eric Goubault, Sylvie Putot Analysis of dynamical systems Ecole polytechnique 57 / 90



Reachability of continuous systems Examples

10D quadrotor

Time-varying controls (step 0.01s), no disturbance - analysis time 6.49s

ωx
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Reachability of continuous systems Examples

10D quadrotor

Disturbances dx , dy , dz in [-0.5, 0.5] - analysis time 1.22s)

θx ωx
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Reachability of continuous systems Examples

10D quadrotor

Disturbances dx , dy , dz in [-0.5, 0.5] - analysis time 1.22s)

Joint range for px and py
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Reachability of continuous systems Examples

10D quadrotor

No disturbance, time-varying

Joint py , pz Joint py and pz
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Reachability of continuous systems Examples

10D quadrotor

No disturbance, time-varying

Joint px , py and pz
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Reachability of continuous systems Concluding remarks

Efficiency

ODE dim param t hor stepsize order disturb time − var subd time s
Bru 2 2 4 0.02 4 1.26
B24 2 1 1 0.1 3 X X 0.02
Dub 3 4 1 0.01 3 0.14
− − − − − − 100 11.58
− − − − − − X X 100 428.1
6D 6 2 1 0.01 4 0.87
− − − − − − X 15.56
− − − − − − X X 30.52
L− L 7 0 20 0.1 3 24.04
10D 10 6 1 0.01 5 1.26
− − − − − − X 9.98

d : dim system; p: number of params; time: analysis time (seconds);

T time horizon; δ step-size; k order; sd : number of subd.

a checked if adversarial disturbances; v checked when time-varying uncertainties.
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Generalized quantified reachability
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Generalized quantified reachability

Motivation

Robust reachability - given φ(t; x0, u, v) the flow of an ODE at time t from x0 with
control u and disturbance w

For time t ∈ [0,T ], compute:

R∀∃(ϕ)(t) = {z | ∀w ∈W, ∃x0 ∈ X0, ∃u ∈ U, z = ϕ(t; x0, u,w)}

(can a controller compensate disturbances or change of values of parameters that are
known to the controller?)

”Even more” robust (but needs some time and/or space relaxation)

Can a controller not knowing the disturbance still reach the target, up to some (time)
relaxation?

R∃∀∃(ϕ) = {z ∈ Rm | ∃u ∈ U, ∃x0 ∈ X0, ∀w ∈W, ∃s ∈ [0,T ], z = ϕ(s; x0, u,w)}
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Generalized quantified reachability

But also

Motion planning

Go through regions Sj between times Tj−1 and Tj , j = 1, . . . , k, final states zk?

{zk ∈ Rm | ∃u1 ∈ U, ∀x0 ∈ X0, ∀w1 ∈W, ∃t1 ∈ [0,T1], ∃z1 ∈ S1

∃u2 ∈ U, ∀w2 ∈W, ∃t2 ∈ [T1,T2], ∃z2 ∈ S2, . . .

∃uk ∈ U, ∀wk ∈W, ∃tk ∈ [Tk−1,T ],
z1

z2

. . .
zk

 =


ϕ(t1; u1, x0,w1)

ϕ(t2 − t1; u2, z1,w2)
. . .

ϕ(tk − tk1 ; uk , zk−1,wk)


General temporal logics formulas, and hyperproperties

E.g. behavioral robustness, or comparisons of controllers:

R∃∀∃∀∃(ϕ) = {z | ∃x0 ∈ X0, ∃δ ∈ [−ε, ε]i ,
∀u ∈ U, ∃u′ ∈ U, ∀w ∈W, ∃t ∈ [T1,T2],

z = ‖ϕ(t; x0, u,w)− ϕ(t; x0 + δ, u′,w)‖}
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Generalized quantified reachability

Problem statement

Notations

f : Rp → Rm (e.g. flow function etc.)

the p arguments of f partitioned into consecutive ji arguments i = 1, . . . , 2n

corresponding to the alternations of quantifiers, with p =
2n∑
i=1

ji .

partition identified with sequence (j1, . . . , j2n), denoted by p.

we note: x i = (xki+1, . . . , xki+1 ) where ki =
i−1∑
l=1

jl , i = 1, . . . , 2n + 1, and

f (x1, x2, . . . , xk2n ) = f (x1, . . . , x2n)

General quantified problems

n alternations of quantifiers ∀∃ reachability problem:

Rp(f ) =
{
z ∈ Rm | ∀x1 ∈ [−1, 1]j1 , ∃x2 ∈ [−1, 1]j2 , . . . ,

∀x2n−1 ∈ [−1, 1]j2n−1 , ∃x2n ∈ [−1, 1]j2n , z = f (x1, x2, . . . , x2n)
}
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Generalized quantified reachability

On the generality of these quantified problems

Remarks

Add dummy existential quantifier (resp. universal quantifier) at the beginning (resp.
end) for getting all quantified formulas

Up to reparametrization, quantified problems with other boxes than [−1, 1]ji

Also possible to consider more general sets over which to quantify variables xi by
suitable outer and inner approximations as boxes

Can consider e.g. control u and disturbance w as piecewise constant signals over a
bounded time horizon.
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Generalized quantified reachability

Example

Dubbins vehicle  ẋ
ẏ

θ̇

 =

 vcos(θ) + b1

vsin(θ)
a


Control period of t = 0.5, linear velocity v = 1,

Initial conditions:
X0 = {(x , y , θ) | x ∈ [−0.1, 0.1], y ∈ [−0.1, 0.1], θ ∈ [−0.01, 0.01]},
Control a (angular velocity) in U = [−0.01, 0.01],

disturbance b1 in W = [−0.01, 0.01]

We want to estimate:

R∃∀∃(ϕ) = {z ∈ Rm | ∃u ∈ U, ∃x0 ∈ X0, ∀w ∈W, ∃s ∈ [0,T ], z = ϕ(s; x0, u,w)}
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Generalized quantified reachability The case of scalar functions f : Rp → R

First step: scalar affine functions

Notations

f is the affine function:

f (x1, x2, . . . , x2n) = δ0 + 〈∆1, x1〉+ 〈∆2, x2〉+ . . .+ 〈∆2n, x2n〉

with ∆i = (δki+1, . . . , δki+1 ) ∈ Rji , i = 1, . . . , 2n, where ki =
i−1∑
l=1

jl .

Exact characterization

Rp(f ) = δ0 +

[
n∑

k=1

(||∆2k−1|| − ||∆2k ||) ,
n∑

k=1

(||∆2k || − ||∆2k−1||)

]

if ||∆2l−1|| ≤ ||∆2l ||+
n∑

k=l+1

(||∆2k || − ||∆2k−1||) for l = 1, . . . , n, otherwise Rp(f ) = ∅
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Generalized quantified reachability The case of scalar functions f : Rp → R

The non-vacuity condition is paramount

Notations

Function f from R2 to R, consider:

R∀∃(f ) = {z | ∀x2, ∃x1, z = f (x1, x2)}
R∃∀(f ) = {z | ∃x1, ∀x2, z = f (x1, x2)}

Difference between ∀, ∃ and ∃, ∀
We always have R∃∀(f ) ⊆ R∀∃(f ), but, for any affine function f (x1, x2) = a + bx1 + cx2:

If c 6= 0, R∃∀(f ) = ∅
If c = 0, R∃∀(f ) = [a− |b|, a + |b|] = R∀∃(f ),
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Generalized quantified reachability The case of scalar functions f : Rp → R

The case of non-linear scalar functions

Notations

Function f : Rp → R, p = (j1, . . . , j2n) partition of the p arguments of f , kl =
l−1∑
i=1

ji ,

for l = 1, . . . , 2n + 1.

Suppose we have p intervals A1, . . . ,Ap, write Ai = (Aki+1, . . . ,Aki+1 ), i = 1, . . . , 2n
for the corresponding boxes in Rji ,

Consider the set:

C(A1, . . . ,A2n) = {z | ∀α1 ∈ A1, ∃α2 ∈ A2, . . . ,

∀α2n−1 ∈ A2n−1, ∃α2n ∈ A2n, z =
2n∑
j=1

αj}.

And functions, for j = 1, . . . , p:

hx1,...,xj−1 (xj) = f (x1, . . . , xj−1, xj , 0, . . . , 0)− f (x1, . . . , xj−1, 0, . . . , 0)
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Generalized quantified reachability The case of scalar functions f : Rp → R

The case of non-linear scalar functions

Characterization of Rp(f ) through linearizations

Given inner and outer-approximations of the images of functions hx1,...,xj−1 , for
j = 1, . . . , p. :

Ij ⊆ range(hx1,...,xj−1 ) ⊆ Oj

Then, writing I i =
ki+1

Π
j=ki+1

[I j , I j ], O i =
ki+1

Π
j=ki+1

[O j ,O j ], i = 1, . . . , 2n:

f (0, . . . , 0)+C(O1, I 2, . . . ,O2n−1, I 2n) ⊆ Rp(f ) ⊆ f (0, . . . , 0)+C(I 1,O2, . . . , I 2n−1,O2n)

Eric Goubault, Sylvie Putot Analysis of dynamical systems Ecole polytechnique 71 / 90



Generalized quantified reachability The case of scalar functions f : Rp → R

How do we find simple inner and outer-approximations of functions?

Generalized mean-value theorem

If we have, for all i = 1, . . . , 2n and all j = ki + 1, . . . , ki+1, ∇j = [∇j ,∇j ] such that:{∣∣∣∣ ∂f∂xj (x1, . . . , x i , 0, . . . , 0)

∣∣∣∣ | x l ∈ [−1, 1]jl , l = 1, . . . , i

}
⊆ ∇j

then, for all j = 1, . . . , 2n:

Ii = ∇j [−1, 1], Oj = ∇j [−1, 1]

give inner and outer-approximations of
range(hx1,...,xj−1 )

(other approximation methods, higher-order in particular, see e.g. Eric Goubault Sylvie Putot, ”Tractable

higher-order under-approximating AE extensions for non-linear systems” ADHS 2021)
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Generalized quantified reachability The case of scalar functions f : Rp → R

Finally

General formula for scalar, general functions

f (0, . . . , 0) +

[
n∑

k=1

∑(
O2k−1 + I 2k

)
,

n∑
k=1

∑(
I 2k + O2k−1

)]
⊆ Rp(f )

if
∑

O2l−1 −
∑

O2l−1 ≤
n∑

k=l

∑(
I 2k − I 2k

)
−

n∑
k=l+1

∑(
O2k−1 −O2k−1

)
for l = 1, . . . , n,

otherwise the inner-approximation is empty, and:

Rp(f ) ⊆ f (0, . . . , 0) +

[
n∑

k=1

∑(
I 2k−1 + O2k

)
,

n∑
k=1

∑(
O2k + I 2k−1

)]

if
∑

I 2l−1 −
∑

I 2l−1 ≤
n∑

k=l

∑(
O2k −O2k

)
−

n∑
k=l+1

∑(
I 2k−1 − I 2k−1

)
for l = 1, . . . , n,

otherwise the outer-approximation is empty.

Eric Goubault, Sylvie Putot Analysis of dynamical systems Ecole polytechnique 73 / 90



Generalized quantified reachability The case of scalar functions f : Rp → R

Looks a bit intimidating...

Example, function g : R3 → R on [−1, 1]3

g(x1, x2, x3) =
x2

1

4
+ (x2 + 1)(x3 + 2) + (x3 + 3)2.

Compute R∃∀∃(g) = {z | ∃x1 ∈ [−1, 1], ∀x2 ∈ [−1, 1], ∃x3 ∈ [−1, 1], z = g(x1, x2, x3)}

”Individual contributions” of each argument

∇1 = | ∂g
∂x1
| = | x1

2
| ∈
[
0, 1

2

]
, ∇2 = | ∂g

∂x2
| = |x3 + 2| ∈ [1, 3],

∇3 = | ∂g
∂x3
| = |x2 + 1 + 2(x3 + 3)| ∈ [4, 10], and c = g(0, 0, 0) = 11.

Therefore, outer and inner approximations: O1 =
[
− 1

2
, 1

2

]
, I1 = 0, O2 = [−3, 3],

I2 = [−1, 1] and O3 = [−10, 10], I3 = [−4, 4].

Outer-approximation of R∃∀∃(g)

[ c +O1 +I 2 +O3, c +O1 +I 2 +O3 ]
= [ 11 − 1

2
+1 −10, 11 + 1

2
−1 +10 ] = [1.5, 20.5]

(in comparison, the sampling based estimation is [6.25, 16.25])
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Generalized quantified reachability The case of scalar functions f : Rp → R

Looks a bit intimidating...

Example, function g : R3 → R on [−1, 1]3

Compute R∃∀∃(g) = {z | ∃x1 ∈ [−1, 1], ∀x2 ∈ [−1, 1], ∃x3 ∈ [−1, 1], z = g(x1, x2, x3)}.

”Individual contributions” of each argument

∇1 = | ∂g
∂x1
| = | x1

2
| ∈
[
0, 1

2

]
, ∇2 = | ∂g

∂x2
| = |x3 + 2| ∈ [1, 3],

∇3 = | ∂g
∂x3
| = |x2 + 1 + 2(x3 + 3)| ∈ [4, 10], and c = g(0, 0, 0) = 11.

Therefore, outer and inner approximations: O1 =
[
− 1

2
, 1

2

]
, I1 = 0, O2 = [−3, 3],

I2 = [−1, 1] and O3 = [−10, 10], I3 = [−4, 4].

Inner-approximation of R∃∀∃(g)

As I 3 + O2 = 1 ≥ I 3 + O2 = −1:

[ c +I 1 +O2 +I 3, c +I 1 +O2 +I 3 ]
= [ 11 0 +3 −4, 11 +0 −3 +4 ] = [10, 12]

(in comparison, the sampling based estimation is [6.25, 16.25])
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Generalized quantified reachability The case of scalar functions f : Rp → R

Difference between ∀∃ and ∃∀ (II)

For function f from R2 to R

R∀∃(f ) = {z | ∀x2, ∃x1, z = f (x1, x2)}
R∃∀(f ) = {z | ∃x1, ∀x2, z = f (x1, x2)}

Recall, in any case, R∃∀(f ) ⊆ R∀∃(f )

When f is non-linear, an example

f (x1, x2) = (x2
1 − 1)x2 + x1 for x1 ∈ [−1, 1] and x2 ∈ [−1, 1]

We have: R∀∃(f ) = [−1, 1], which is a strict superset of R∃∀(f ) = {−1, 1}
(different than the linear case, where R∀∃(f ) and R∃∀(f ) would not agree only in the case
when the latter is empty)
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Generalized quantified reachability The case of scalar functions f : Rp → R

Dubbins example (II)

Direct computation from the ODE (no need for Taylor approximant)

Outer-approximation of a ”central trajectory” (xc , yc , θc) starting at x = 0, y = 0,
θ = 0, b1 = 0 and a = 0: xc = t, yc = 0 and θc = 0,
∂x
∂t

= cos(θ) + b1 ∈ [0.989999965, 1.01] hence Ix,t = [0, 0.494999982],
Ox,t = [0, 0.505],

Similarly for the other variables: Iy,t = 0,
Oy,t = [−sin(0.015)/2, sin(0.015)/2] = [−1.309 10−4, 1.309 10−4] and Iθ,t = 0,
Oθ,t = [−0.005, 0.005],

The Jacobian of ϕ with respect to x0, y0, θ0, b1 and a, satisfies a variational
equation, we find:

Ix,a = 0, Ox,a = [−6.545 10−7, 6.545 10−7], Ix,x0 = Ox,x0 = [−0.1, 0.1], Ix,θ0
= 0,

Ox,θ0
= [−1.309 10−6, 1.309 10−6], Ix,b1

= 0, Ox,b1
= [−0.005, 0.005],

Iy,a = 0, Oy,a = [−0, 0025, 0.0025], Iy,y0 = Oy,y0 = [−0.1, 0.1], Iy,θ0
= 0,

Oy,θ0
= [−0, 005, 0.005],

Iθ,θ0
= Oθ,θ0

= [−0.01, 0.01], Iθ,a = 0, Oθ,a = [0, 0.005],
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Generalized quantified reachability The case of scalar functions f : Rp → R

Dubbins example (II)

Compute R∃∀∃:

∃a ∈ [−0.01, 0.01], ∃x0 ∈ [−0.1, 0.1], ∃y0 ∈ [−0.1, 0.1],

∃θ0 ∈ [−0.01, 0.01], ∀b1 ∈ [−0.01, 0.01], ∃t ∈ [0, 0.5],

z = ϕ(t; x0, y0, θ0, a, b1)

Hence, inner-approximation

Lower bound inner-approximation for x :

xc +I x,a +I x,x0
+I x,y0

+I x,θ0
+Ox,b1 +I x,t

= 0 −0 −0.1 +0 −0 +0.005 +0

which is equal to -0.095, and its upper bound:

xc +I x,a +I x,x0 +I x,y0 +I x,θ0 +Ox,b1
+I x,t

0 +0 +0.1 +0 +0 −0.005 +0.494999982

which is equal to 0.589999982. Therefore the inner-approximation for x is equal to
[−0.095, 0.589999982].
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Generalized quantified reachability The case of scalar functions f : Rp → R

Dubbins example (II)

Compute R∃∀∃:

∃a ∈ [−0.01, 0.01], ∃x0 ∈ [−0.1, 0.1], ∃y0 ∈ [−0.1, 0.1],

∃θ0 ∈ [−0.01, 0.01], ∀b1 ∈ [−0.01, 0.01], ∃t ∈ [0, 0.5],

z = ϕ(t; x0, y0, θ0, a, b1)

Hence, outer-approximation

Lower bound outer-approximation for the x :

xc +Ox,a +Ox,x0
+Ox,y0

+Ox,θ0
+I x,b1 +Ox,t

= 0 −6.545 10−7 −0.1 +0 −1.309 10−6 +0 +0

which is equal to -0.1000019635, and its upper bound:

xc +Ox,a +Ox,x0 +Ox,y0 +Ox,θ0 +I x,b1
+Ox,t

= 0 +6.545 10−7 +0.1 0 +1.309 10−6 −0 +0.505

which is equal to 0.6050019635. Therefore the outer-approximation for x is equal to
[−0.1000019635, 0.6050019635].
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Generalized quantified reachability The case of scalar functions f : Rp → R

Dubbins example (II)

Compute R∃∀∃:

∃a ∈ [−0.01, 0.01], ∃x0 ∈ [−0.1, 0.1], ∃y0 ∈ [−0.1, 0.1],

∃θ0 ∈ [−0.01, 0.01], ∀b1 ∈ [−0.01, 0.01], ∃t ∈ [0, 0.5],

z = ϕ(t; x0, y0, θ0, a, b1)

And...

for y the inner-approximation [−0.1, 0.1] and over-approximation
[0.1076309, 0.1076309],

and for θ the inner-approximation [−0.01, 0.01] and over-approximation
[−0.02, 0.02].

Very close to results obtained by quantifier elimination (Mathematica), here with a much
smaller complexity.
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Generalized quantified reachability Vector valued, general functions f : Rp → Rn

Problematic

Example

Inner approximate R∀∃∀∃(f ) = {z | ∀x1, ∃x2, ∃x3, ∀x4, ∃x5, ∃x6, z = f (x)}?
Outer-approximation of each component, separately, will give an
outer-approximation of R∀∃∀∃(f )

But not for the inner-approximation!

Idea, for ”joint” inner-approximation

Conjunction of quantified formulas for each component if no variable is existentially
quantified for several components.

Transform the quantified formula by strengthening them for that objective

For example:

∀x1, ∀x2, ∃x3 , ∀x4, ∀x5, ∃x6 , z1 = f1(x1, x2, x3, x4, x5, x6)

∀x1, ∀x3, ∃x2 , ∀x4, ∀x6, ∃x5 , z2 = f2(x1, x2, x3, x4, x5, x6)
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Generalized quantified reachability Vector valued, general functions f : Rp → Rn

General theorem

More formally... and I am not going to go through this!

Let f : Ru → Rm be an elementary function and πi : {k2i + 1, . . . , k2i+1} → {1, . . . ,m}
for i = 1, . . . , n. Let us note, for all i ∈ {1, . . . n}, j ∈ {1, . . . ,m}
J i
E ,zj

= {l ∈ {k2i + 1, . . . , k2i+1}, πi (l) = j} and J i
A,zj

= {k2i−1 + 1, . . . , k2i} \ JE ,zi .
Consider the following m quantified problems, j ∈ {1, . . . ,m}:

∀zj ∈ z j , (∀x l ∈ [−1, 1])l∈J1
A,zj

, (∃x l ∈ [−1, 1])l∈J1
E,zj

, . . .

(∀x l ∈ [−1, 1])l∈Jn
A,zj
, (∃xj ∈ [−1, 1])l∈Jn

E,zj
, zi = fi (x1, . . . , xk2n )

Then z = z1 × z2 × . . .× zn, if non-empty, is an inner-approximation of Rp(f ).
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Generalized quantified reachability Vector valued, general functions f : Rp → Rn

Example

Consider f = (f1, f2) : R4 → R2:

f1(x1, x2, x3, x4) = 2 + 2x1 + x2 + 3x3 + x4

f2(x1, x2, x3, x4) = −1− x1 − x2 + x3 + 5x4

And compute:

R∃∀∃(f ) = {z ∈ R2|∃x1 ∈ [−1, 1], ∀x2 ∈ [−1, 1], ∃x3 ∈ [−1, 1],

∃x4 ∈ [−1, 1], z = f (x1, x2, x3, x4)}

Same calculation as before, 1 component at a time: R∃∀∃(f ) ⊆ [−3, 7]× [−7, 5].

For the joint inner-approximation, interpret:

∃x1 , ∀x2, ∀x3, ∃x4 , z1 = f1(x1, x2, x3, x4)

∀x1, ∀x2, ∀x4, ∃x3 , z2 = f2(x1, x2, x3, x4)

Empty set for z1 already: contribution of the existentially quantified x4 is [−1, 1] whereas
the universally quantified x2 and x3 account for [−4, 4], which thus cannot be fully
compensated
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Generalized quantified reachability Vector valued, general functions f : Rp → Rn

Example

Consider f = (f1, f2) : R4 → R2:

f1(x1, x2, x3, x4) = 2 + 2x1 + x2 + 3x3 + x4

f2(x1, x2, x3, x4) = −1− x1 − x2 + x3 + 5x4

And compute:

R∃∀∃(f ) = {z ∈ R2|∃x1 ∈ [−1, 1], ∀x2 ∈ [−1, 1], ∃x3 ∈ [−1, 1],

∃x4 ∈ [−1, 1], z = f (x1, x2, x3, x4)}

For the joint inner-approximation, interpret:

∃x1 , ∀x2, ∀x4, ∃x3 , z1 = f1(x1, x2, x3, x4)

∀x1, ∀x2, ∀x3, ∃x4 , z2 = f2(x1, x2, x3, x4)

z1 = [ zc1 −||∆x1 ||+||∆x2,x4 || −||∆x3 ||, zc1 +||∆x1 || −||∆x2,x4 || +||∆x3 ||]
= [ 2 −2 +1 + 1 −3, 2 +2 −1− 1 +3] = [−1, 5]
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Generalized quantified reachability Vector valued, general functions f : Rp → Rn

Example

Consider f = (f1, f2) : R4 → R2:

f1(x1, x2, x3, x4) = 2 + 2x1 + x2 + 3x3 + x4

f2(x1, x2, x3, x4) = −1− x1 − x2 + x3 + 5x4

And compute:

R∃∀∃(f ) = {z ∈ R2|∃x1 ∈ [−1, 1], ∀x2 ∈ [−1, 1], ∃x3 ∈ [−1, 1],

∃x4 ∈ [−1, 1], z = f (x1, x2, x3, x4)}

For the joint inner-approximation, interpret:

∃x1 , ∀x2, ∀x4, ∃x3 , z1 = f1(x1, x2, x3, x4)

∀x1, ∀x2, ∀x3, ∃x4 , z2 = f2(x1, x2, x3, x4)

z2 = [ zc2 +||∆x1,x2,x4 || −||∆x3 ||, zc1 −||∆x1,x2,x4 || +||∆x3 ||]
= [ −1 +1 + 1 + 1 −5, −1 −1− 1− 1 +5] = [−3, 1]

Hence [−1, 5]× [−3, 1] ⊆ R∃∀∃(f ) ⊆ [−3, 7]× [−7, 5].
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Generalized quantified reachability Vector valued, general functions f : Rp → Rn

Example, in picture

f1(x1, x2, x3, x4) = 2 + 2x1 + x2 + 3x3 + x4

f2(x1, x2, x3, x4) = −1− x1 − x2 + x3 + 5x4

R∃∀∃(f ) = {z ∈ R2|∃x1, ∀x2, ∃x3, ∃x4, z = f (x1, x2, x3, x4)}

z1

z2

z0

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

z12

z13

z14

z15

(some particular points of the image; inner and outer boxes [−1, 5]× [−3, 1] and
[−3, 7]× [−7, 5]; polyhedron lying in between is the exact robust image)

Eric Goubault, Sylvie Putot Analysis of dynamical systems Ecole polytechnique 86 / 90



Generalized quantified reachability Vector valued, general functions f : Rp → Rn

Last application: Dubbins!

Space relaxation

R∃∀∃(ϕ) = {(x , y , θ) | ∃a ∈ [−0.01, 0.01], ∃x0 ∈ [−0.1, 0.1],

∃y0 ∈ [−0.1, 0.1], ∃θ0 ∈ [−0.01, 0.01], ∀b1 ∈ [−0.01, 0.01],

∃t ∈ [0, 0.5], ∃δ2 ∈ [−1.309 10−4, 1.309 10−4], ∃δ3 ∈ [−0.005, 0.005],

(x , y , θ) = ϕ(t; x0, y0, θ0, a, b1) + (0, δ2, δ3)}

Outer-approximation

R∃∀∃(ϕ) ⊆ [−0.1000019635, 0.6050019635]×
[0.1077618, 0.1077618]× [−0.025, 0.025]
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Generalized quantified reachability Vector valued, general functions f : Rp → Rn

Last application: Dubbins!

R∃∀∃(ϕ) = {(x , y , θ) | ∃a ∈ [−0.01, 0.01], ∃x0 ∈ [−0.1, 0.1],

∃y0 ∈ [−0.1, 0.1], ∃θ0 ∈ [−0.01, 0.01], ∀b1 ∈ [−0.01, 0.01],

∃t ∈ [0, 0.5], ∃δ2 ∈ [−1.309 10−4, 1.309 10−4], ∃δ3 ∈ [−0.005, 0.005],

(x , y , θ) = ϕ(t; x0, y0, θ0, a, b1) + (0, δ2, δ3)}

For the inner-approximation, interpret:

∀a, ∀y0,∀θ0, ∃x0 , ∀b1, ∀δ2, ∀δ3, ∃t , x = ϕx(t; x0, y0, θ0, a, b1)

∀a, ∀x0,∀θ0, ∃y0 , ∀b1, ∀δ3, ∀t, ∃δ2 , y = ϕy (t; x0, y0, θ0, a, b1) + δ2

∀x0, ∀y0, ∃θ0, ∃a , ∀b1, ∀δ2, ∀t, ∃δ3 , θ = ϕθ(t; x0, y0, θ0, a, b1) + δ3

[−0.0949993455, 0.5899993275]× [−0.0925, 0.0925]× [−0.01, 0.01] ⊆ R∃∀∃(ϕ)

(timeout using quantifier elimination under Mathematica)
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Conclusion and future work
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Conclusion and future work

Conclusion and future work

Higher-order approximations for generalized quantified problems (there is already an
order 1 method, generalizing the order 0 method we presented)

Full application of generalized quantified problems to STL

General quantified problems and applications to viability

Larger classes of systems (hybrid/switched, DDEs as in CAV 2018, neural net
controllers as in CAV 2022 etc.)

Check out https://github.com/cosynus-lix/RINO !

Any questions?

{Eric.Goubault,Sylvie.Putot}@polytechnique.edu
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