Finding exact linear reductions of dynamical models

Alexander Demin, Elizaveta Demitraki, and Gleb Pogudin

March 30, 2023

HSE University

Some things are smaller than they appear

Consider a dynamical system in three variables x_1 , x_2 , x_3 :

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2 \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases} ,$$

Consider a dynamical system in three variables x_1 , x_2 , x_3 :

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2 = (x_2 + 2x_3)^2, \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases}$$

Consider a dynamical system in three variables x_1 , x_2 , x_3 :

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2 = (x_2 + 2x_3)^2, \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases}$$

Reduction

For $y := x_2 + 2x_3$:

$$\dot{y} = \dot{x}_2 + 2\dot{x}_3 = 4x_3 + 2x_2 = 2(x_2 + 2x_3) = 2y.$$

Consider a dynamical system in three variables x_1 , x_2 , x_3 :

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2 = (x_2 + 2x_3)^2, \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases}$$

Reduction

For $y := x_2 + 2x_3$:

$$\dot{y} = \dot{x}_2 + 2\dot{x}_3 = 4x_3 + 2x_2 = 2(x_2 + 2x_3) = 2y.$$

Thus, x_1 and y themselves form a reduced dynamical system:

$$\begin{cases} \dot{y} = 2y, \\ \dot{x}_1 = y^2. \end{cases}$$

Reduction to dimension 2 from before:

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2, \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases} \longrightarrow \begin{cases} \dot{y} = 2y, \\ \dot{x}_1 = y^2. \end{cases}$$

Reduction to dimension 2 from before:

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2, \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases} \longrightarrow \begin{cases} \dot{y} = 2y, \\ \dot{x}_1 = y^2. \end{cases}$$

Can be further refined to a single self-consistent equation:

$$\begin{cases} \dot{y} = 2y, \\ \dot{x}_1 = y^2. \end{cases} \longrightarrow \dot{y} = 2y.$$

Reduction to dimension 2 from before:

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2, \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases} \longrightarrow \begin{cases} \dot{y} = 2y, \\ \dot{x}_1 = y^2. \end{cases}$$

Can be further refined to a single self-consistent equation:

$$\begin{cases} \dot{y} = 2y, \\ \dot{x}_1 = y^2. \end{cases} \longrightarrow \dot{y} = 2y.$$

In general, an infinite number of linear reductions is possible.

Output (one reduction): a linear transformation $\mathbf{y} = \mathbf{x}L, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_1, \ldots, \dot{y}_m$ can be written in terms of y_1, \ldots, y_m (as polynomial expressions)

Output (one reduction): a linear transformation $\mathbf{y} = \mathbf{x}L, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_1, \ldots, \dot{y}_m$ can be written in terms of y_1, \ldots, y_m (as polynomial expressions)

Example

We had $y = x_2 + 2x_3$, or, equivalently,

$$y = \mathbf{x}L = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{2} \end{pmatrix}$$

Output (one reduction): a linear transformation $\mathbf{y} = \mathbf{x}L, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_1, \ldots, \dot{y}_m$ can be written in terms of y_1, \ldots, y_m (as polynomial expressions)

Example

We had $y = x_2 + 2x_3$, or, equivalently,

$$y = \mathbf{x}L = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{2} \end{pmatrix}$$

Example

Any linear first integral is a linear reduction with $\dot{\mathbf{y}} = \mathbf{0}$

Output (one reduction): a linear transformation $\mathbf{y} = \mathbf{x}L, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_1, \ldots, \dot{y}_m$ can be written in terms of y_1, \ldots, y_m (as polynomial expressions)

Output (one reduction): a linear transformation $\mathbf{y} = \mathbf{x}L, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_1, \ldots, \dot{y}_m$ can be written in terms of y_1, \ldots, y_m (as polynomial expressions)

Output (many reductions): a sequence of linear transformations

$$\mathbf{y}_1 = \mathbf{x}L_1, \ \ldots, \ \mathbf{y}_\ell = \mathbf{x}L_\ell$$

where each $\mathbf{y}_i = \mathbf{x}L_i$ is a reduction, $\mathbf{0} < m_1 < \ldots < m_\ell < n$, and $L_{i-1} = L_i A_i$ for some A_i .

Output (one reduction): a linear transformation $\mathbf{y} = \mathbf{x}L, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_1, \ldots, \dot{y}_m$ can be written in terms of y_1, \ldots, y_m (as polynomial expressions)

Output (many reductions): a sequence of linear transformations

$$\mathbf{y}_1 = \mathbf{x}L_1, \ \ldots, \ \mathbf{y}_\ell = \mathbf{x}L_\ell$$

where each $\mathbf{y}_i = \mathbf{x}L_i$ is a reduction, $\mathbf{0} < m_1 < \ldots < m_\ell < n$, and $L_{i-1} = L_iA_i$ for some A_i .

Such sequence is called a chain of reductions and has finite length

Model of cell death, Schlieman et al. (2011)

What is this about?

Model of cell death, Schlieman et al. (2011)

What is this about?

• Two proteins, A20 and FLIP

Model of cell death, Schlieman et al. (2011)

What is this about?

- Two proteins, A20 and FLIP
- The corresponding mRNAs, A20 mRNA and FLIP mRNA

Model of cell death, Schlieman et al. (2011)

What is this about?

- Two proteins, A20 and FLIP
- The corresponding mRNAs, A20 mRNA and FLIP mRNA
- Nuclear factor NFkB, 47 species in total

Model of cell death, Schlieman et al. (2011)

What is this about?

- Two proteins, A20 and FLIP
- The corresponding mRNAs, A20 mRNA and FLIP mRNA
- Nuclear factor NFkB, 47 species in total

A possible reduction

$$\begin{cases} y_1 = \frac{k_6}{k_1} [A20] - \frac{k_5}{k_3} [FLIP], \\ y_2 = k_6 [A20 \ mRNA] - k_5 [FLIP \ mRNA] \end{cases}$$

with the corresponding system

$$\begin{cases} \dot{y}_1 = y_2 + \frac{k_2 k_6}{k_1} - \frac{k_4 k_5}{k_3}, \\ \dot{y}_2 = 0 \end{cases}$$

Model of cell death, Schlieman et al. (2011)

What is this about?

- Two proteins, A20 and FLIP
- The corresponding mRNAs, A20 mRNA and FLIP mRNA
- Nuclear factor NFkB, 47 species in total

Plus 16 other reductions (!)

A possible reduction

$$\begin{cases} y_1 = \frac{k_6}{k_1} [A20] - \frac{k_5}{k_3} [FLIP], \\ y_2 = k_6 [A20 \ mRNA] - k_5 [FLIP \ mRNA] \end{cases}$$

with the corresponding system

$$\begin{cases} \dot{y}_1 = y_2 + \frac{k_2 k_6}{k_1} - \frac{k_4 k_5}{k_3}, \\ \dot{y}_2 = 0 \end{cases}$$

Approach via Jacobians (on this later!), specific examples

- Li and Rabitz (1989, 1991):
 - Approach via Jacobians (on this later!), specific examples
- Cardelli, Tribastone, Tschaikowski, Vandin (2017):
 Fast algorithm with restriction: y₁,..., y_m are sums of disjoint subsets of x₁,..., x_n

Approach via Jacobians (on this later!), specific examples

• Cardelli, Tribastone, Tschaikowski, Vandin (2017): Fast algorithm with restriction: y_1, \ldots, y_m are sums of disjoint subsets of x_1, \ldots, x_n $y_1 = \frac{k_6}{k_1} [A20] - \frac{k_5}{k_2} [FLIP]$

Approach via Jacobians (on this later!), specific examples

• Cardelli, Tribastone, Tschaikowski, Vandin (2017): Fast algorithm with restriction: y_1, \ldots, y_m are sums of disjoint subsets of x_1, \ldots, x_n $y_1 = \frac{k_6}{k_1} [A20] - \frac{k_5}{k_2} [FLIP] \longrightarrow \text{not OK}$

Approach via Jacobians (on this later!), specific examples

- Cardelli, Tribastone, Tschaikowski, Vandin (2017): Fast algorithm with restriction: y_1, \ldots, y_m are sums of disjoint subsets of x_1, \ldots, x_n $y_1 = \frac{k_6}{k_1} [A20] - \frac{k_5}{k_2} [FLIP] \longrightarrow \text{not OK}$
- Perez Verona, Ovchinnikov, Pogudin, Tribastone (2020): Also really fast, but needs a clue: a part of the desired reduction must be given in the input

Approach via Jacobians (on this later!), specific examples

- Cardelli, Tribastone, Tschaikowski, Vandin (2017): Fast algorithm with restriction: y_1, \ldots, y_m are sums of disjoint subsets of x_1, \ldots, x_n $y_1 = \frac{k_6}{k_1} [A20] - \frac{k_5}{k_2} [FLIP] \longrightarrow \text{not OK}$
- Perez Verona, Ovchinnikov, Pogudin, Tribastone (2020): Also really fast, but needs a clue: a part of the desired reduction must be given in the input

Focus on finding a single reduction subject to some constraints \longrightarrow won't autonomously find reductions from our examples

Our results

We present an algorithm that finds a chain of exact linear reductions without restriction on the coefficients.

The chain will have the maximal possible length.

Reaction network (enzyme deactivation) $E + S \iff ES \iff E + P$ \downarrow $E^* + S$ $E \iff E^*$

Reaction network (enzyme deactivation) $E + S \iff ES \iff E + P$ \downarrow $E^* + S$ $E \iff E^*$

Corresponding ODE system:

$$\begin{cases} [\dot{E}] = 2[ES] + [E^*] - [E][S] - [E][P] - [E], \\ [\dot{S}] = 2[ES] - [E][S], \\ [\dot{P}] = [ES] - [E][P], \\ [\dot{ES}] = [E][S] + [E][P] - 3[ES], \\ [\dot{E^*}] = [E] + [ES] - [E^*] \end{cases}$$

Reaction network (enzyme deactivation) $E + S \iff ES \iff E + P$ \downarrow $E^* + S$ $E \iff E^*$

Corresponding ODE system:

$$\begin{aligned} [\dot{E}] &= 2[ES] + [E^*] - [E][S] - [E][P] - [E], \\ [\dot{S}] &= 2[ES] - [E][S], \\ [\dot{P}] &= [ES] - [E][P], \\ [\dot{ES}] &= [E][S] + [E][P] - 3[ES], \\ [\dot{E^*}] &= [E] + [ES] - [E^*] \end{aligned}$$

1. Reduce just a bit

$$\begin{cases} y_1 = E, \\ y_2 = S + P, \\ y_3 = ES, \\ y_4 = E^* \end{cases}$$

Reaction network (enzyme deactivation) $E + S \iff ES \iff E + P$ \downarrow $E^* + S$ $E \iff E^*$

Corresponding ODE system:

$$\begin{aligned} [\dot{E}] &= 2[ES] + [E^*] - [E][S] - [E][P] - [E], \\ [\dot{S}] &= 2[ES] - [E][S], \\ [\dot{P}] &= [ES] - [E][P], \\ [\dot{ES}] &= [E][S] + [E][P] - 3[ES], \\ [\dot{E^*}] &= [E] + [ES] - [E^*] \end{aligned}$$

1. Reduce just a bit

$$\begin{cases} y_1 = E, \\ y_2 = S + P, \\ y_3 = ES, \\ y_4 = E^* \end{cases}$$

2. Zoom in

$$\begin{cases} y_1 = E + ES, \\ y_2 = S + P + ES, \\ y_3 = E^* \end{cases}$$

Reaction network (enzyme deactivation) $E + S \iff ES \iff E + P$ \downarrow $E^* + S$ $E \iff E^*$

Corresponding ODE system:

$$\begin{aligned} [\dot{E}] &= 2[ES] + [E^*] - [E][S] - [E][P] - [E], \\ [\dot{S}] &= 2[ES] - [E][S], \\ [\dot{P}] &= [ES] - [E][P], \\ [\dot{ES}] &= [E][S] + [E][P] - 3[ES], \\ [\dot{E^*}] &= [E] + [ES] - [E^*] \end{aligned}$$

1. Reduce just a bit

$$\begin{cases} y_1 = E, \\ y_2 = S + P, \\ y_3 = ES, \\ y_4 = E^* \end{cases}$$

2. Zoom in

$$\begin{cases} y_1 = E + ES, \\ y_2 = S + P + ES, \\ y_3 = E^* \end{cases}$$

3. And zoom in: $y = E + ES - E^*$ ($\dot{y} = -2y$)

System $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with polynomial **f**. Let $J(\mathbf{x})$ be the Jacobian of **f**.

System $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with polynomial **f**. Let $J(\mathbf{x})$ be the Jacobian of **f**.

Li and Rabitz (1991): write $J(\mathbf{x}) = \sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$

System $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with polynomial **f**. Let $J(\mathbf{x})$ be the Jacobian of **f**.

Li and Rabitz (1991): write J(\mathbf{x}) = $\sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2 \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases}$$

System $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with polynomial **f**. Let $J(\mathbf{x})$ be the Jacobian of **f**.

Li and Rabitz (1991): write $J(\mathbf{x}) = \sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2, \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases}$$
$$I(\mathbf{x}) = \begin{pmatrix} 0 & 2x_2 + 4x_3 & 8x_3 + 4x_2 \\ -2 & 0 & 4 \\ 1 & 1 & 0 \end{pmatrix}$$

System $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f} . Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f} . Li and Rabitz (1991): write $J(\mathbf{x}) = \sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2, \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases} \qquad \qquad J(\mathbf{x}) = \begin{pmatrix} 0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_2 + \\ \begin{pmatrix} 0 & 4 & 8 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 4 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_3 + \begin{pmatrix} 0 & 0 & 0 \\ -2 & 0 & 4 \\ 1 & 1 & 0 \end{pmatrix}$$

System $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f} . Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f} . Li and Rabitz (1991): write $J(\mathbf{x}) = \sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2, \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases} \qquad \qquad J(\mathbf{x}) = \begin{pmatrix} 0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_2 + \\ \begin{pmatrix} 0 & 4 & 8 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 4 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_3 + \begin{pmatrix} 0 & 0 & 0 \\ -2 & 0 & 4 \\ 1 & 1 & 0 \end{pmatrix}$$

System $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f} . Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f} . Li and Rabitz (1991): write $J(\mathbf{x}) = \sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$

$$\begin{cases} \dot{x}_1 = x_2^2 + 4x_2x_3 + 4x_3^2, \\ \dot{x}_2 = 4x_3 - 2x_1, \\ \dot{x}_3 = x_1 + x_2. \end{cases} \qquad \qquad J(\mathbf{x}) = \begin{pmatrix} 0 & 2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_2 + \\ \begin{pmatrix} 0 & 4 & 8 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 4 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X_3 + \begin{pmatrix} 0 & 0 & 0 \\ -2 & 0 & 4 \\ 1 & 1 & 0 \end{pmatrix}$$

System $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f} . Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f} . Li and Rabitz (1991): write $J(\mathbf{x}) = \sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$

Example

Proposition

For linear forms y_1, \ldots, y_m in **x**, the following are equivalent:

- $\dot{y}_1, \ldots, \dot{y}_m$ are polynomials in y_1, \ldots, y_m ;
- the linear span of $y_1, ..., y_m$ is invariant under M_{λ} for every $1 \le i \le m, \lambda \in \Lambda$.

Long story short. The problem is reduced to **Input:** A list of square matrices M_{λ} , $\lambda \in \Lambda$ **Output:** A chain of subspaces *invariant* under the matrices **Long story short.** The problem is reduced to **Input:** A list of square matrices M_{λ} , $\lambda \in \Lambda$ **Output:** A chain of subspaces *invariant* under the matrices **Idea:** an invariant subspace if exists, *and then divide-and-conquer*

Input: A list of square matrices M_{λ} , $\lambda \in \Lambda$

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

$$M = \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & 0 & c \\ 0 & 0 & c & 0 \end{pmatrix}$$

Input: A list of square matrices M_{λ} , $\lambda \in \Lambda$

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

$$M = \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & 0 & c \\ 0 & 0 & c & 0 \end{pmatrix}$$

$$V = \langle e_1, e_2 \rangle$$
 is invariant.

Input: A list of square matrices M_{λ} , $\lambda \in \Lambda$

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

$$M = \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & 0 & c \\ 0 & 0 & c & 0 \end{pmatrix}$$

$$V = \langle e_1, e_2 \rangle$$
 is invariant.

Long story short. The problem is reduced to **Input:** A list of square matrices M_{λ} , $\lambda \in \Lambda$ **Output:** A chain of subspaces *invariant* under the matrices **Idea:** an invariant subspace if exists, *and then divide-and-conquer*

Example

$$M = \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & 0 & c \\ 0 & 0 & c & 0 \end{pmatrix}$$

Input: A list of square matrices M_{λ} , $\lambda \in \Lambda$

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

$$M = \begin{pmatrix} a & b & \circ & \circ \\ \circ & a & \circ & \circ \\ \circ & \circ & \circ & c \\ \circ & \circ & c & \circ \end{pmatrix}$$
$$\mathbf{M}|_{\mathbf{V}} = \begin{pmatrix} a & b \\ \circ & a \end{pmatrix},$$

Input: A list of square matrices M_{λ} , $\lambda \in \Lambda$

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

$$M = \begin{pmatrix} a & b & \circ & \circ \\ \circ & a & \circ & \circ \\ \circ & \circ & \circ & c \\ \circ & \circ & c & \circ \end{pmatrix}$$
$$M|_{V} = \begin{pmatrix} a & b \\ \circ & a \end{pmatrix}, M/V = \begin{pmatrix} \circ & c \\ c & \circ \end{pmatrix}$$

Input: A list of square matrices M_{λ} , $\lambda \in \Lambda$

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

$$M = \begin{pmatrix} a & b & \circ & \circ \\ \circ & a & \circ & \circ \\ \circ & \circ & \circ & c \\ \circ & \circ & c & \circ \end{pmatrix}$$
$$M|_{V} = \begin{pmatrix} a & b \\ \circ & a \end{pmatrix}, M/V = \begin{pmatrix} \circ & c \\ c & \circ \end{pmatrix}$$

Input: A list of square matrices M_{λ} , $\lambda \in \Lambda$

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

$$M = \begin{pmatrix} a & b & \circ & \circ \\ \circ & a & \circ & \circ \\ \circ & \circ & \circ & c \\ \circ & \circ & c & \circ \end{pmatrix}$$
$$M|_{V} = \begin{pmatrix} a & b \\ \circ & a \end{pmatrix}, M/V = \begin{pmatrix} \circ & c \\ c & \circ \end{pmatrix}$$

 $V = \langle e_1, e_2 \rangle$ is invariant. Restrict and factor by V

Apply recursively

1. Find a linear basis of the algebra $\langle M_\lambda \rangle$: multiply matrices by each other until nothing new comes out

- 1. Find a linear basis of the algebra $\langle M_\lambda \rangle$: multiply matrices by each other until nothing new comes out
- 2. Apply the theory of finite-dimensional matrix algebras to find an invariant subspace

Specifics

- 1. Find a linear basis of the algebra $\langle M_\lambda \rangle$: multiply matrices by each other until nothing new comes out
- 2. Apply the theory of finite-dimensional matrix algebras to find an invariant subspace

Specifics

• many matrices, moderate dimension (hundreds)

- 1. Find a linear basis of the algebra $\langle M_\lambda \rangle$: multiply matrices by each other until nothing new comes out
- 2. Apply the theory of finite-dimensional matrix algebras to find an invariant subspace

Specifics

- many matrices, moderate dimension (hundreds)
- but the input is sparse
- and the output is usually very simple

Package ExactODEReduction.jl, in the Julia language

https://github.com/x3042/ExactODEReduction.jl

Running on models from BioModels repository:

Models info		Reductions		Runtime
Dimension	# Models	# Total	# Non-equivalent	Average
2 - 9	44	4.02	1.39	0.6 s
10 - 19	41	8.15	2.61	0.21 S
20 - 29	46	9.65	2.13	0.44 S
30 - 39	17	19.41	2.71	1.74 S
40 - 59	25	29.08	6.08	4.58 s
60 - 79	20	37.25	6.95	34.57 s
80 - 99	11	42.91	7.09	96.38 s
100 - 133	4	89.0	21.5	202.52 S

• Sparsity-aware algorithm for finding a basis of an algebra

- Sparsity-aware algorithm for finding a basis of an algebra
- Working over the rationals and postponing passing to the extension as much as possible

- Sparsity-aware algorithm for finding a basis of an algebra
- Working over the rationals and postponing passing to the extension as much as possible
- Modular computation to avoid expression swell

- Sparsity-aware algorithm for finding a basis of an algebra
- Working over the rationals and postponing passing to the extension as much as possible
- Modular computation to avoid expression swell

Features:

- Linear transformations are exact
- Improved interpretability
- Compatibility with the Julia ecosystem

- Sparsity-aware algorithm for finding a basis of an algebra
- Working over the rationals and postponing passing to the extension as much as possible
- Modular computation to avoid expression swell

Features:

- Linear transformations are exact
- Improved interpretability
- Compatibility with the Julia ecosystem

And now software demo

1. Exact reductions as a preprocessing step, e.g., for checking structural identifiability

- 1. Exact reductions as a preprocessing step, e.g., for checking structural identifiability
- 2. Exact reductions as a way to verify the accuracy of numerical simulations

- 1. Exact reductions as a preprocessing step, e.g., for checking structural identifiability
- 2. Exact reductions as a way to verify the accuracy of numerical simulations
- 3. Exact reductions for other types of structured dynamical systems, such as, e.g., *graph-based models*

Thank you !

..and my supervisors