Finding exact linear reductions of dynamical models

Alexander Demin, Elizaveta Demitraki, and Gleb Pogudin
March 30, 2023
HSE University

Some things are smaller than they appear

Exact reduction: a toy example

Setup

Consider a dynamical system in three variables x_{1}, x_{2}, x_{3} :

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2} \\
\dot{x}_{2}=4 x_{3}-2 x_{1}, \\
\dot{x}_{3}=x_{1}+x_{2} .
\end{array}\right.
$$

Exact reduction: a toy example

Setup

Consider a dynamical system in three variables x_{1}, x_{2}, x_{3} :

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}=\left(x_{2}+2 x_{3}\right)^{2}, \\
\dot{x}_{2}=4 x_{3}-2 x_{1}, \\
\dot{x}_{3}=x_{1}+x_{2} .
\end{array}\right.
$$

Exact reduction: a toy example

Setup

Consider a dynamical system in three variables x_{1}, x_{2}, x_{3} :

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}=\left(x_{2}+2 x_{3}\right)^{2} \\
\dot{x}_{2}=4 x_{3}-2 x_{1}, \\
\dot{x}_{3}=x_{1}+x_{2}
\end{array}\right.
$$

Reduction

For $y:=x_{2}+2 x_{3}$:

$$
\dot{y}=\dot{x}_{2}+2 \dot{x}_{3}=4 x_{3}+2 x_{2}=2\left(x_{2}+2 x_{3}\right)=2 y .
$$

Exact reduction: a toy example

Setup

Consider a dynamical system in three variables x_{1}, x_{2}, x_{3} :

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}=\left(x_{2}+2 x_{3}\right)^{2} \\
\dot{x}_{2}=4 x_{3}-2 x_{1} \\
\dot{x}_{3}=x_{1}+x_{2}
\end{array}\right.
$$

Reduction

For $y:=x_{2}+2 x_{3}$:

$$
\dot{y}=\dot{x}_{2}+2 \dot{x}_{3}=4 x_{3}+2 x_{2}=2\left(x_{2}+2 x_{3}\right)=2 y
$$

Thus, x_{1} and y themselves form a reduced dynamical system:

$$
\left\{\begin{array}{l}
\dot{y}=2 y \\
\dot{x}_{1}=y^{2}
\end{array}\right.
$$

Exact reduction: more than one

Reduction to dimension 2 from before:

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = x _ { 2 } ^ { 2 } + 4 x _ { 2 } x _ { 3 } + 4 x _ { 3 } ^ { 2 } , } \\
{ \dot { x } _ { 2 } = 4 x _ { 3 } - 2 x _ { 1 } , } \\
{ \dot { x } _ { 3 } = x _ { 1 } + x _ { 2 } . }
\end{array} \longrightarrow \left\{\begin{array}{l}
\dot{y}=2 y, \\
\dot{x}_{1}=y^{2} .
\end{array}\right.\right.
$$

Exact reduction: more than one

Reduction to dimension 2 from before:

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = x _ { 2 } ^ { 2 } + 4 x _ { 2 } x _ { 3 } + 4 x _ { 3 } ^ { 2 } , } \\
{ \dot { x } _ { 2 } = 4 x _ { 3 } - 2 x _ { 1 } , } \\
{ \dot { x } _ { 3 } = x _ { 1 } + x _ { 2 } . }
\end{array} \longrightarrow \left\{\begin{array}{l}
\dot{y}=2 y, \\
\dot{x}_{1}=y^{2}
\end{array}\right.\right.
$$

Can be further refined to a single self-consistent equation:

$$
\left\{\begin{array}{l}
\dot{y}=2 y, \\
\dot{x}_{1}=y^{2} .
\end{array} \quad \longrightarrow \dot{y}=2 y .\right.
$$

Exact reduction: more than one

Reduction to dimension 2 from before:

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = x _ { 2 } ^ { 2 } + 4 x _ { 2 } x _ { 3 } + 4 x _ { 3 } ^ { 2 } , } \\
{ \dot { x } _ { 2 } = 4 x _ { 3 } - 2 x _ { 1 } , } \\
{ \dot { x } _ { 3 } = x _ { 1 } + x _ { 2 } . }
\end{array} \longrightarrow \left\{\begin{array}{l}
\dot{y}=2 y, \\
\dot{x}_{1}=y^{2} .
\end{array}\right.\right.
$$

Can be further refined to a single self-consistent equation:

$$
\left\{\begin{array}{l}
\dot{y}=2 y, \\
\dot{x}_{1}=y^{2} .
\end{array} \quad \longrightarrow \dot{y}=2 y .\right.
$$

In general, an infinite number of linear reductions is possible.

Exact reduction: formal statement

Input: a system of ODEs $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$
(f - polynomial functions)

Exact reduction: formal statement

Input: a system of ODEs $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$
(f - polynomial functions)
Output (one reduction): a linear transformation $\mathbf{y}=\mathbf{x L}, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_{1}, \ldots, \dot{y}_{m}$ can be written in terms of y_{1}, \ldots, y_{m} (as polynomial expressions)

Exact reduction: formal statement

Input: a system of ODEs $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$
(\mathbf{f} - polynomial functions)
Output (one reduction): a linear transformation $\mathbf{y}=\mathbf{x} L, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_{1}, \ldots, \dot{y}_{m}$ can be written in terms of y_{1}, \ldots, y_{m} (as polynomial expressions)

Example

We had $y=x_{2}+2 x_{3}$, or, equivalently,

$$
y=\mathbf{x} L=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)
$$

Exact reduction: formal statement

Input: a system of ODEs $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$
(\mathbf{f} - polynomial functions)
Output (one reduction): a linear transformation $\mathbf{y}=\mathbf{x} L, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_{1}, \ldots, \dot{y}_{m}$ can be written in terms of y_{1}, \ldots, y_{m} (as polynomial expressions)

Example

We had $y=x_{2}+2 x_{3}$, or, equivalently,

$$
y=\mathbf{x} L=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)
$$

Example

Any linear first integral is a linear reduction with $\dot{\mathbf{y}}=0$

Exact reduction: formal statement

Input: a system of ODEs $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$
(\mathbf{f} - polynomial functions)
Output (one reduction): a linear transformation $\mathbf{y}=\mathbf{x} L, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_{1}, \ldots, \dot{y}_{m}$ can be written in terms of y_{1}, \ldots, y_{m} (as polynomial expressions)

Exact reduction: formal statement

Input: a system of ODEs $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$
(f - polynomial functions)
Output (one reduction): a linear transformation $\mathbf{y}=\mathbf{x} L, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_{1}, \ldots, \dot{y}_{m}$ can be written in terms of y_{1}, \ldots, y_{m} (as polynomial expressions)

Output (many reductions): a sequence of linear transformations

$$
\mathbf{y}_{1}=\mathbf{x} L_{1}, \ldots, \mathbf{y}_{\ell}=\mathbf{x} L_{\ell}
$$

where each $\mathbf{y}_{i}=\mathbf{x} L_{i}$ is a reduction, $0<m_{1}<\ldots<m_{\ell}<n$, and $L_{i-1}=L_{i} A_{i}$ for some A_{i}.

Exact reduction: formal statement

Input: a system of ODEs $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$
(f - polynomial functions)
Output (one reduction): a linear transformation $\mathbf{y}=\mathbf{x} L, L \in \mathbb{C}^{n \times m}$ such that $\dot{y}_{1}, \ldots, \dot{y}_{m}$ can be written in terms of y_{1}, \ldots, y_{m} (as polynomial expressions)

Output (many reductions): a sequence of linear transformations

$$
\mathbf{y}_{1}=\mathbf{x} L_{1}, \ldots, \mathbf{y}_{\ell}=\mathbf{x} L_{\ell}
$$

where each $\mathbf{y}_{i}=\mathbf{x} L_{i}$ is a reduction, $0<m_{1}<\ldots<m_{\ell}<n$, and $L_{i-1}=L_{i} A_{i}$ for some A_{i}.

Such sequence is called a chain of reductions and has finite length

Real-world example

Model of cell death, Schlieman et al. (2011)

What is this about?

Real-world example

Model of cell death, Schlieman et al. (2011)

What is this about?

- Two proteins, A2O and FLIP

Real-world example

Model of cell death, Schlieman et al. (2011)

What is this about?

- Two proteins, A20 and FLIP
- The corresponding mRNAs, A20 mRNA and FLIP mRNA

Real-world example

Model of cell death, Schlieman et al. (2011)

What is this about?

- Two proteins, A20 and FLIP
- The corresponding mRNAs, A20 mRNA and FLIP mRNA
- Nuclear factor NFkB, 47 species in total

Real-world example

Model of cell death, Schlieman et al. (2011)

What is this about?

- Two proteins, A2O and FLIP
- The corresponding mRNAs, A20 mRNA and FLIP mRNA
- Nuclear factor NFkB, 47 species in total

A possible reduction

$$
\left\{\begin{array}{l}
y_{1}=\frac{k_{6}}{k_{1}}[\text { A2O }]-\frac{k_{5}}{k_{3}}[\text { FLIP }], \\
y_{2}=k_{6}[\text { A2O mRNA }]-k_{5}[\text { FLIP mRNA }]
\end{array}\right.
$$

with the corresponding system

$$
\left\{\begin{array}{l}
\dot{y}_{1}=y_{2}+\frac{k_{2} k_{6}}{k_{1}}-\frac{k_{4} k_{5}}{k_{3}}, \\
\dot{y}_{2}=0
\end{array}\right.
$$

Real-world example

Model of cell death, Schlieman et al. (2011)

What is this about?

- Two proteins, A20 and FLIP
- The corresponding mRNAs, A20 mRNA and FLIP mRNA
- Nuclear factor NFkB, 47 species in total

Plus 16 other reductions (!)

A possible reduction

$$
\left\{\begin{array}{l}
y_{1}=\frac{k_{6}}{k_{1}}[\text { A2O }]-\frac{k_{5}}{k_{3}}[\text { FLIP }] \\
y_{2}=k_{6}[\text { A2o mRNA }]-k_{5}[\text { FLIP mRNA }]
\end{array}\right.
$$

with the corresponding system

$$
\left\{\begin{array}{l}
\dot{y}_{1}=y_{2}+\frac{k_{2} k_{6}}{k_{1}}-\frac{k_{4} k_{5}}{k_{3}} \\
\dot{y}_{2}=0
\end{array}\right.
$$

Prior results

- Li and Rabitz (1989, 1991):

Approach via Jacobians (on this later!), specific examples

Prior results

- Li and Rabitz (1989, 1991):

Approach via Jacobians (on this later!), specific examples

- Cardelli, Tribastone, Tschaikowski, Vandin (2017):

Fast algorithm with restriction: y_{1}, \ldots, y_{m} are sums of disjoint subsets of x_{1}, \ldots, x_{n}

Prior results

- Li and Rabitz (1989, 1991):

Approach via Jacobians (on this later!), specific examples

- Cardelli, Tribastone, Tschaikowski, Vandin (2017):

Fast algorithm with restriction: y_{1}, \ldots, y_{m} are sums of disjoint subsets of x_{1}, \ldots, x_{n}
$y_{1}=\frac{k_{6}}{k_{1}}[A 20]-\frac{k_{5}}{k_{3}}[F L I P]$

Prior results

- Li and Rabitz (1989, 1991):

Approach via Jacobians (on this later!), specific examples

- Cardelli, Tribastone, Tschaikowski, Vandin (2017):

Fast algorithm with restriction: y_{1}, \ldots, y_{m} are sums of disjoint subsets of x_{1}, \ldots, x_{n}
$y_{1}=\frac{k_{6}}{k_{1}}[$ A2O $]-\frac{k_{5}}{k_{3}}[$ FLIP $] \longrightarrow$ not OK

Prior results

- Li and Rabitz (1989, 1991):

Approach via Jacobians (on this later!), specific examples

- Cardelli, Tribastone, Tschaikowski, Vandin (2017):

Fast algorithm with restriction: y_{1}, \ldots, y_{m} are sums of disjoint subsets of x_{1}, \ldots, x_{n} $y_{1}=\frac{k_{6}}{k_{1}}[$ A2O $]-\frac{k_{5}}{k_{3}}[$ FLIP $] \longrightarrow$ not OK

- Perez Verona, Ovchinnikov, Pogudin, Tribastone (2020): Also really fast, but needs a clue: a part of the desired reduction must be given in the input

Prior results

- Li and Rabitz (1989, 1991): Approach via Jacobians (on this later!), specific examples
- Cardelli, Tribastone, Tschaikowski, Vandin (2017):

Fast algorithm with restriction: y_{1}, \ldots, y_{m} are sums of disjoint subsets of x_{1}, \ldots, x_{n}
$y_{1}=\frac{k_{6}}{k_{1}}[$ A2O $]-\frac{k_{5}}{k_{3}}[F L I P] \longrightarrow$ not OK

- Perez Verona, Ovchinnikov, Pogudin, Tribastone (2020): Also really fast, but needs a clue: a part of the desired reduction must be given in the input

Focus on finding a single reduction subject to some constraints
\longrightarrow won't autonomously find reductions from our examples

Our results

Our results

We present an algorithm that finds a chain of exact linear reductions without restriction on the coefficients.

The chain will have the maximal possible length.

Real-world example \#2

Reaction network
(enzyme deactivation)

$$
\begin{aligned}
& E+S \rightleftarrows E S \rightleftarrows \\
& \downarrow \\
& E^{*}+S \\
& \rightleftarrows E^{*}
\end{aligned}
$$

Real-world example \#2

Reaction network
(enzyme deactivation)

$$
\begin{aligned}
& E+S \rightleftarrows E S \rightleftarrows \\
& \downarrow \\
& E^{*}+S \\
& \rightleftarrows E^{*}
\end{aligned}
$$

Corresponding ODE system:

$$
\left\{\begin{array}{l}
{[\dot{E}]=2[E S]+\left[E^{*}\right]-[E][S]-[E][P]-[E],} \\
{[\dot{S}]=2[E S]-[E][S],} \\
{[\dot{P}]=[E S]-[E][P],} \\
{[\dot{E} S]=[E][S]+[E][P]-3[E S],} \\
{[\dot{E}]=[E]+[E S]-\left[E^{*}\right]}
\end{array}\right.
$$

Real-world example \#2

Reaction network
(enzyme deactivation)

$$
\begin{aligned}
& E+S \rightleftarrows E S \rightleftarrows \\
& \downarrow \\
& E^{*}+S \\
& E \nLeftarrow E^{*}
\end{aligned}
$$

Corresponding ODE system:

$$
\left\{\begin{array}{l}
{[\dot{E}]=2[E S]+\left[E^{*}\right]-[E][S]-[E][P]-[E],} \\
{[\dot{S}]=2[E S]-[E][S],} \\
{[\dot{P}]=[E S]-[E][P],} \\
{[\dot{E} S]=[E][S]+[E][P]-3[E S],} \\
{\left[E^{*}\right]=[E]+[E S]-\left[E^{*}\right]}
\end{array}\right.
$$

1. Reduce just a bit

$$
\left\{\begin{array}{l}
y_{1}=E, \\
y_{2}=S+P, \\
y_{3}=E S, \\
y_{4}=E^{*}
\end{array}\right.
$$

Real-world example \#2

Reaction network
(enzyme deactivation)

$$
\begin{aligned}
& E+S \rightleftarrows E S \rightleftarrows \\
& \downarrow \\
& E^{*}+S \\
& E \neq E^{*}
\end{aligned}
$$

Corresponding ODE system:

$$
\left\{\begin{array}{l}
{[\dot{E}]=2[E S]+\left[E^{*}\right]-[E][S]-[E][P]-[E],} \\
{[\dot{S}]=2[E S]-[E][S],} \\
{[\dot{P}]=[E S]-[E][P],} \\
{[\dot{E} S]=[E][S]+[E][P]-3[E S],} \\
{\left[E^{*}\right]=[E]+[E S]-\left[E^{*}\right]}
\end{array}\right.
$$

1. Reduce just a bit

$$
\left\{\begin{array}{l}
y_{1}=E, \\
y_{2}=S+P, \\
y_{3}=E S, \\
y_{4}=E^{*}
\end{array}\right.
$$

2. Zoom in

$$
\left\{\begin{array}{l}
y_{1}=E+E S, \\
y_{2}=S+P+E S, \\
y_{3}=E^{*}
\end{array}\right.
$$

Real-world example \#2

Reaction network
(enzyme deactivation)

$$
\begin{array}{rl}
E+S \rightleftarrows E S & E S \rightleftarrows E+P \\
\downarrow \\
E^{*}+S \\
& \rightleftarrows E^{*}
\end{array}
$$

Corresponding ODE system:

$$
\left\{\begin{array}{l}
{[\dot{E}]=2[E S]+\left[E^{*}\right]-[E][S]-[E][P]-[E],} \\
{[\dot{S}]=2[E S]-[E][S],} \\
{[\dot{P}]=[E S]-[E][P],} \\
{[\dot{E} S]=[E][S]+[E][P]-3[E S],} \\
{\left[E^{*}\right]=[E]+[E S]-\left[E^{*}\right]}
\end{array}\right.
$$

1. Reduce just a bit

$$
\left\{\begin{array}{l}
y_{1}=E, \\
y_{2}=S+P \\
y_{3}=E S, \\
y_{4}=E^{*}
\end{array}\right.
$$

2. Zoom in

$$
\left\{\begin{array}{l}
y_{1}=E+E S, \\
y_{2}=S+P+E S, \\
y_{3}=E^{*}
\end{array}\right.
$$

3. And zoom in: $y=E+E S-E^{*}$

$$
(\dot{y}=-2 y)
$$

Algorithm outline: existing tools

Preparation

System $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f}. Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f}.

Algorithm outline: existing tools

Preparation

System $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f}. Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f}.
Li and Rabitz (1991): write J(x) $=\sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$

Algorithm outline: existing tools

Preparation

System $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f}. Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f}.
Li and Rabitz (1991): write J $(\mathbf{x})=\sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$
Example

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}, \\
\dot{x}_{2}=4 x_{3}-2 x_{1}, \\
\dot{x}_{3}=x_{1}+x_{2} .
\end{array}\right.
$$

Algorithm outline: existing tools

Preparation

System $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f}. Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f}.
Li and Rabitz (1991): write J $(\mathbf{x})=\sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$
Example
$\left\{\begin{array}{l}\dot{x}_{1}=x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}, \\ \dot{x}_{2}=4 x_{3}-2 x_{1}, \\ \dot{x}_{3}=x_{1}+x_{2} .\end{array}\right.$
$J(\mathbf{x})=\left(\begin{array}{ccc}0 & 2 x_{2}+4 x_{3} & 8 x_{3}+4 x_{2} \\ -2 & 0 & 4 \\ 1 & 1 & 0\end{array}\right)$

Algorithm outline: existing tools

Preparation

System $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f}. Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f}.
Li and Rabitz (1991): write $J(\mathbf{x})=\sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$

Example

$$
\begin{array}{ll}
\begin{cases}\dot{x}_{1}=x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}, & J(\mathbf{x})=\left(\begin{array}{lll}
0 & 2 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) x_{2}+ \\
\dot{x}_{2}=4 x_{3}-2 x_{1}, \\
\dot{x}_{3}=x_{1}+x_{2} .\end{cases} & \left(\begin{array}{ccc}
0 & 4 & 8 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) x_{3}+\left(\begin{array}{ccc}
0 & 0 & 0 \\
-2 & 0 & 4 \\
1 & 1 & 0
\end{array}\right)
\end{array}
$$

Algorithm outline: existing tools

Preparation

System $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f}. Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f}.
Li and Rabitz (1991): write $J(\mathbf{x})=\sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$

Example

$$
\begin{array}{ll}
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}, \\
\dot{x}_{2}=4 x_{3}-2 x_{1},
\end{array}\right. & J(\mathbf{x})=\left(\begin{array}{lll}
0 & 2 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) x_{2}+ \\
\dot{x}_{3}=x_{1}+x_{2} .
\end{array}
$$

Algorithm outline: existing tools

Preparation

System $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f}. Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f}.
Li and Rabitz (1991): write $J(\mathbf{x})=\sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$

Example

$$
\begin{array}{ll}
\begin{cases}\dot{x}_{1}=x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}, & J(\mathbf{x})=\left(\begin{array}{lll}
0 & 2 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) x_{2}+ \\
\dot{x}_{2}=4 x_{3}-2 x_{1}, \\
\dot{x}_{3}=x_{1}+x_{2} .\end{cases} & \left(\begin{array}{ccc}
0 & 4 & 8 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) x_{3}+\left(\begin{array}{ccc}
0 & 0 & 0 \\
-2 & 0 & 4 \\
1 & 1 & 0
\end{array}\right)
\end{array}
$$

Algorithm outline: existing tools

Preparation

System $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})$ with polynomial \mathbf{f}. Let $J(\mathbf{x})$ be the Jacobian of \mathbf{f}.
Li and Rabitz (1991): write $J(\mathbf{x})=\sum_{\lambda \in \Lambda} M_{\lambda} \mathbf{x}^{\lambda}$
Example

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2}^{2}+4 x_{2} x_{3}+4 x_{3}^{2}, \\
\dot{x}_{2}=4 x_{3}-2 x_{1}, \\
\dot{x}_{3}=x_{1}+x_{2} . \\
\end{array} \quad J(\mathbf{x})=\left(\begin{array}{lll}
0 & 2 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) x_{2}+\right.
$$

$J(\mathbf{x})=\left(\begin{array}{ccc}0 & 2 x_{2}+4 x_{3} & 8 x_{3}+4 x_{2} \\ -2 & 0 & 4 \\ 1 & 1 & 0\end{array}\right) \quad\left(\begin{array}{lll}0 & 4 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) x_{3}+\left(\begin{array}{ccc}0 & 0 & 0 \\ -2 & 0 & 4 \\ 1 & 1 & 0\end{array}\right)$
Proposition
For linear forms y_{1}, \ldots, y_{m} in \mathbf{x}, the following are equivalent:

- $\dot{y}_{1}, \ldots, \dot{y}_{m}$ are polynomials in y_{1}, \ldots, y_{m};
- the linear span of y_{1}, \ldots, y_{m} is invariant under M_{λ} for every $1 \leq i \leq m, \lambda \in \Lambda$.

Algorithm outline: divide and conquer

Long story short. The problem is reduced to
Input: A list of square matrices $M_{\lambda}, \lambda \in \Lambda$
Output: A chain of subspaces invariant under the matrices

Algorithm outline: divide and conquer

Long story short. The problem is reduced to
Input: A list of square matrices $M_{\lambda}, \lambda \in \Lambda$
Output: A chain of subspaces invariant under the matrices
Idea: an invariant subspace if exists, and then divide-and-conquer

Algorithm outline: divide and conquer

Long story short. The problem is reduced to
Input: A list of square matrices $M_{\lambda}, \lambda \in \Lambda$
Output: A chain of subspaces invariant under the matrices
Idea: an invariant subspace if exists, and then divide-and-conquer
Example

$$
\boldsymbol{M}=\left(\begin{array}{llll}
a & b & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & 0 & c \\
0 & 0 & c & 0
\end{array}\right)
$$

Algorithm outline: divide and conquer

Long story short. The problem is reduced to
Input: A list of square matrices $M_{\lambda}, \lambda \in \Lambda$
Output: A chain of subspaces invariant under the matrices
Idea: an invariant subspace if exists, and then divide-and-conquer
Example

$$
M=\left(\begin{array}{llll}
a & b & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & 0 & c \\
0 & 0 & c & 0
\end{array}\right)
$$

$$
V=\left\langle e_{1}, e_{2}\right\rangle \text { is invariant. }
$$

Algorithm outline: divide and conquer

Long story short. The problem is reduced to
Input: A list of square matrices $M_{\lambda}, \lambda \in \Lambda$
Output: A chain of subspaces invariant under the matrices
Idea: an invariant subspace if exists, and then divide-and-conquer
Example

$$
M=\left(\begin{array}{llll}
a & b & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & 0 & c \\
0 & 0 & c & 0
\end{array}\right)
$$

$$
V=\left\langle e_{1}, e_{2}\right\rangle \text { is invariant. }
$$

Algorithm outline: divide and conquer

Long story short. The problem is reduced to
Input: A list of square matrices $M_{\lambda}, \lambda \in \Lambda$
Output: A chain of subspaces invariant under the matrices
Idea: an invariant subspace if exists, and then divide-and-conquer
Example

$$
M=\left(\begin{array}{llll}
a & b & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & 0 & c \\
0 & 0 & c & 0
\end{array}\right)
$$

$$
V=\left\langle e_{1}, e_{2}\right\rangle \text { is invariant. }
$$

$$
\text { Restrict and factor by } V
$$

Algorithm outline: divide and conquer

Long story short. The problem is reduced to
Input: A list of square matrices $M_{\lambda}, \lambda \in \Lambda$
Output: A chain of subspaces invariant under the matrices
Idea: an invariant subspace if exists, and then divide-and-conquer
Example

$$
M=\left(\begin{array}{llll}
a & b & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & 0 & c \\
0 & 0 & c & 0
\end{array}\right)
$$

$$
V=\left\langle e_{1}, e_{2}\right\rangle \text { is invariant. }
$$

Restrict and factor by V
$\left.M\right|_{V}=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$,

Algorithm outline: divide and conquer

Long story short. The problem is reduced to
Input: A list of square matrices $M_{\lambda}, \lambda \in \Lambda$
Output: A chain of subspaces invariant under the matrices
Idea: an invariant subspace if exists, and then divide-and-conquer
Example

$$
M=\left(\begin{array}{llll}
a & b & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & 0 & c \\
0 & 0 & c & 0
\end{array}\right)
$$

$$
V=\left\langle e_{1}, e_{2}\right\rangle \text { is invariant. }
$$

Restrict and factor by V
$\left.M\right|_{V}=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right), M / V=\left(\begin{array}{ll}0 & c \\ c & 0\end{array}\right)$

Algorithm outline: divide and conquer

Long story short. The problem is reduced to
Input: A list of square matrices $M_{\lambda}, \lambda \in \Lambda$
Output: A chain of subspaces invariant under the matrices
Idea: an invariant subspace if exists, and then divide-and-conquer
Example

$$
M=\left(\begin{array}{llll}
a & b & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & 0 & c \\
0 & 0 & c & 0
\end{array}\right)
$$

$$
V=\left\langle e_{1}, e_{2}\right\rangle \text { is invariant. }
$$

Restrict and factor by V
$\left.M\right|_{V}=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right), M / V=\left(\begin{array}{ll}0 & c \\ c & 0\end{array}\right)$

Algorithm outline: divide and conquer

Long story short. The problem is reduced to
Input: A list of square matrices $M_{\lambda}, \lambda \in \Lambda$
Output: A chain of subspaces invariant under the matrices
Idea: an invariant subspace if exists, and then divide-and-conquer
Example

$$
M=\left(\begin{array}{llll}
a & b & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & 0 & c \\
0 & 0 & c & 0
\end{array}\right)
$$

$V=\left\langle e_{1}, e_{2}\right\rangle$ is invariant.
Restrict and factor by V

$$
\left.M\right|_{V}=\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right), M / V=\left(\begin{array}{ll}
0 & c \\
c & 0
\end{array}\right)
$$

Apply recursively

Algorithm outline: finding one subspace

Many matrices $M_{\lambda}, \lambda \in \Lambda$ - need a subspace invariant under all

Algorithm outline: finding one subspace

Many matrices $M_{\lambda}, \lambda \in \Lambda-$ need a subspace invariant under all Algorithm:

1. Find a linear basis of the algebra $\left\langle M_{\lambda}\right\rangle$: multiply matrices by each other until nothing new comes out

Algorithm outline: finding one subspace

Many matrices $M_{\lambda}, \lambda \in \Lambda$ - need a subspace invariant under all

Algorithm:

1. Find a linear basis of the algebra $\left\langle M_{\lambda}\right\rangle$: multiply matrices by each other until nothing new comes out
2. Apply the theory of finite-dimensional matrix algebras to find an invariant subspace

Specifics

Algorithm outline: finding one subspace

Many matrices $M_{\lambda}, \lambda \in \Lambda$ - need a subspace invariant under all Algorithm:

1. Find a linear basis of the algebra $\left\langle M_{\lambda}\right\rangle$: multiply matrices by each other until nothing new comes out
2. Apply the theory of finite-dimensional matrix algebras to find an invariant subspace

Specifics

- many matrices, moderate dimension (hundreds)

Algorithm outline: finding one subspace

Many matrices $M_{\lambda}, \lambda \in \Lambda$ - need a subspace invariant under all Algorithm:

1. Find a linear basis of the algebra $\left\langle M_{\lambda}\right\rangle$: multiply matrices by each other until nothing new comes out
2. Apply the theory of finite-dimensional matrix algebras to find an invariant subspace

Specifics

- many matrices, moderate dimension (hundreds)
- but the input is sparse
- and the output is usually very simple

The implementation

Package ExactODEReduction.jl, in the Julia language https://github.com/x3042/ExactODEReduction.jl

Running on models from BioModels repository:

Models info		Reductions		Runtime
Dimension	\# Models	\# Total	\# Non-equivalent	Average
2-9	44	4.02	1.39	0.6 s
10-19	41	8.15	2.61	0.21 s
20-29	46	9.65	2.13	0.44 S
30-39	17	19.41	2.71	1.74 S
40-59	25	29.08	6.08	4.58 S
60-79	20	37.25	6.95	34.57 S
80-99	11	42.91	7.09	96.38 s
100-133	4	89.0	21.5	202.52 s

The implementation

Efficiency comes from:

- Sparsity-aware algorithm for finding a basis of an algebra

The implementation

Efficiency comes from:

- Sparsity-aware algorithm for finding a basis of an algebra
- Working over the rationals and postponing passing to the extension as much as possible

The implementation

Efficiency comes from:

- Sparsity-aware algorithm for finding a basis of an algebra
- Working over the rationals and postponing passing to the extension as much as possible
- Modular computation to avoid expression swell

The implementation

Efficiency comes from:

- Sparsity-aware algorithm for finding a basis of an algebra
- Working over the rationals and postponing passing to the extension as much as possible
- Modular computation to avoid expression swell

Features:

- Linear transformations are exact
- Improved interpretability
- Compatibility with the Julia ecosystem

The implementation

Efficiency comes from:

- Sparsity-aware algorithm for finding a basis of an algebra
- Working over the rationals and postponing passing to the extension as much as possible
- Modular computation to avoid expression swell

Features:

- Linear transformations are exact
- Improved interpretability
- Compatibility with the Julia ecosystem

And now software demo

Future work: directions

1. Exact reductions as a preprocessing step, e.g., for checking structural identifiability

Future work: directions

1. Exact reductions as a preprocessing step, e.g., for checking structural identifiability
2. Exact reductions as a way to verify the accuracy of numerical simulations

Future work: directions

1. Exact reductions as a preprocessing step, e.g., for checking structural identifiability
2. Exact reductions as a way to verify the accuracy of numerical simulations
3. Exact reductions for other types of structured dynamical systems, such as, e.g., graph-based models

Thank you!

..and my supervisors

