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Some things are smaller than they appear
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Exact reduction: a toy example

Setup
Consider a dynamical system in three variables x1, x2, x3:

ẋ1 = x2
2 + 4x2x3 + 4x2

3

= (x2 + 2x3)
2

,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

Reduction
For y := x2 + 2x3:

ẏ = ẋ2 + 2ẋ3 = 4x3 + 2x2 = 2(x2 + 2x3) = 2y.

Thus, x1 and y themselves form a reduced dynamical system:{
ẏ = 2y,
ẋ1 = y2.
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Exact reduction: more than one

Reduction to dimension 2 from before:
ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

−→

{
ẏ = 2y,
ẋ1 = y2.

Can be further refined to a single self-consistent equation:{
ẏ = 2y,
ẋ1 = y2.

−→ ẏ = 2y.

In general, an infinite number of linear reductions is possible.

7 / 68



Exact reduction: more than one

Reduction to dimension 2 from before:
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ẏ = 2y,
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−→ ẏ = 2y.

In general, an infinite number of linear reductions is possible.

8 / 68



Exact reduction: more than one

Reduction to dimension 2 from before:
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Exact reduction: formal statement

Input: a system of ODEs ẋ = f(x) in x = (x1, . . . , xn)
(f – polynomial functions)

Output (one reduction): a linear transformation y = xL, L ∈ Cn×m

such that ẏ1, . . . , ẏm can be written in terms of y1, . . . , ym (as
polynomial expressions)

Example
We had y = x2 + 2x3, or, equivalently,

y = xL =
(
x1 x2 x3

)0
1
2


Example
Any linear first integral is a linear reduction with ẏ = 0
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11 / 68



Exact reduction: formal statement
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13 / 68
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such that ẏ1, . . . , ẏm can be written in terms of y1, . . . , ym (as
polynomial expressions)

Output (many reductions): a sequence of linear transformations

y1 = xL1, . . . , yℓ = xLℓ

where each yi = xLi is a reduction, 0 < m1 < . . . < mℓ < n, and
Li−1 = LiAi for some Ai.

Such sequence is called a chain of reductions and has finite length
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Real-world example

Model of cell death, Schlieman et al. (2011)

42 other
species

NFkB A20 mRNA

A20

FLIP mRNA

FLIP

What is this about?

• Two proteins, A20 and FLIP
• The corresponding mRNAs,

A20 mRNA and FLIP mRNA
• Nuclear factor NFkB, 47

species in total

Plus 16 other reductions (!)

A possible reduction

{
y1 = k6

k1
[A20]− k5

k3
[FLIP],

y2 = k6[A20 mRNA]− k5[FLIP mRNA]

with the corresponding system{
ẏ1 = y2 +

k2k6
k1

− k4k5
k3

,

ẏ2 = 0

17 / 68



Real-world example

Model of cell death, Schlieman et al. (2011)

42 other
species

NFkB A20 mRNA

A20

FLIP mRNA

FLIP

What is this about?

• Two proteins, A20 and FLIP

• The corresponding mRNAs,
A20 mRNA and FLIP mRNA

• Nuclear factor NFkB, 47
species in total

Plus 16 other reductions (!)

A possible reduction

{
y1 = k6

k1
[A20]− k5

k3
[FLIP],

y2 = k6[A20 mRNA]− k5[FLIP mRNA]

with the corresponding system{
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Prior results

• Li and Rabitz (1989, 1991):
Approach via Jacobians (on this later!), specific examples

• Cardelli, Tribastone, Tschaikowski, Vandin (2017):
Fast algorithm with restriction: y1, . . . , ym are sums of disjoint
subsets of x1, . . . , xn

y1 =
k6
k1
[A20]− k5

k3
[FLIP]

−→ not OK

• Perez Verona, Ovchinnikov, Pogudin, Tribastone (2020):
Also really fast, but needs a clue: a part of the desired
reduction must be given in the input

Focus on finding a single reduction subject to some constraints
−→ won’t autonomously find reductions from our examples
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Our results

We present an algorithm that finds a chain of exact linear
reductions without restriction on the coefficients.

The chain will have the maximal possible length.
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Real-world example #2

Reaction network
(enzyme deactivation)

E∗E

E+ S ES E+ P

E∗ + S

Corresponding ODE system:

˙[E] = 2[ES] + [E∗]− [E][S]− [E][P]− [E],
˙[S] = 2[ES]− [E][S],
˙[P] = [ES]− [E][P],
˙[ES] = [E][S] + [E][P]− 3[ES],
˙[E∗] = [E] + [ES]− [E∗]

1. Reduce just a bit
y1 = E,
y2 = S+ P,
y3 = ES,
y4 = E∗

2. Zoom in
y1 = E+ ES,
y2 = S+ P+ ES,
y3 = E∗

3. And zoom in: y = E+ ES− E∗
(ẏ = −2y)
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Algorithm outline: existing tools

Preparation

System ẋ = f(x) with polynomial f. Let J(x) be the Jacobian of f.

Li and Rabitz (1991): write J(x) =
∑

λ∈ΛMλxλ

Example
ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

J(x) =

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)

J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3 +

(
0 0 0
−2 0 4
1 1 0

)

Proposition
For linear forms y1, . . . , ym in x, the following are equivalent:
• ẏ1, . . . , ẏm are polynomials in y1, . . . , ym;
• the linear span of y1, ..., ym is invariant under Mλ for every

1 ≤ i ≤ m, λ ∈ Λ.
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Algorithm outline: divide and conquer

Long story short. The problem is reduced to

Input: A list of square matrices Mλ, λ ∈ Λ

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

M =


a b 0 0
0 a 0 0
0 0 0 c
0 0 c 0



=

(
a b
0 a

)
,

=

(
0 c
c 0

)

V = ⟨e1, e2⟩ is invariant.

and by V

Apply recursively
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Algorithm outline: finding one subspace

Many matrices Mλ, λ ∈ Λ – need a subspace invariant under all

Algorithm:

1. Find a linear basis of the algebra ⟨Mλ⟩: multiply matrices by
each other until nothing new comes out

2. Apply the theory of finite-dimensional matrix algebras to find
an invariant subspace

Specifics

• many matrices, moderate dimension (hundreds)
• but the input is sparse
• and the output is usually very simple
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The implementation

Package ExactODEReduction.jl, in the Julia language

https://github.com/x3042/ExactODEReduction.jl

Running on models from BioModels repository:

Models info Reductions Runtime
Dimension # Models # Total # Non-equivalent Average

2 - 9 44 4.02 1.39 0.6 s
10 - 19 41 8.15 2.61 0.21 s
20 - 29 46 9.65 2.13 0.44 s
30 - 39 17 19.41 2.71 1.74 s
40 - 59 25 29.08 6.08 4.58 s
60 - 79 20 37.25 6.95 34.57 s
80 - 99 11 42.91 7.09 96.38 s

100 - 133 4 89.0 21.5 202.52 s
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The implementation

Efficiency comes from:

• Sparsity-aware algorithm for finding a basis of an algebra

• Working over the rationals and postponing passing to the
extension as much as possible

• Modular computation to avoid expression swell

Features:

• Linear transformations are exact
• Improved interpretability
• Compatibility with the Julia ecosystem

And now software demo
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Future work: directions

1. Exact reductions as a preprocessing step, e.g., for checking
structural identifiability

2. Exact reductions as a way to verify the accuracy of numerical
simulations

3. Exact reductions for other types of structured dynamical
systems, such as, e.g., graph-based models

65 / 68



Future work: directions

1. Exact reductions as a preprocessing step, e.g., for checking
structural identifiability

2. Exact reductions as a way to verify the accuracy of numerical
simulations

3. Exact reductions for other types of structured dynamical
systems, such as, e.g., graph-based models

66 / 68



Future work: directions

1. Exact reductions as a preprocessing step, e.g., for checking
structural identifiability

2. Exact reductions as a way to verify the accuracy of numerical
simulations

3. Exact reductions for other types of structured dynamical
systems, such as, e.g., graph-based models

67 / 68



Thank you !

..and my supervisors
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