
Finding exact linear reductions

of dynamical models

Alexander Demin, Elizaveta Demitraki, and Gleb Pogudin
March 30, 2023

HSE University



Some things are smaller than they appear

2 / 68



Exact reduction: a toy example

Setup
Consider a dynamical system in three variables x1, x2, x3:

ẋ1 = x2
2 + 4x2x3 + 4x2

3

= (x2 + 2x3)
2

,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

Reduction
For y := x2 + 2x3:

ẏ = ẋ2 + 2ẋ3 = 4x3 + 2x2 = 2(x2 + 2x3) = 2y.

Thus, x1 and y themselves form a reduced dynamical system:{
ẏ = 2y,
ẋ1 = y2.

3 / 68



Exact reduction: a toy example

Setup
Consider a dynamical system in three variables x1, x2, x3:

ẋ1 = x2
2 + 4x2x3 + 4x2

3 = (x2 + 2x3)
2,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

Reduction
For y := x2 + 2x3:

ẏ = ẋ2 + 2ẋ3 = 4x3 + 2x2 = 2(x2 + 2x3) = 2y.

Thus, x1 and y themselves form a reduced dynamical system:{
ẏ = 2y,
ẋ1 = y2.

4 / 68



Exact reduction: a toy example

Setup
Consider a dynamical system in three variables x1, x2, x3:

ẋ1 = x2
2 + 4x2x3 + 4x2

3 = (x2 + 2x3)
2,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

Reduction
For y := x2 + 2x3:

ẏ = ẋ2 + 2ẋ3 = 4x3 + 2x2 = 2(x2 + 2x3) = 2y.

Thus, x1 and y themselves form a reduced dynamical system:{
ẏ = 2y,
ẋ1 = y2.

5 / 68



Exact reduction: a toy example

Setup
Consider a dynamical system in three variables x1, x2, x3:

ẋ1 = x2
2 + 4x2x3 + 4x2

3 = (x2 + 2x3)
2,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

Reduction
For y := x2 + 2x3:

ẏ = ẋ2 + 2ẋ3 = 4x3 + 2x2 = 2(x2 + 2x3) = 2y.

Thus, x1 and y themselves form a reduced dynamical system:{
ẏ = 2y,
ẋ1 = y2.

6 / 68



Exact reduction: more than one

Reduction to dimension 2 from before:
ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

−→

{
ẏ = 2y,
ẋ1 = y2.

Can be further refined to a single self-consistent equation:{
ẏ = 2y,
ẋ1 = y2.

−→ ẏ = 2y.

In general, an infinite number of linear reductions is possible.

7 / 68



Exact reduction: more than one

Reduction to dimension 2 from before:
ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

−→

{
ẏ = 2y,
ẋ1 = y2.

Can be further refined to a single self-consistent equation:{
ẏ = 2y,
ẋ1 = y2.

−→ ẏ = 2y.

In general, an infinite number of linear reductions is possible.

8 / 68



Exact reduction: more than one

Reduction to dimension 2 from before:
ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

−→

{
ẏ = 2y,
ẋ1 = y2.

Can be further refined to a single self-consistent equation:{
ẏ = 2y,
ẋ1 = y2.

−→ ẏ = 2y.

In general, an infinite number of linear reductions is possible.

9 / 68



Exact reduction: formal statement

Input: a system of ODEs ẋ = f(x) in x = (x1, . . . , xn)
(f – polynomial functions)

Output (one reduction): a linear transformation y = xL, L ∈ Cn×m

such that ẏ1, . . . , ẏm can be written in terms of y1, . . . , ym (as
polynomial expressions)

Example
We had y = x2 + 2x3, or, equivalently,

y = xL =
(
x1 x2 x3

)0
1
2


Example
Any linear first integral is a linear reduction with ẏ = 0

10 / 68



Exact reduction: formal statement

Input: a system of ODEs ẋ = f(x) in x = (x1, . . . , xn)
(f – polynomial functions)

Output (one reduction): a linear transformation y = xL, L ∈ Cn×m

such that ẏ1, . . . , ẏm can be written in terms of y1, . . . , ym (as
polynomial expressions)

Example
We had y = x2 + 2x3, or, equivalently,

y = xL =
(
x1 x2 x3

)0
1
2


Example
Any linear first integral is a linear reduction with ẏ = 0

11 / 68



Exact reduction: formal statement

Input: a system of ODEs ẋ = f(x) in x = (x1, . . . , xn)
(f – polynomial functions)

Output (one reduction): a linear transformation y = xL, L ∈ Cn×m

such that ẏ1, . . . , ẏm can be written in terms of y1, . . . , ym (as
polynomial expressions)

Example
We had y = x2 + 2x3, or, equivalently,

y = xL =
(
x1 x2 x3

)0
1
2



Example
Any linear first integral is a linear reduction with ẏ = 0

12 / 68



Exact reduction: formal statement

Input: a system of ODEs ẋ = f(x) in x = (x1, . . . , xn)
(f – polynomial functions)

Output (one reduction): a linear transformation y = xL, L ∈ Cn×m

such that ẏ1, . . . , ẏm can be written in terms of y1, . . . , ym (as
polynomial expressions)

Example
We had y = x2 + 2x3, or, equivalently,

y = xL =
(
x1 x2 x3

)0
1
2


Example
Any linear first integral is a linear reduction with ẏ = 0

13 / 68



Exact reduction: formal statement

Input: a system of ODEs ẋ = f(x) in x = (x1, . . . , xn)
(f – polynomial functions)

Output (one reduction): a linear transformation y = xL, L ∈ Cn×m

such that ẏ1, . . . , ẏm can be written in terms of y1, . . . , ym (as
polynomial expressions)

Output (many reductions): a sequence of linear transformations

y1 = xL1, . . . , yℓ = xLℓ

where each yi = xLi is a reduction, 0 < m1 < . . . < mℓ < n, and
Li−1 = LiAi for some Ai.

Such sequence is called a chain of reductions and has finite length

14 / 68



Exact reduction: formal statement

Input: a system of ODEs ẋ = f(x) in x = (x1, . . . , xn)
(f – polynomial functions)

Output (one reduction): a linear transformation y = xL, L ∈ Cn×m

such that ẏ1, . . . , ẏm can be written in terms of y1, . . . , ym (as
polynomial expressions)

Output (many reductions): a sequence of linear transformations

y1 = xL1, . . . , yℓ = xLℓ

where each yi = xLi is a reduction, 0 < m1 < . . . < mℓ < n, and
Li−1 = LiAi for some Ai.

Such sequence is called a chain of reductions and has finite length

15 / 68



Exact reduction: formal statement

Input: a system of ODEs ẋ = f(x) in x = (x1, . . . , xn)
(f – polynomial functions)

Output (one reduction): a linear transformation y = xL, L ∈ Cn×m

such that ẏ1, . . . , ẏm can be written in terms of y1, . . . , ym (as
polynomial expressions)

Output (many reductions): a sequence of linear transformations

y1 = xL1, . . . , yℓ = xLℓ

where each yi = xLi is a reduction, 0 < m1 < . . . < mℓ < n, and
Li−1 = LiAi for some Ai.

Such sequence is called a chain of reductions and has finite length

16 / 68



Real-world example

Model of cell death, Schlieman et al. (2011)

42 other
species

NFkB A20 mRNA

A20

FLIP mRNA

FLIP

What is this about?

• Two proteins, A20 and FLIP
• The corresponding mRNAs,

A20 mRNA and FLIP mRNA
• Nuclear factor NFkB, 47

species in total

Plus 16 other reductions (!)

A possible reduction

{
y1 = k6

k1
[A20]− k5

k3
[FLIP],

y2 = k6[A20 mRNA]− k5[FLIP mRNA]

with the corresponding system{
ẏ1 = y2 +

k2k6
k1

− k4k5
k3

,

ẏ2 = 0

17 / 68



Real-world example

Model of cell death, Schlieman et al. (2011)

42 other
species

NFkB A20 mRNA

A20

FLIP mRNA

FLIP

What is this about?

• Two proteins, A20 and FLIP

• The corresponding mRNAs,
A20 mRNA and FLIP mRNA

• Nuclear factor NFkB, 47
species in total

Plus 16 other reductions (!)

A possible reduction

{
y1 = k6

k1
[A20]− k5

k3
[FLIP],

y2 = k6[A20 mRNA]− k5[FLIP mRNA]

with the corresponding system{
ẏ1 = y2 +

k2k6
k1

− k4k5
k3

,

ẏ2 = 0

18 / 68



Real-world example

Model of cell death, Schlieman et al. (2011)

42 other
species

NFkB A20 mRNA

A20

FLIP mRNA

FLIP

What is this about?

• Two proteins, A20 and FLIP
• The corresponding mRNAs,

A20 mRNA and FLIP mRNA

• Nuclear factor NFkB, 47
species in total

Plus 16 other reductions (!)

A possible reduction

{
y1 = k6

k1
[A20]− k5

k3
[FLIP],

y2 = k6[A20 mRNA]− k5[FLIP mRNA]

with the corresponding system{
ẏ1 = y2 +

k2k6
k1

− k4k5
k3

,

ẏ2 = 0

19 / 68



Real-world example

Model of cell death, Schlieman et al. (2011)

42 other
species

NFkB A20 mRNA

A20

FLIP mRNA

FLIP

What is this about?

• Two proteins, A20 and FLIP
• The corresponding mRNAs,

A20 mRNA and FLIP mRNA
• Nuclear factor NFkB, 47

species in total

Plus 16 other reductions (!)

A possible reduction

{
y1 = k6

k1
[A20]− k5

k3
[FLIP],

y2 = k6[A20 mRNA]− k5[FLIP mRNA]

with the corresponding system{
ẏ1 = y2 +

k2k6
k1

− k4k5
k3

,

ẏ2 = 0

20 / 68



Real-world example

Model of cell death, Schlieman et al. (2011)

42 other
species

NFkB A20 mRNA

A20

FLIP mRNA

FLIP

What is this about?

• Two proteins, A20 and FLIP
• The corresponding mRNAs,

A20 mRNA and FLIP mRNA
• Nuclear factor NFkB, 47

species in total

Plus 16 other reductions (!)

A possible reduction{
y1 = k6

k1
[A20]− k5

k3
[FLIP],

y2 = k6[A20 mRNA]− k5[FLIP mRNA]

with the corresponding system{
ẏ1 = y2 +

k2k6
k1

− k4k5
k3

,

ẏ2 = 0
21 / 68



Real-world example

Model of cell death, Schlieman et al. (2011)

42 other
species

NFkB A20 mRNA

A20

FLIP mRNA

FLIP

What is this about?

• Two proteins, A20 and FLIP
• The corresponding mRNAs,

A20 mRNA and FLIP mRNA
• Nuclear factor NFkB, 47

species in total

Plus 16 other reductions (!)

A possible reduction{
y1 = k6

k1
[A20]− k5

k3
[FLIP],

y2 = k6[A20 mRNA]− k5[FLIP mRNA]

with the corresponding system{
ẏ1 = y2 +

k2k6
k1

− k4k5
k3

,

ẏ2 = 0
22 / 68



Prior results

• Li and Rabitz (1989, 1991):
Approach via Jacobians (on this later!), specific examples

• Cardelli, Tribastone, Tschaikowski, Vandin (2017):
Fast algorithm with restriction: y1, . . . , ym are sums of disjoint
subsets of x1, . . . , xn

y1 =
k6
k1
[A20]− k5

k3
[FLIP]

−→ not OK

• Perez Verona, Ovchinnikov, Pogudin, Tribastone (2020):
Also really fast, but needs a clue: a part of the desired
reduction must be given in the input

Focus on finding a single reduction subject to some constraints
−→ won’t autonomously find reductions from our examples

23 / 68



Prior results

• Li and Rabitz (1989, 1991):
Approach via Jacobians (on this later!), specific examples

• Cardelli, Tribastone, Tschaikowski, Vandin (2017):
Fast algorithm with restriction: y1, . . . , ym are sums of disjoint
subsets of x1, . . . , xn

y1 =
k6
k1
[A20]− k5

k3
[FLIP]

−→ not OK

• Perez Verona, Ovchinnikov, Pogudin, Tribastone (2020):
Also really fast, but needs a clue: a part of the desired
reduction must be given in the input

Focus on finding a single reduction subject to some constraints
−→ won’t autonomously find reductions from our examples

24 / 68



Prior results

• Li and Rabitz (1989, 1991):
Approach via Jacobians (on this later!), specific examples

• Cardelli, Tribastone, Tschaikowski, Vandin (2017):
Fast algorithm with restriction: y1, . . . , ym are sums of disjoint
subsets of x1, . . . , xn
y1 =

k6
k1
[A20]− k5

k3
[FLIP]

−→ not OK
• Perez Verona, Ovchinnikov, Pogudin, Tribastone (2020):

Also really fast, but needs a clue: a part of the desired
reduction must be given in the input

Focus on finding a single reduction subject to some constraints
−→ won’t autonomously find reductions from our examples

25 / 68



Prior results

• Li and Rabitz (1989, 1991):
Approach via Jacobians (on this later!), specific examples

• Cardelli, Tribastone, Tschaikowski, Vandin (2017):
Fast algorithm with restriction: y1, . . . , ym are sums of disjoint
subsets of x1, . . . , xn
y1 =

k6
k1
[A20]− k5

k3
[FLIP] −→ not OK

• Perez Verona, Ovchinnikov, Pogudin, Tribastone (2020):
Also really fast, but needs a clue: a part of the desired
reduction must be given in the input

Focus on finding a single reduction subject to some constraints
−→ won’t autonomously find reductions from our examples

26 / 68



Prior results

• Li and Rabitz (1989, 1991):
Approach via Jacobians (on this later!), specific examples

• Cardelli, Tribastone, Tschaikowski, Vandin (2017):
Fast algorithm with restriction: y1, . . . , ym are sums of disjoint
subsets of x1, . . . , xn
y1 =

k6
k1
[A20]− k5

k3
[FLIP] −→ not OK

• Perez Verona, Ovchinnikov, Pogudin, Tribastone (2020):
Also really fast, but needs a clue: a part of the desired
reduction must be given in the input

Focus on finding a single reduction subject to some constraints
−→ won’t autonomously find reductions from our examples

27 / 68



Prior results

• Li and Rabitz (1989, 1991):
Approach via Jacobians (on this later!), specific examples

• Cardelli, Tribastone, Tschaikowski, Vandin (2017):
Fast algorithm with restriction: y1, . . . , ym are sums of disjoint
subsets of x1, . . . , xn
y1 =

k6
k1
[A20]− k5

k3
[FLIP] −→ not OK

• Perez Verona, Ovchinnikov, Pogudin, Tribastone (2020):
Also really fast, but needs a clue: a part of the desired
reduction must be given in the input

Focus on finding a single reduction subject to some constraints
−→ won’t autonomously find reductions from our examples

28 / 68



Our results

We present an algorithm that finds a chain of exact linear
reductions without restriction on the coefficients.

The chain will have the maximal possible length.

29 / 68



Our results

We present an algorithm that finds a chain of exact linear
reductions without restriction on the coefficients.

The chain will have the maximal possible length.

30 / 68



Real-world example #2

Reaction network
(enzyme deactivation)

E∗E

E+ S ES E+ P

E∗ + S

Corresponding ODE system:

˙[E] = 2[ES] + [E∗]− [E][S]− [E][P]− [E],
˙[S] = 2[ES]− [E][S],
˙[P] = [ES]− [E][P],
˙[ES] = [E][S] + [E][P]− 3[ES],
˙[E∗] = [E] + [ES]− [E∗]

1. Reduce just a bit
y1 = E,
y2 = S+ P,
y3 = ES,
y4 = E∗

2. Zoom in
y1 = E+ ES,
y2 = S+ P+ ES,
y3 = E∗

3. And zoom in: y = E+ ES− E∗
(ẏ = −2y)

31 / 68



Real-world example #2

Reaction network
(enzyme deactivation)

E∗E

E+ S ES E+ P

E∗ + S

Corresponding ODE system:

˙[E] = 2[ES] + [E∗]− [E][S]− [E][P]− [E],
˙[S] = 2[ES]− [E][S],
˙[P] = [ES]− [E][P],
˙[ES] = [E][S] + [E][P]− 3[ES],
˙[E∗] = [E] + [ES]− [E∗]

1. Reduce just a bit
y1 = E,
y2 = S+ P,
y3 = ES,
y4 = E∗

2. Zoom in
y1 = E+ ES,
y2 = S+ P+ ES,
y3 = E∗

3. And zoom in: y = E+ ES− E∗
(ẏ = −2y)

32 / 68



Real-world example #2

Reaction network
(enzyme deactivation)

E∗E

E+ S ES E+ P

E∗ + S

Corresponding ODE system:

˙[E] = 2[ES] + [E∗]− [E][S]− [E][P]− [E],
˙[S] = 2[ES]− [E][S],
˙[P] = [ES]− [E][P],
˙[ES] = [E][S] + [E][P]− 3[ES],
˙[E∗] = [E] + [ES]− [E∗]

1. Reduce just a bit
y1 = E,
y2 = S+ P,
y3 = ES,
y4 = E∗

2. Zoom in
y1 = E+ ES,
y2 = S+ P+ ES,
y3 = E∗

3. And zoom in: y = E+ ES− E∗
(ẏ = −2y)

33 / 68



Real-world example #2

Reaction network
(enzyme deactivation)

E∗E

E+ S ES E+ P

E∗ + S

Corresponding ODE system:

˙[E] = 2[ES] + [E∗]− [E][S]− [E][P]− [E],
˙[S] = 2[ES]− [E][S],
˙[P] = [ES]− [E][P],
˙[ES] = [E][S] + [E][P]− 3[ES],
˙[E∗] = [E] + [ES]− [E∗]

1. Reduce just a bit
y1 = E,
y2 = S+ P,
y3 = ES,
y4 = E∗

2. Zoom in
y1 = E+ ES,
y2 = S+ P+ ES,
y3 = E∗

3. And zoom in: y = E+ ES− E∗
(ẏ = −2y)

34 / 68



Real-world example #2

Reaction network
(enzyme deactivation)

E∗E

E+ S ES E+ P

E∗ + S

Corresponding ODE system:

˙[E] = 2[ES] + [E∗]− [E][S]− [E][P]− [E],
˙[S] = 2[ES]− [E][S],
˙[P] = [ES]− [E][P],
˙[ES] = [E][S] + [E][P]− 3[ES],
˙[E∗] = [E] + [ES]− [E∗]

1. Reduce just a bit
y1 = E,
y2 = S+ P,
y3 = ES,
y4 = E∗

2. Zoom in
y1 = E+ ES,
y2 = S+ P+ ES,
y3 = E∗

3. And zoom in: y = E+ ES− E∗
(ẏ = −2y)

35 / 68



Algorithm outline: existing tools

Preparation

System ẋ = f(x) with polynomial f. Let J(x) be the Jacobian of f.

Li and Rabitz (1991): write J(x) =
∑

λ∈ΛMλxλ

Example
ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

J(x) =

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)

J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3 +

(
0 0 0
−2 0 4
1 1 0

)

Proposition
For linear forms y1, . . . , ym in x, the following are equivalent:
• ẏ1, . . . , ẏm are polynomials in y1, . . . , ym;
• the linear span of y1, ..., ym is invariant under Mλ for every

1 ≤ i ≤ m, λ ∈ Λ.

36 / 68



Algorithm outline: existing tools

Preparation

System ẋ = f(x) with polynomial f. Let J(x) be the Jacobian of f.

Li and Rabitz (1991): write J(x) =
∑

λ∈ΛMλxλ

Example
ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

J(x) =

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)

J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3 +

(
0 0 0
−2 0 4
1 1 0

)

Proposition
For linear forms y1, . . . , ym in x, the following are equivalent:
• ẏ1, . . . , ẏm are polynomials in y1, . . . , ym;
• the linear span of y1, ..., ym is invariant under Mλ for every

1 ≤ i ≤ m, λ ∈ Λ.

37 / 68



Algorithm outline: existing tools

Preparation

System ẋ = f(x) with polynomial f. Let J(x) be the Jacobian of f.

Li and Rabitz (1991): write J(x) =
∑

λ∈ΛMλxλ

Example
ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

J(x) =

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)

J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3 +

(
0 0 0
−2 0 4
1 1 0

)
Proposition
For linear forms y1, . . . , ym in x, the following are equivalent:
• ẏ1, . . . , ẏm are polynomials in y1, . . . , ym;
• the linear span of y1, ..., ym is invariant under Mλ for every

1 ≤ i ≤ m, λ ∈ Λ.

38 / 68



Algorithm outline: existing tools

Preparation

System ẋ = f(x) with polynomial f. Let J(x) be the Jacobian of f.

Li and Rabitz (1991): write J(x) =
∑

λ∈ΛMλxλ

Example
ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

J(x) =

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3 +

(
0 0 0
−2 0 4
1 1 0

)
Proposition
For linear forms y1, . . . , ym in x, the following are equivalent:
• ẏ1, . . . , ẏm are polynomials in y1, . . . , ym;
• the linear span of y1, ..., ym is invariant under Mλ for every

1 ≤ i ≤ m, λ ∈ Λ.

39 / 68



Algorithm outline: existing tools

Preparation

System ẋ = f(x) with polynomial f. Let J(x) be the Jacobian of f.

Li and Rabitz (1991): write J(x) =
∑

λ∈ΛMλxλ

Example


ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

J(x) =

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)

J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3+

(
0 0 0
−2 0 4
1 1 0

)

J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3 +

(
0 0 0
−2 0 4
1 1 0

)
Proposition
For linear forms y1, . . . , ym in x, the following are equivalent:
• ẏ1, . . . , ẏm are polynomials in y1, . . . , ym;
• the linear span of y1, ..., ym is invariant under Mλ for every

1 ≤ i ≤ m, λ ∈ Λ.

40 / 68



Algorithm outline: existing tools

Preparation

System ẋ = f(x) with polynomial f. Let J(x) be the Jacobian of f.

Li and Rabitz (1991): write J(x) =
∑

λ∈ΛMλxλ

Example


ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

J(x) =

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)

J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3+

(
0 0 0
−2 0 4
1 1 0

)

J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3 +

(
0 0 0
−2 0 4
1 1 0

)
Proposition
For linear forms y1, . . . , ym in x, the following are equivalent:
• ẏ1, . . . , ẏm are polynomials in y1, . . . , ym;
• the linear span of y1, ..., ym is invariant under Mλ for every

1 ≤ i ≤ m, λ ∈ Λ.

41 / 68



Algorithm outline: existing tools

Preparation

System ẋ = f(x) with polynomial f. Let J(x) be the Jacobian of f.

Li and Rabitz (1991): write J(x) =
∑

λ∈ΛMλxλ

Example


ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

J(x) =

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

)

J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3+

(
0 0 0
−2 0 4
1 1 0

)

J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3 +

(
0 0 0
−2 0 4
1 1 0

)
Proposition
For linear forms y1, . . . , ym in x, the following are equivalent:
• ẏ1, . . . , ẏm are polynomials in y1, . . . , ym;
• the linear span of y1, ..., ym is invariant under Mλ for every

1 ≤ i ≤ m, λ ∈ Λ.

42 / 68



Algorithm outline: existing tools

Preparation

System ẋ = f(x) with polynomial f. Let J(x) be the Jacobian of f.

Li and Rabitz (1991): write J(x) =
∑

λ∈ΛMλxλ

Example
ẋ1 = x2

2 + 4x2x3 + 4x2
3,

ẋ2 = 4x3 − 2x1,

ẋ3 = x1 + x2.

J(x) =

(
0 2x2 + 4x3 8x3 + 4x2
−2 0 4
1 1 0

) J(x) =

(
0 2 4
0 0 0
0 0 0

)
x2+(

0 4 8
0 0 0
0 0 0

)
x3 +

(
0 0 0
−2 0 4
1 1 0

)
Proposition
For linear forms y1, . . . , ym in x, the following are equivalent:
• ẏ1, . . . , ẏm are polynomials in y1, . . . , ym;
• the linear span of y1, ..., ym is invariant under Mλ for every

1 ≤ i ≤ m, λ ∈ Λ.
43 / 68



Algorithm outline: divide and conquer

Long story short. The problem is reduced to

Input: A list of square matrices Mλ, λ ∈ Λ

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

M =


a b 0 0
0 a 0 0
0 0 0 c
0 0 c 0



=

(
a b
0 a

)
,

=

(
0 c
c 0

)

V = ⟨e1, e2⟩ is invariant.

and by V

Apply recursively

44 / 68



Algorithm outline: divide and conquer

Long story short. The problem is reduced to

Input: A list of square matrices Mλ, λ ∈ Λ

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

M =


a b 0 0
0 a 0 0
0 0 0 c
0 0 c 0



=

(
a b
0 a

)
,

=

(
0 c
c 0

)

V = ⟨e1, e2⟩ is invariant.

and by V

Apply recursively

45 / 68



Algorithm outline: divide and conquer

Long story short. The problem is reduced to

Input: A list of square matrices Mλ, λ ∈ Λ

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

M =


a b 0 0
0 a 0 0
0 0 0 c
0 0 c 0



=

(
a b
0 a

)
,

=

(
0 c
c 0

)

V = ⟨e1, e2⟩ is invariant.

and by V

Apply recursively

46 / 68



Algorithm outline: divide and conquer

Long story short. The problem is reduced to

Input: A list of square matrices Mλ, λ ∈ Λ

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

M =


a b 0 0
0 a 0 0
0 0 0 c
0 0 c 0



=

(
a b
0 a

)
,

=

(
0 c
c 0

)

V = ⟨e1, e2⟩ is invariant.

and by V

Apply recursively

47 / 68



Algorithm outline: divide and conquer

Long story short. The problem is reduced to

Input: A list of square matrices Mλ, λ ∈ Λ

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

M =


a b 0 0
0 a 0 0
0 0 0 c
0 0 c 0



=

(
a b
0 a

)
,

=

(
0 c
c 0

)

V = ⟨e1, e2⟩ is invariant.

and by V

Apply recursively

48 / 68



Algorithm outline: divide and conquer

Long story short. The problem is reduced to

Input: A list of square matrices Mλ, λ ∈ Λ

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

M =


a b 0 0
0 a 0 0
0 0 0 c
0 0 c 0



=

(
a b
0 a

)
,

=

(
0 c
c 0

)

V = ⟨e1, e2⟩ is invariant.
Restrict and factor by V

Apply recursively

49 / 68



Algorithm outline: divide and conquer

Long story short. The problem is reduced to

Input: A list of square matrices Mλ, λ ∈ Λ

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

M =


a b 0 0
0 a 0 0
0 0 0 c
0 0 c 0


M|V =

(
a b
0 a

)
,

=

(
0 c
c 0

)

V = ⟨e1, e2⟩ is invariant.
Restrict and factor by V

Apply recursively

50 / 68



Algorithm outline: divide and conquer

Long story short. The problem is reduced to

Input: A list of square matrices Mλ, λ ∈ Λ

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

M =


a b 0 0
0 a 0 0
0 0 0 c
0 0 c 0


M|V =

(
a b
0 a

)
, M/V =

(
0 c
c 0

) V = ⟨e1, e2⟩ is invariant.
Restrict and factor by V

Apply recursively

51 / 68



Algorithm outline: divide and conquer

Long story short. The problem is reduced to

Input: A list of square matrices Mλ, λ ∈ Λ

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

M =


a b 0 0
0 a 0 0
0 0 0 c
0 0 c 0


M|V =

(
a b
0 a

)
, M/V =

(
0 c
c 0

) V = ⟨e1, e2⟩ is invariant.
Restrict and factor by V

Apply recursively

52 / 68



Algorithm outline: divide and conquer

Long story short. The problem is reduced to

Input: A list of square matrices Mλ, λ ∈ Λ

Output: A chain of subspaces invariant under the matrices

Idea: an invariant subspace if exists, and then divide-and-conquer

Example

M =


a b 0 0
0 a 0 0
0 0 0 c
0 0 c 0


M|V =

(
a b
0 a

)
, M/V =

(
0 c
c 0

) V = ⟨e1, e2⟩ is invariant.
Restrict and factor by V

Apply recursively
53 / 68



Algorithm outline: finding one subspace

Many matrices Mλ, λ ∈ Λ – need a subspace invariant under all

Algorithm:

1. Find a linear basis of the algebra ⟨Mλ⟩: multiply matrices by
each other until nothing new comes out

2. Apply the theory of finite-dimensional matrix algebras to find
an invariant subspace

Specifics

• many matrices, moderate dimension (hundreds)
• but the input is sparse
• and the output is usually very simple

54 / 68



Algorithm outline: finding one subspace

Many matrices Mλ, λ ∈ Λ – need a subspace invariant under all

Algorithm:

1. Find a linear basis of the algebra ⟨Mλ⟩: multiply matrices by
each other until nothing new comes out

2. Apply the theory of finite-dimensional matrix algebras to find
an invariant subspace

Specifics

• many matrices, moderate dimension (hundreds)
• but the input is sparse
• and the output is usually very simple

55 / 68



Algorithm outline: finding one subspace

Many matrices Mλ, λ ∈ Λ – need a subspace invariant under all

Algorithm:

1. Find a linear basis of the algebra ⟨Mλ⟩: multiply matrices by
each other until nothing new comes out

2. Apply the theory of finite-dimensional matrix algebras to find
an invariant subspace

Specifics

• many matrices, moderate dimension (hundreds)
• but the input is sparse
• and the output is usually very simple

56 / 68



Algorithm outline: finding one subspace

Many matrices Mλ, λ ∈ Λ – need a subspace invariant under all

Algorithm:

1. Find a linear basis of the algebra ⟨Mλ⟩: multiply matrices by
each other until nothing new comes out

2. Apply the theory of finite-dimensional matrix algebras to find
an invariant subspace

Specifics

• many matrices, moderate dimension (hundreds)

• but the input is sparse
• and the output is usually very simple

57 / 68



Algorithm outline: finding one subspace

Many matrices Mλ, λ ∈ Λ – need a subspace invariant under all

Algorithm:

1. Find a linear basis of the algebra ⟨Mλ⟩: multiply matrices by
each other until nothing new comes out

2. Apply the theory of finite-dimensional matrix algebras to find
an invariant subspace

Specifics

• many matrices, moderate dimension (hundreds)
• but the input is sparse
• and the output is usually very simple

58 / 68



The implementation

Package ExactODEReduction.jl, in the Julia language

https://github.com/x3042/ExactODEReduction.jl

Running on models from BioModels repository:

Models info Reductions Runtime
Dimension # Models # Total # Non-equivalent Average

2 - 9 44 4.02 1.39 0.6 s
10 - 19 41 8.15 2.61 0.21 s
20 - 29 46 9.65 2.13 0.44 s
30 - 39 17 19.41 2.71 1.74 s
40 - 59 25 29.08 6.08 4.58 s
60 - 79 20 37.25 6.95 34.57 s
80 - 99 11 42.91 7.09 96.38 s

100 - 133 4 89.0 21.5 202.52 s

59 / 68

https://github.com/x3042/ExactODEReduction.jl


The implementation

Efficiency comes from:

• Sparsity-aware algorithm for finding a basis of an algebra

• Working over the rationals and postponing passing to the
extension as much as possible

• Modular computation to avoid expression swell

Features:

• Linear transformations are exact
• Improved interpretability
• Compatibility with the Julia ecosystem

And now software demo

60 / 68



The implementation

Efficiency comes from:

• Sparsity-aware algorithm for finding a basis of an algebra
• Working over the rationals and postponing passing to the

extension as much as possible

• Modular computation to avoid expression swell

Features:

• Linear transformations are exact
• Improved interpretability
• Compatibility with the Julia ecosystem

And now software demo

61 / 68



The implementation

Efficiency comes from:

• Sparsity-aware algorithm for finding a basis of an algebra
• Working over the rationals and postponing passing to the

extension as much as possible
• Modular computation to avoid expression swell

Features:

• Linear transformations are exact
• Improved interpretability
• Compatibility with the Julia ecosystem

And now software demo

62 / 68



The implementation

Efficiency comes from:

• Sparsity-aware algorithm for finding a basis of an algebra
• Working over the rationals and postponing passing to the

extension as much as possible
• Modular computation to avoid expression swell

Features:

• Linear transformations are exact
• Improved interpretability
• Compatibility with the Julia ecosystem

And now software demo

63 / 68



The implementation

Efficiency comes from:

• Sparsity-aware algorithm for finding a basis of an algebra
• Working over the rationals and postponing passing to the

extension as much as possible
• Modular computation to avoid expression swell

Features:

• Linear transformations are exact
• Improved interpretability
• Compatibility with the Julia ecosystem

And now software demo

64 / 68



Future work: directions

1. Exact reductions as a preprocessing step, e.g., for checking
structural identifiability

2. Exact reductions as a way to verify the accuracy of numerical
simulations

3. Exact reductions for other types of structured dynamical
systems, such as, e.g., graph-based models

65 / 68



Future work: directions

1. Exact reductions as a preprocessing step, e.g., for checking
structural identifiability

2. Exact reductions as a way to verify the accuracy of numerical
simulations

3. Exact reductions for other types of structured dynamical
systems, such as, e.g., graph-based models

66 / 68



Future work: directions

1. Exact reductions as a preprocessing step, e.g., for checking
structural identifiability

2. Exact reductions as a way to verify the accuracy of numerical
simulations

3. Exact reductions for other types of structured dynamical
systems, such as, e.g., graph-based models

67 / 68



Thank you !

..and my supervisors

68 / 68


