Using Algebraic Geometry for Solving Differential Equations

Sebastian Falkensteiner

Max Planck Institute for Mathematics in the Sciences
Leipzig, Germany
March 20th, 2023

FOR MATHEMATICS IN THE SCIENCES

Overview

(1) Motivation
(2) Preliminaries

- Differential algebra
- Algebraic structures
(3) First order autonomous AODEs
- Rational solutions
- Formal Puiseux series solutions
- Algebraic solutions
(4) Systems of dimension one
- (Differential) elimination
(5) Further results
(6) Open problems

Motivation

Assume that you want to solve the following differential equations, how would you proceed?

$$
\begin{gathered}
20 y^{3}+y^{2}+20 y y^{\prime}-25 y^{\prime 2}+y^{\prime}=0 \\
\left\{-8 y^{\prime 3}+27 y=0, z^{5}-y^{3}=0,-5 z^{4} z^{\prime}+3 y^{2} y^{\prime}=0\right\} \\
\sqrt{x} y^{\prime \prime}-y^{3 / 2}=0 \\
4 y^{2}+2 y-y^{\prime 2}-\exp (2 x)=0
\end{gathered}
$$

Motivation

Assume that you want to solve the following differential equations, how would you proceed?

$$
\begin{gathered}
20 y^{3}+y^{2}+20 y y^{\prime}-25 y^{\prime 2}+y^{\prime}=0 \\
\left\{-8 y^{\prime 3}+27 y=0, z^{5}-y^{3}=0,-5 z^{4} z^{\prime}+3 y^{2} y^{\prime}=0\right\} \\
\sqrt{x} y^{\prime \prime}-y^{3 / 2}=0 \\
4 y^{2}+2 y-y^{\prime 2}-\exp (2 x)=0
\end{gathered}
$$

It highly depends on the solution space you are working with.

Differential algebra

Let K be a field of characteristic zero, R be a differential ring and

$$
R\left\{y_{1}, \ldots, y_{n}\right\}=R\left[y_{1}, y_{1}^{\prime}, y_{1}^{\prime \prime}, \ldots, y_{n}, y_{n}^{\prime}, y_{n}^{\prime \prime}, \ldots\right]
$$

be the ring of differential polynomials in the differential indeterminates y_{1}, \ldots, y_{n} with coefficients in R.

Differential algebra

Let K be a field of characteristic zero, R be a differential ring and

$$
R\left\{y_{1}, \ldots, y_{n}\right\}=R\left[y_{1}, y_{1}^{\prime}, y_{1}^{\prime \prime}, \ldots, y_{n}, y_{n}^{\prime}, y_{n}^{\prime \prime}, \ldots\right]
$$

be the ring of differential polynomials in the differential indeterminates y_{1}, \ldots, y_{n} with coefficients in R. Given $F \in R\left\{y_{1}, \ldots, y_{n}\right\}$, we define the order of F in y_{i} as the highest occurring derivative of y_{i} in F.

Differential algebra

Let K be a field of characteristic zero, R be a differential ring and

$$
R\left\{y_{1}, \ldots, y_{n}\right\}=R\left[y_{1}, y_{1}^{\prime}, y_{1}^{\prime \prime}, \ldots, y_{n}, y_{n}^{\prime}, y_{n}^{\prime \prime}, \ldots\right]
$$

be the ring of differential polynomials in the differential indeterminates y_{1}, \ldots, y_{n} with coefficients in R. Given $F \in R\left\{y_{1}, \ldots, y_{n}\right\}$, we define the order of F in y_{i} as the highest occurring derivative of y_{i} in F.
We define for a finite set of differential polynomials

$$
\begin{equation*}
\mathcal{S}=\left\{F_{1}=0, \ldots, F_{M}=0\right\} \subset R\left\{y_{1}, \ldots, y_{n}\right\} \tag{1}
\end{equation*}
$$

the corresponding algebraic set as

$$
\mathbb{V}_{K}(\mathcal{S})=\left\{a \in K^{m+n} \mid F_{1}(a)=\cdots=F_{M}(a)=0\right\}
$$

where $m=m_{1}+\cdots+m_{n}$ and m_{i} is the order of \mathcal{S} in y_{i} and $K \subset R$ is a field.

The corresponding algebraic set $\mathbb{V}_{\mathbb{R}}(\mathcal{S})$ of the following system defines a space curve.

$$
\mathcal{S}=\left\{-8 y^{\prime 3}+27 y=0, z^{5}-y^{3}=0,-5 z^{4} z^{\prime}+3 y^{2} y^{\prime}=0\right\} .
$$

Algebraic structures

$K(x) \ldots$ rational functions
$K[[x]]$... formal power series
$K((x))=K[[x]]\left[x^{-1}\right] \ldots$ formal Laurent series
$K\{\{x\}\} \ldots$ algebraic functions, i.e. $y(x)$ such that $Q(x, y(x))=0$ for a $Q \in K[x, y] \backslash K[x]$
$K\langle\langle x\rangle\rangle=\bigcup_{n \in \mathbb{N}^{*}} K\left(\left(x^{1 / n}\right)\right) \ldots$ formal Puiseux series (expanded around zero)

Algebraic structures

$K(x) \ldots$ rational functions
$K[[x]]$... formal power series
$K((x))=K[[x]]\left[x^{-1}\right] \ldots$ formal Laurent series
$K\{\{x\}\} \ldots$ algebraic functions, i.e. $y(x)$ such that $Q(x, y(x))=0$ for a
$Q \in K[x, y] \backslash K[x]$
$K\langle\langle x\rangle\rangle=\bigcup_{n \in \mathbb{N}^{*}} K\left(\left(x^{1 / n}\right)\right) \ldots$ formal Puiseux series (expanded around zero)

Observe that

$$
K(x) \subset K\{\{x\}\} \subset K\langle\langle x\rangle\rangle .
$$

Algebraic structures

$K(x) \ldots$ rational functions
$K[[x]]$... formal power series
$K((x))=K[[x]]\left[x^{-1}\right] \ldots$ formal Laurent series
$K\{\{x\}\} \ldots$ algebraic functions, i.e. $y(x)$ such that $Q(x, y(x))=0$ for a
$Q \in K[x, y] \backslash K[x]$
$K\langle\langle x\rangle\rangle=\bigcup_{n \in \mathbb{N}^{*}} K\left(\left(x^{1 / n}\right)\right) \ldots$ formal Puiseux series (expanded around zero)

Observe that

$$
K(x) \subset K\{\{x\}\} \subset K\langle\langle x\rangle\rangle .
$$

Let $y(x) \in K\left(\left(x^{1 / n}\right)\right)$ be such that there is no $m \mid n$ and $y(x) \in K\left(\left(x^{1 / m}\right)\right)$. Then n is called the ramification index of $y(x)$.

Algebraic structures

$\sqrt{x}+\frac{1}{\sqrt[3]{x^{5}}} \ldots$ algebraic function (seen as formal Puiseux series: ramification index 6 and order $-3 / 5$)
$\sum_{i \geq 1} \frac{1}{i} x^{i / 6} \ldots$ formal Puiseux series with ramification index 6 , order $1 / 6$
$\sum_{i \in \mathbb{Z}} x^{i} \ldots$ is not a formal Puiseux series
$\sum_{i \geq 1} x^{1 / i} \ldots$ is not a formal Puiseux series

Algebraic structures

$\sqrt{x}+\frac{1}{\sqrt[3]{x^{5}}} \ldots$ algebraic function (seen as formal Puiseux series: ramification index 6 and order $-3 / 5$)
$\sum_{i \geq 1} \frac{1}{i} x^{i / 6} \ldots$ formal Puiseux series with ramification index 6 , order $1 / 6$
$\sum_{i \in \mathbb{Z}} x^{i} \ldots$ is not a formal Puiseux series
$\sum_{i \geq 1} x^{1 / i} \ldots$ is not a formal Puiseux series

Puiseux's theorem

Let $F \in \mathbb{C}(x)[y]$. Then every solution $y(x)$ of $F(y)=0$ is a formal Puiseux series and convergent.

Moreover, all solutions can be computed (via the Newton-polygon method).

Main goal

Given: $F \in \mathbb{Q}\left[y, y^{\prime}\right]$ (or $\mathcal{S} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\}$ of dimension one).
Goal: Find the rational / algebraic / formal Puiseux series solutions of $F\left(y, y^{\prime}\right)=0$ (or \mathcal{S}) and analyze the following properties:

- Existence and uniqueness of solutions.
- Convergence.
- Necessary field extensions.

First order autonomous AODEs

Consider first order algebraic ordinary differential equations (AODEs) with constant coefficients, i.e.

$$
\begin{equation*}
F\left(y, y^{\prime}\right)=0, \tag{2}
\end{equation*}
$$

with $F \in \mathbb{Q}\left[y, y^{\prime}\right]$.

First order autonomous AODEs

Consider first order algebraic ordinary differential equations (AODEs) with constant coefficients, i.e.

$$
\begin{equation*}
F\left(y, y^{\prime}\right)=0, \tag{2}
\end{equation*}
$$

with $F \in \mathbb{Q}\left[y, y^{\prime}\right]$.
For a non-constant solution $y(x)$ of $F\left(y, y^{\prime}\right)=0$, the pair $\left(y(t), y^{\prime}(t)\right)$, or $\left(y\left(t^{n}\right), \frac{d}{d t} y\left(t^{n}\right)\right)$ in case of formal Puiseux series, is a parametrization of the corresponding plane curve $\mathbb{V}_{\mathbb{C}}(F)$, called a solution parametrization.

First order autonomous AODEs

Consider first order algebraic ordinary differential equations (AODEs) with constant coefficients, i.e.

$$
\begin{equation*}
F\left(y, y^{\prime}\right)=0, \tag{2}
\end{equation*}
$$

with $F \in \mathbb{Q}\left[y, y^{\prime}\right]$.
For a non-constant solution $y(x)$ of $F\left(y, y^{\prime}\right)=0$, the pair $\left(y(t), y^{\prime}(t)\right)$, or $\left(y\left(t^{n}\right), \frac{d}{d t} y\left(t^{n}\right)\right)$ in case of formal Puiseux series, is a parametrization of the corresponding plane curve $\mathbb{V}_{\mathbb{C}}(F)$, called a solution parametrization.

Necessary condition

Let $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$. A necessary condition on the existence of a non-constant rational solution in $K(x)$ (or formal Puiseux series solution in $K\langle\langle x\rangle\rangle)$ is that $\mathbb{V}_{K}(F)$ is not finite and admits a rational (local) parametrization.

Rational solutions

It is well-known that a curve $\mathbb{V}_{\mathbb{C}}(F)$ admits a (bi-)rational parametrization $P(t)$ iff it is of genus zero. In the affirmative case, we can compute $P(t) \in K(t)^{2}$ in an optimal field $K \subset \mathbb{C}$.

Rational solutions

It is well-known that a curve $\mathbb{V}_{\mathbb{C}}(F)$ admits a (bi-)rational parametrization $P(t)$ iff it is of genus zero. In the affirmative case, we can compute $P(t) \in K(t)^{2}$ in an optimal field $K \subset \mathbb{C}$.

Theorem [R. Feng, X.S. Gao; 2004]
Assume that $\mathbb{V}_{\mathbb{C}}(F)$ has a birational parametrization $P(t)=(p(t), q(t)) \in K(t)^{2}$. Then $F\left(y, y^{\prime}\right)=0$ has a (non-constant) rational solution iff

$$
q(t)=a p^{\prime}(t) \text { or } q(t)=a p^{\prime}(t) \cdot(t-b)^{2}
$$

for some $a, b \in K, a \neq 0$. In the affirmative case, $p(a x+c)$ or $p\left(b-\frac{1}{a x+c}\right)$ defines all rational solutions and they are in $K(x)$.

Example

Consider

$$
F\left(y, y^{\prime}\right)=20 y^{3}+y^{2}+20 y y^{\prime}-25 y^{\prime 2}+y^{\prime}=0 .
$$

The corresponding curve $\mathbb{V}_{\mathbb{C}}(F)$ has the rational parametrization

$$
(p(t), q(t))=\left(\frac{(1+6 t) t}{(t+1)^{2}},-\frac{(1+11 t) t^{2}}{(t+1)^{3}}\right) \in \mathbb{Q}(t)^{2}
$$

Since $q(t)=-p^{\prime}(t) t^{2}$, we obtain the solutions

$$
y(x)=p\left(\frac{1}{x-c}\right)=\frac{x-c+6}{(x-c+1)^{2}} \in \mathbb{Q}(c, x)
$$

Places

Local parametrizations of the plane curve $\mathbb{V}_{\mathbb{C}}(F)$ exist around every curve point $\left(y_{0}, p_{0}\right) \in \mathbb{C}_{\infty}^{2}$. Let $P(t), Q(t) \in \mathbb{C}((t))^{2}$ be such local parametrizations. The relation

$$
P(t) \sim Q(t) \text { iff } P(s(t))=Q(t) \text { for some } s(t) \in \mathbb{C}[[t]], \operatorname{ord}_{t}(s(t))=1
$$

is an equivalence relation such that $P(0)=Q(0)$. The equivalence classes of irreducible local parametrizations are called places, centered at the common curve-point $P(0)$. Places can be seen as the algebraic counterpart to branches.

Necessary and sufficient condition

Let $[(p(t), q(t))]$ be a place containing a solution parametrization $\left(y\left(t^{n}\right), \frac{d}{d t} y\left(t^{n}\right)\right) \in K((t))^{2}$. Then

$$
\begin{equation*}
m=\operatorname{ord}_{t}\left(p^{\prime}(t)\right)-\operatorname{ord}_{t}(q(t))+1>0 . \tag{3}
\end{equation*}
$$

Note that (3) is independent of the representative of the place.

Necessary and sufficient condition

Let $[(p(t), q(t))]$ be a place containing a solution parametrization $\left(y\left(t^{n}\right), \frac{d}{d t} y\left(t^{n}\right)\right) \in K((t))^{2}$. Then

$$
\begin{equation*}
m=\operatorname{ord}_{t}\left(p^{\prime}(t)\right)-\operatorname{ord}_{t}(q(t))+1>0 \tag{3}
\end{equation*}
$$

Note that (3) is independent of the representative of the place.

```
Key Theorem [J. Cano, J.R. Sendra, F.; 2019]
Let \(\mathcal{P}\) be a place of \(\mathbb{V}_{\mathbb{C}}(F)\). Then \(\mathcal{P}\) contains a solution parametrization if and only if (3) holds for \(m \in \mathbb{N}^{*}\).
In the affirmative case, there are exactly \(m\) solution parametrizations in \(\mathcal{P}\).
```


Implicit function theorem

Implicit function theorem

Let $\left(y_{0}, p_{0}\right) \in \mathbb{V}_{K}(F)$ be a finite point such that $\frac{\partial F}{\partial y^{\prime}}\left(y_{0}, p_{0}\right) \neq 0$ and $p_{0} \neq 0$. Then there is a unique formal power series solution $y(x) \in K[[x]]$ of $F\left(y, y^{\prime}\right)=0$.

If the implicit function theorem is applicable, then (3) is fulfilled with $m=1$.

Implicit function theorem

Implicit function theorem

Let $\left(y_{0}, p_{0}\right) \in \mathbb{V}_{K}(F)$ be a finite point such that $\frac{\partial F}{\partial y^{\prime}}\left(y_{0}, p_{0}\right) \neq 0$ and $p_{0} \neq 0$. Then there is a unique formal power series solution $y(x) \in K[[x]]$ of $F\left(y, y^{\prime}\right)=0$.

If the implicit function theorem is applicable, then (3) is fulfilled with $m=1$.

We call the exceptional curve points

$$
\mathbb{V}_{K}(F) \cap\left(\mathbb{V}_{K}\left(\frac{\partial F}{\partial y^{\prime}}\right) \cup \mathbb{V}_{K}\left(y^{\prime}\right) \cup \mathbb{V}_{K}\left(\mathrm{lc}_{y^{\prime}}(F)\right)\right)
$$

where the implicit function theorem does not hold critical points.

Algorithm

Algorithm arising from the proof of Theorem 1

Given $F \in \mathbb{Q}\left[y, y^{\prime}\right]$ irreducible.

1) Compute a generic power series solution (by the implicit function theorem).
2) Compute the critical points $\left(y_{0}, p_{0}\right) \in \mathbb{V}_{\mathbb{C}}(F)$.
3) For every critical point compute a representative $(p(t), q(t))$ of every place at (y_{0}, p_{0}) and determine m.
4) Take $s(t)=s_{1} t+s_{2} t^{2}+\cdots$ with s_{i} undetermined and compute them from

$$
\begin{equation*}
p^{\prime}(s(t)) s^{\prime}(t)=m t^{m-1} q(s(t)) . \tag{4}
\end{equation*}
$$

Algorithm

Algorithm arising from the proof of Theorem 1

Given $F \in \mathbb{Q}\left[y, y^{\prime}\right]$ irreducible.

1) Compute a generic power series solution (by the implicit function theorem).
2) Compute the critical points $\left(y_{0}, p_{0}\right) \in \mathbb{V}_{\mathbb{C}}(F)$.
3) For every critical point compute a representative $(p(t), q(t))$ of every place at (y_{0}, p_{0}) and determine m.
4) Take $s(t)=s_{1} t+s_{2} t^{2}+\cdots$ with s_{i} undetermined and compute them from

$$
\begin{equation*}
p^{\prime}(s(t)) s^{\prime}(t)=m t^{m-1} q(s(t)) \tag{4}
\end{equation*}
$$

Equation (4) is called the associated differential equation and can be solved for example with the Newton-polygon method for differential equations. Note that in every step we can ensure convergence.

Results

Theorem 1 (Convergence)

Let $F \in \mathbb{Q}\left[y, y^{\prime}\right]^{*}$. Then all formal Puiseux series solutions $y(x)$ of $F\left(y, y^{\prime}\right)=0$, expanded around a finite point or infinity, are convergent.

Results

Theorem 1 (Convergence)

Let $F \in \mathbb{Q}\left[y, y^{\prime}\right]^{*}$. Then all formal Puiseux series solutions $y(x)$ of $F\left(y, y^{\prime}\right)=0$, expanded around a finite point or infinity, are convergent.

Theorem 2 (Existence, Uniqueness)

Let $N=2\left(\operatorname{deg}_{y^{\prime}}(F)-1\right) \operatorname{deg}_{y}(F)+1$ and $\varphi(x) \in \mathbb{C}\left[x^{1 / n}, x^{-1 / n}\right]$ be a truncated solution of $F\left(y, y^{\prime}\right)=0$, where the first N terms are computed. Then there exists exactly one $y(x) \in \mathbb{C}\langle\langle x\rangle\rangle$ with $F\left(y, y^{\prime}\right)=0$ extending $\varphi(x)$.

Puiseux series solutions with real / rational coefficients

Places can be represented by a local parametrization of the form $\left(\alpha t^{n}, q(t)\right) \in K((t))^{2}$ with coefficients in an optimal field $K \subset \mathbb{C}$, called rational Puiseux parametrizations.

Puiseux series solutions with real / rational coefficients

Places can be represented by a local parametrization of the form $\left(\alpha t^{n}, q(t)\right) \in K((t))^{2}$ with coefficients in an optimal field $K \subset \mathbb{C}$, called rational Puiseux parametrizations.

Necessary condition

Let $K \in\{\mathbb{Q}, \mathbb{R}\}$. If $y(x) \in K\left(\left(x^{n}\right)\right)$ is a solution of $F\left(y, y^{\prime}\right)=0$, then the rational Puiseux parametrization $(p(t), q(t))$ of the place $\left[\left(y\left(t^{n}\right), \frac{d}{d t}\left(y\left(t^{n}\right)\right)\right)\right]$ has coefficients in K.

Puiseux series solutions with real / rational coefficients

Places can be represented by a local parametrization of the form $\left(\alpha t^{n}, q(t)\right) \in K((t))^{2}$ with coefficients in an optimal field $K \subset \mathbb{C}$, called rational Puiseux parametrizations.

Necessary condition

Let $K \in\{\mathbb{Q}, \mathbb{R}\}$. If $y(x) \in K\left(\left(x^{n}\right)\right)$ is a solution of $F\left(y, y^{\prime}\right)=0$, then the rational Puiseux parametrization $(p(t), q(t))$ of the place $\left[\left(y\left(t^{n}\right), \frac{d}{d t}\left(y\left(t^{n}\right)\right)\right)\right]$ has coefficients in K.

Recall that every non-constant solution is of the form $y(x)=p\left(s\left(x^{1 / n}\right)\right)$. If $\left(p(t)=\alpha t^{n}, q(t)\right) \in K((t))^{2}$ is a rational Puiseux parametrization, then $y(x) \in K\left(s_{1}\right)\left(\left(x^{1 / n}\right)\right)$ with $s_{1}^{n}=\frac{n q_{1}}{p_{1}} \in K$. Hence, after computing s_{1}, we know whether $y(x)$ has coefficients in $K \in\{\mathbb{Q}, \mathbb{R}\}$.

Example

Consider $F\left(y, y^{\prime}\right)=\left(\left(y^{\prime}-1\right)^{2}+y^{2}\right)^{3}-4\left(y^{\prime}-1\right)^{2} y^{2}=0$.

The generic power series solution is given as $y_{0}+p_{0} x+\mathcal{O}\left(x^{2}\right)$ with $\left(y_{0}, p_{0}\right) \in \mathbb{C}^{2}$ and $F\left(y_{0}, p_{0}\right)=0$ or, in case we are interested in solutions with real / rational coefficients, by the topological graph of $\mathbb{V}_{\mathbb{C}}(F)$.

The generic power series solution is given as $y_{0}+p_{0} x+\mathcal{O}\left(x^{2}\right)$ with $\left(y_{0}, p_{0}\right) \in \mathbb{C}^{2}$ and $F\left(y_{0}, p_{0}\right)=0$ or, in case we are interested in solutions with real / rational coefficients, by the topological graph of $\mathbb{V}_{\mathbb{C}}(F)$.

The critical curve-points are

$$
\begin{aligned}
\mathcal{B}= & \{(0,1)\} \cup\left\{(\alpha, 0) \mid \alpha^{6}+3 \alpha^{4}-\alpha^{2}+1=0\right\} \cup \\
& \left\{\left.\left(\frac{4 \beta}{9}, \gamma\right) \right\rvert\, \beta^{2}=3,27 \gamma^{2}-54 \gamma+19=0\right\}
\end{aligned}
$$

The generic power series solution is given as $y_{0}+p_{0} x+\mathcal{O}\left(x^{2}\right)$ with $\left(y_{0}, p_{0}\right) \in \mathbb{C}^{2}$ and $F\left(y_{0}, p_{0}\right)=0$ or, in case we are interested in solutions with real / rational coefficients, by the topological graph of $\mathbb{V}_{\mathbb{C}}(F)$.

The critical curve-points are

$$
\begin{aligned}
\mathcal{B}= & \{(0,1)\} \cup\left\{(\alpha, 0) \mid \alpha^{6}+3 \alpha^{4}-\alpha^{2}+1=0\right\} \cup \\
& \left\{\left.\left(\frac{4 \beta}{9}, \gamma\right) \right\rvert\, \beta^{2}=3,27 \gamma^{2}-54 \gamma+19=0\right\}
\end{aligned}
$$

- At $\mathbf{c}_{1}=(0,1)$ there are 4 places defined by

$$
\begin{array}{ll}
(p(t), q(t))=\left(2 t^{2}, 1+2 t-\frac{3 t^{2}}{2}+\mathcal{O}\left(t^{3}\right)\right) & \text { suitable with } m=2 \\
\left(-2 t^{2}, 1-2 t-\frac{3 t^{2}}{2}+\mathcal{O}\left(t^{3}\right)\right) & \text { suitable with } m=2 \\
\left(t, 1+\frac{t^{2}}{2}+\frac{3 t^{4}}{16}+\mathcal{O}\left(t^{6}\right)\right) & \text { suitable with } m=1 \\
\left(t, 1-\frac{t^{2}}{2}-\frac{3 t^{4}}{16}+\mathcal{O}\left(t^{6}\right)\right) & \text { suitable with } m=1
\end{array}
$$

For $(p(t), q(t))$ the associated differential equation is

$$
s(t) s^{\prime}(t)=t\left(1+2 s(t)-\frac{3 s(t)^{2}}{2}\right)
$$

with the solutions

$$
\begin{aligned}
& s_{1}(t)=\frac{t}{\sqrt{2}}+\frac{t^{2}}{3}+\frac{\sqrt{2} t^{3}}{36}+\mathcal{O}\left(t^{4}\right), \\
& s_{2}(t)=\frac{-t}{\sqrt{2}}+\frac{t^{2}}{3}-\frac{\sqrt{2} t^{3}}{36}+\mathcal{O}\left(t^{4}\right)
\end{aligned}
$$

By considering all places at \mathbf{c}_{1} we obtain

$$
\left\{\begin{array}{l}
p\left(s_{1}\left(x^{1 / 2}\right)\right)=x+\frac{2 \sqrt{2} x^{3 / 2}}{3}+\frac{x^{2}}{3}+\mathcal{O}\left(x^{5 / 2}\right), \\
p\left(s_{2}\left(x^{1 / 2}\right)\right)=x-\frac{2 \sqrt{2} x^{3 / 2}}{3}+\frac{x^{2}}{3}+\mathcal{O}\left(x^{5 / 2}\right), \\
x+\frac{2 \sqrt{2} i x^{3 / 2}}{3}-\frac{x^{2}}{3}+\mathcal{O}\left(x^{5 / 2}\right), x-\frac{2 \sqrt{2} i x^{3 / 2}}{3}-\frac{x^{2}}{3}+\mathcal{O}\left(x^{5 / 2}\right), \\
x+\frac{x^{3}}{6}+\frac{17 x^{5}}{240}+\mathcal{O}\left(x^{6}\right), x-\frac{x^{3}}{6}+\frac{17 x^{5}}{240}+\mathcal{O}\left(x^{6}\right)
\end{array}\right.
$$

- For $\mathbf{c}_{\alpha}=(\alpha, 0)$ we obtain the rational Puiseux parametrizations

$$
\left(\alpha+t,\left(\frac{11}{19} \alpha^{5}+\frac{36}{19} \alpha^{3}+\frac{4}{19} \alpha\right) t+\mathcal{O}\left(t^{2}\right)\right)
$$

which are not suitable.

- For $\mathbf{c}_{\alpha}=(\alpha, 0)$ we obtain the rational Puiseux parametrizations

$$
\left(\alpha+t,\left(\frac{11}{19} \alpha^{5}+\frac{36}{19} \alpha^{3}+\frac{4}{19} \alpha\right) t+\mathcal{O}\left(t^{2}\right)\right)
$$

which are not suitable.

- Let $\mathbf{c}_{\beta, \gamma}=\left(\frac{4 \beta}{9}, \gamma\right)$, where $\beta^{2}=3$, and $27 \gamma^{2}-54 \gamma+19=0$. Then the places represented by

$$
\left(\frac{4 \beta}{9}-t^{2}, \gamma-\frac{\sqrt[4]{27}}{3} t+\mathcal{O}\left(t^{2}\right)\right)
$$

are suitable with $m=2$ leading to eight Puiseux series solutions given by

$$
\frac{4 \beta}{9}+\gamma x \pm \frac{2 \sqrt{-\gamma \beta}}{3 \sqrt{3}} x^{3 / 2}+\left(\frac{5 \gamma}{32}-\frac{143}{864}\right) \beta x^{2}+\mathcal{O}\left(x^{5 / 2}\right) .
$$

where four are real $\left((\beta, \gamma) \in\left\{\left(-\sqrt{3}, 1+\frac{2 \sqrt{6}}{9}\right),\left(-\sqrt{3}, 1-\frac{2 \sqrt{6}}{9}\right)\right\}\right)$.

Algebraic solutions

Theorem 3
Let $F \in \mathbb{Q}\left[y, y^{\prime}\right]$ be irreducible with a non-constant algebraic solution $y(x) \in \mathbb{C}\{\{x\}\}$. Then all non-constant formal Puiseux series solutions of $F\left(y, y^{\prime}\right)=0$ are algebraic over $\mathbb{C}(x)$.

Algebraic solutions

Theorem 3

Let $F \in \mathbb{Q}\left[y, y^{\prime}\right]$ be irreducible with a non-constant algebraic solution $y(x) \in \mathbb{C}\{\{x\}\}$. Then all non-constant formal Puiseux series solutions of $F\left(y, y^{\prime}\right)=0$ are algebraic over $\mathbb{C}(x)$.
Moreover, if $Q(x, y) \in \mathbb{C}[x, y]$ is the minimal polynomial of $y(x)$, then all non-constant formal Puiseux series solutions are given by $Q(x+c, y)$.

Algebraic solutions

> Theorem 3
> Let $F \in \mathbb{Q}\left[y, y^{\prime}\right]$ be irreducible with a non-constant algebraic solution $y(x) \in \mathbb{C}\{\{x\}\}$. Then all non-constant formal Puiseux series solutions of $F\left(y, y^{\prime}\right)=0$ are algebraic over $\mathbb{C}(x)$.
> Moreover, if $Q(x, y) \in \mathbb{C}[x, y]$ is the minimal polynomial of $y(x)$, then all non-constant formal Puiseux series solutions are given by $Q(x+c, y)$.

Based on this theorem, we just compute one (non-constant) formal Puiseux series solution and check whether it is algebraic.

Example

Consider $F\left(y, y^{\prime}\right)=y^{4}+3 y^{\prime}=0$ and the initial value $(1,-1 / 3) \in \mathbb{V}_{\mathbb{Q}}(F)$.

By the implicit function theorem, we obtain the formal power series solution

$$
y(x)=1-\frac{x}{3}+\frac{2 x^{2}}{9}-\frac{14 x^{3}}{81}+\mathcal{O}\left(x^{4}\right)
$$

with the minimal polynomial $Q(x, y)=x y^{3}-1$. All solutions, namely $z(x)=\frac{\zeta}{\sqrt[3]{x+c}}$ for $\zeta^{3}=1$, are then determined by $Q(x+c, y)$.

Simple systems

By using algebraic and differential reduction (here we use the Thomas decomposition), differential systems $\mathcal{S} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\}$ can be decomposed into a finite collection of simple subsystems $\left(\mathcal{S}_{k}, \mathcal{U}_{k}\right)$ representing a set of equalities

$$
\mathcal{S}=\left\{G_{1}=0, \ldots, G_{M}=0\right\} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\}
$$

and inequalities

$$
\mathcal{U}=\left\{U_{1} \neq 0, \ldots, U_{N} \neq 0\right\} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\} .
$$

Simple systems

By using algebraic and differential reduction (here we use the Thomas decomposition), differential systems $\mathcal{S} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\}$ can be decomposed into a finite collection of simple subsystems $\left(\mathcal{S}_{k}, \mathcal{U}_{k}\right)$ representing a set of equalities

$$
\mathcal{S}=\left\{G_{1}=0, \ldots, G_{M}=0\right\} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\}
$$

and inequalities

$$
\mathcal{U}=\left\{U_{1} \neq 0, \ldots, U_{N} \neq 0\right\} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\} .
$$

The simple subsystems have as algebraic equations the same zeros as the given system. In particular, the decompositions has the same solution set, i.e.

$$
\operatorname{Sol}_{\mathbb{C}\langle\langle x\rangle\rangle}(\mathcal{S})=\bigcup^{\cdot} \operatorname{Sol}_{\mathbb{C}\langle\langle x\rangle\rangle}\left(\mathcal{S}_{k}, \mathcal{U}_{k}\right)
$$

Simple systems

Simple systems have in particular the following properties:

- $G_{1}, \ldots, G_{M}, U_{1}, \ldots, U_{N}$ have pairwise distinct leading variables (they are in triangular form);
- G_{1}, \ldots, G_{M} are pairwise differentially reduced and U_{1}, \ldots, U_{N} are reduced with respect to the G_{i} 's.

Simple systems

Simple systems have in particular the following properties:

- $G_{1}, \ldots, G_{M}, U_{1}, \ldots, U_{N}$ have pairwise distinct leading variables (they are in triangular form);
- G_{1}, \ldots, G_{M} are pairwise differentially reduced and U_{1}, \ldots, U_{N} are reduced with respect to the G_{i} 's.
Systems \mathcal{S}, where $\mathbb{V}_{\mathbb{C}}(\mathcal{S})$ is of dimension one, can be decomposed into simple subsystems leading to constant solution components and to simple subsystems of the form

$$
\left\{\begin{array}{rl}
G_{1}\left(y_{1}, y_{1}^{\prime}\right) & =0 \tag{I}\\
G_{s}\left(y_{1}, y_{1}^{\prime}, y_{2}, \ldots, y_{s}\right) & =0 \\
U\left(y_{1}\right) & \neq 0
\end{array} \quad s \in\{2, \ldots, n\},\right.
$$

where the leading variables (w.r.t. the ordering
$\left.y_{1}<y_{1}^{\prime}<\cdots<y_{n}<y_{n}^{\prime}<\cdots\right)$ are $\operatorname{lv}\left(G_{1}\right)=y_{1}^{\prime}, \operatorname{lv}\left(G_{s}\right)=y_{s}$ and $U \in \mathbb{Q}\left[y_{1}\right] \backslash\{0\}$.

Results

Recalling that formal Puiseux series solutions of first order autonomous AODEs are convergent, we obtain the following result.

Results

Recalling that formal Puiseux series solutions of first order autonomous AODEs are convergent, we obtain the following result.

Theorem 4 (Convergence)

Let $\mathcal{S} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\}$ be such that $\mathbb{V}_{\mathbb{C}}(\mathcal{S})$ is of dimension one. Then every component of a formal Puiseux series solution, expanded around a finite point or at infinity, is convergent or can be chosen arbitrarily.

Algebraic solutions

Computations with Puiseux series vectors are an algorithmically intricate problem. For algebraic solutions, however, computations simplify.

Algebraic solutions

Computations with Puiseux series vectors are an algorithmically intricate problem. For algebraic solutions, however, computations simplify. For a system of the type (I)

$$
\left\{\begin{array}{rl}
G_{1}\left(y_{1}, y_{1}^{\prime}\right) & =0 \\
G_{s}\left(y_{1}, y_{1}^{\prime}, y_{2}, \ldots, y_{s}\right) & =0, \\
U\left(y_{1}\right) & \neq 0
\end{array} \quad s \in\{2, \ldots, n\},\right.
$$

and a polynomial relation $P_{1}\left(x, y_{1}\right)=0$ with $P_{1} \in \mathbb{C}\left[x, y_{1}\right]$ and $\operatorname{lv}\left(P_{1}\right)=y_{1}$, we can again compute a decomposition into finitely many algebraic simple subsystems of the type

$$
\begin{equation*}
\left\{G_{s}\left(x, y_{1}, \ldots, y_{s}\right)=0, \quad s \in\{1, \ldots, n\}\right. \tag{II}
\end{equation*}
$$

where $G_{s} \in K\left[x, y_{1}, \ldots, y_{s}\right]$ with $\operatorname{lv}\left(G_{s}\right)=y_{s}$.

Algebraic solutions

Combining this observation with Theorem 3, we get:

Corollary

Let $(\mathcal{S}, \mathcal{U})$ be a simple system of the form (I) such that $G_{1} \in \mathbb{C}\left[y_{1}, y_{1}^{\prime}\right]$ is irreducible with an algebraic solution

$$
y_{1}(x) \in \mathbb{C}\langle\langle x\rangle\rangle \backslash \mathbb{C} .
$$

Then all formal Puiseux series solutions of $(\mathcal{S}, \mathcal{U})$ are algebraic over $\mathbb{C}(x)$.

Algebraic solutions

Combining this observation with Theorem 3, we get:

Corollary

Let $(\mathcal{S}, \mathcal{U})$ be a simple system of the form (I) such that $G_{1} \in \mathbb{C}\left[y_{1}, y_{1}^{\prime}\right]$ is irreducible with an algebraic solution

$$
y_{1}(x) \in \mathbb{C}\langle\langle x\rangle\rangle \backslash \mathbb{C} .
$$

Then all formal Puiseux series solutions of $(\mathcal{S}, \mathcal{U})$ are algebraic over $\mathbb{C}(x)$.

The description of the algebraic solutions can be done either as

- algebraic simple subsystems of the form (II), namely $\left\{G_{1}\left(x, y_{1}\right)=0, \ldots, G_{n}\left(x, y_{1}, \ldots, y_{n}\right)=0\right\}$; or
- the minimal polynomials $\left\{Q_{1}\left(x, y_{1}\right)=0, \ldots, Q_{n}\left(x, y_{n}\right)=0\right\}$.

Summary

Algorithm arising from the proof of Theorem 4
Given $\mathcal{S} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\}$ such that $\mathbb{V}_{\mathbb{C}}(\mathcal{S})$ is of dimension one.

1) Compute a Thomas decomposition of \mathcal{S}.
2) For every simple subsystem involving no derivatives, there are only constant solutions. For the simple subsystems $(\tilde{\mathcal{S}}, \tilde{\mathcal{U}})$ of the type (I), check whether $G_{1}\left(y_{1}, y_{1}^{\prime}\right)$ has an algebraic solution $y_{1}(x) \in \mathbb{C}\langle\langle x\rangle\rangle$.
3) In the affirmative case, compute a Thomas decomposition of $\left(\tilde{\mathcal{S}} \cup\left\{Q_{1}\right\}, \tilde{\mathcal{U}}\right)$ where Q_{1} is the minimal polynomial of $y_{1}(x)$.
4) The algebraic solutions are then given as algebraic simple systems (or can be expressed as a vector of minimal polynomials).

$$
\begin{equation*}
\left\{-8 y^{\prime 3}+27 y=0, z^{5}-y^{3}=0,-5 z^{4} z^{\prime}+3 y^{2} y^{\prime}=0\right\} \tag{5}
\end{equation*}
$$

is already a simple system.

$$
\begin{equation*}
\left\{-8 y^{\prime 3}+27 y=0, z^{5}-y^{3}=0,-5 z^{4} z^{\prime}+3 y^{2} y^{\prime}=0\right\} \tag{5}
\end{equation*}
$$

is already a simple system. The first equation has the algebraic solutions $y_{1}(x)=x^{3 / 2}, y_{2}(x)=-x^{3 / 2}$ implicitly defined by

$$
Q_{1}(x, y)=y^{2}-x^{3}
$$

$$
\begin{equation*}
\left\{-8 y^{\prime 3}+27 y=0, z^{5}-y^{3}=0,-5 z^{4} z^{\prime}+3 y^{2} y^{\prime}=0\right\} \tag{5}
\end{equation*}
$$

is already a simple system. The first equation has the algebraic solutions $y_{1}(x)=x^{3 / 2}, y_{2}(x)=-x^{3 / 2}$ implicitly defined by

$$
Q_{1}(x, y)=y^{2}-x^{3}
$$

The Thomas decomposition finds the algebraic simply subsystem

$$
\begin{equation*}
\left\{Q_{1}(x, y)=y^{2}-x^{3}, G_{2}(x, y, z)=z^{5}-x^{3} y\right\} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left\{-8 y^{\prime 3}+27 y=0, z^{5}-y^{3}=0,-5 z^{4} z^{\prime}+3 y^{2} y^{\prime}=0\right\} \tag{5}
\end{equation*}
$$

is already a simple system. The first equation has the algebraic solutions $y_{1}(x)=x^{3 / 2}, y_{2}(x)=-x^{3 / 2}$ implicitly defined by

$$
Q_{1}(x, y)=y^{2}-x^{3}
$$

The Thomas decomposition finds the algebraic simply subsystem

$$
\begin{equation*}
\left\{Q_{1}(x, y)=y^{2}-x^{3}, G_{2}(x, y, z)=z^{5}-x^{3} y\right\} \tag{6}
\end{equation*}
$$

The solutions of (5) and (6) are the same: Let $z_{1}(x)=\zeta x^{9 / 10}, z_{2}(x)=-\zeta x^{9 / 10}$ with $\zeta^{5}=1$. Then $\left(y_{i}(x), z_{i}(x)\right)$ is a solution (but neither $\left(y_{1}(x), z_{2}(x)\right)$ nor $\left(y_{2}(x), z_{1}(x)\right)$).

The algebraic simple system (6),

$$
\left\{Q_{1}(x, y)=y^{2}-x^{3}, G_{2}(x, y, z)=z^{5}-x^{3} y\right\}
$$

leads to the vector of minimal polynomials

$$
\begin{equation*}
\left\{Q_{1}(x, y)=y^{2}-x^{3}, Q_{2}(x, z)=z^{10}-x^{9}\right\} \tag{7}
\end{equation*}
$$

The system (7), however, has $\left(y_{1}(x), z_{2}(x)\right)$ and $\left(y_{2}(x), z_{1}(x)\right)$ as solutions.

Further results

- A generalization to parametric differential equations $F \in K\left[y, y^{\prime}\right]$ where $K=\mathbb{Q}\left(a_{1}, \ldots, a_{m}\right)$ for some variables a_{1}, \ldots, a_{m} of the above results is generically possible. For particular choices of a_{i} or when the a_{i} are functions in x, generalizations are not straight-forward anymore. In these cases, some results can still be recovered, but connections to classical unsolved questions appear (e.g. Hilbert's irreducibility problem).

Further results

- A generalization to parametric differential equations $F \in K\left[y, y^{\prime}\right]$ where $K=\mathbb{Q}\left(a_{1}, \ldots, a_{m}\right)$ for some variables a_{1}, \ldots, a_{m} of the above results is generically possible. For particular choices of a_{i} or when the a_{i} are functions in x, generalizations are not straight-forward anymore. In these cases, some results can still be recovered, but connections to classical unsolved questions appear (e.g. Hilbert's irreducibility problem).
- By using methods from algebraic geometry, we present a procedure for transforming a given system of radical differential equations $\mathcal{S} \subset K_{m}(x)$ with a radical tower

$$
K_{0}=\mathbb{C}\left(y_{1}, \ldots, y_{n}\right) \subseteq K_{1} \subseteq \cdots \subseteq K_{m}
$$

where $K_{i}=K_{i-1}\left(\delta_{i}\right), \delta_{i}^{e_{i}} \in K_{i-1}$ for some $e_{i} \in \mathbb{N}$, can be transformed into a system of AODEs. Solutions are in one-to-one correspondence and standard-techniques are applicable to the transformed system.

Further results

- In mathematical biology, one is interested in a representation of F in terms of a dynamical system which gives a one-to-one relation between solutions, so-called realizations.

Further results

- In mathematical biology, one is interested in a representation of F in terms of a dynamical system which gives a one-to-one relation between solutions, so-called realizations. The associated system of a given $F \in \mathbb{Q}\left[y, y^{\prime}\right]$ is of the form $s^{\prime}(t)=f(t, s(t))$. If $\mathbb{V}_{\mathbb{C}}(F)$ admits a rational parametrization $(p(t), q(t)) \in K(t)^{2}$, then $f \in K(s)$. In this case, a realization of F is given by

$$
\left\{\begin{array}{l}
s^{\prime}=f(s) \tag{8}\\
y=p(s)
\end{array}\right.
$$

Further results

- In mathematical biology, one is interested in a representation of F in terms of a dynamical system which gives a one-to-one relation between solutions, so-called realizations. The associated system of a given $F \in \mathbb{Q}\left[y, y^{\prime}\right]$ is of the form $s^{\prime}(t)=f(t, s(t))$. If $\mathbb{V}_{\mathbb{C}}(F)$ admits a rational parametrization $(p(t), q(t)) \in K(t)^{2}$, then $f \in K(s)$. In this case, a realization of F is given by

$$
\left\{\begin{array}{l}
s^{\prime}=f(s) \tag{8}\\
y=p(s)
\end{array}\right.
$$

In the case of input-output equations $F \in \mathbb{Q}\left(u, u^{\prime}\right)\left[y, y^{\prime}\right]$, finding a rational parametrization over $K\left(u, u^{\prime}\right)$ is a necessary but not a sufficient condition for finding a realization with $f, p \in K(s, u)$. We give an algorithm for deciding the existence of complex and real realizations, i.e. when $K \in\{\mathbb{C}, \mathbb{Q}\}$.

Open problems

- For $F\left(y, y^{\prime}\right) \in \mathbb{Q}\left[y, y^{\prime}\right]$, we expect similar results (existence, uniqueness and convergence) for more general type of solutions such as transseries.

Open problems

- For $F\left(y, y^{\prime}\right) \in \mathbb{Q}\left[y, y^{\prime}\right]$, we expect similar results (existence, uniqueness and convergence) for more general type of solutions such as transseries.
- We conjecture that every formal Puiseux series solution of $F\left(y, y^{(r)}\right)=0$ is convergent. A proof for $r>3$ is missing.

Open problems

- For $F\left(y, y^{\prime}\right) \in \mathbb{Q}\left[y, y^{\prime}\right]$, we expect similar results (existence, uniqueness and convergence) for more general type of solutions such as transseries.
- We conjecture that every formal Puiseux series solution of $F\left(y, y^{(r)}\right)=0$ is convergent. A proof for $r>3$ is missing.
- Can we find all real solutions of systems $\mathcal{S} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\}$ of dimension one?

Open problems

- For $F\left(y, y^{\prime}\right) \in \mathbb{Q}\left[y, y^{\prime}\right]$, we expect similar results (existence, uniqueness and convergence) for more general type of solutions such as transseries.
- We conjecture that every formal Puiseux series solution of $F\left(y, y^{(r)}\right)=0$ is convergent. A proof for $r>3$ is missing.
- Can we find all real solutions of systems $\mathcal{S} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\}$ of dimension one?
- There are first results on rational and algebraic solutions of non-autonomous $F\left(x, y, y^{\prime}\right)=0$ (or $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$) with $F \in \mathbb{Q}\left[x, y, y^{\prime}\right]$ where $\mathbb{V}_{\mathbb{C}}(F)$ is rational. What about algebraic and local solutions if $\mathbb{V}_{\mathbb{C}}(F)$ is not rational?

Open problems

- For $F\left(y, y^{\prime}\right) \in \mathbb{Q}\left[y, y^{\prime}\right]$, we expect similar results (existence, uniqueness and convergence) for more general type of solutions such as transseries.
- We conjecture that every formal Puiseux series solution of $F\left(y, y^{(r)}\right)=0$ is convergent. A proof for $r>3$ is missing.
- Can we find all real solutions of systems $\mathcal{S} \subset \mathbb{Q}\left\{y_{1}, \ldots, y_{n}\right\}$ of dimension one?
- There are first results on rational and algebraic solutions of non-autonomous $F\left(x, y, y^{\prime}\right)=0$ (or $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$) with $F \in \mathbb{Q}\left[x, y, y^{\prime}\right]$ where $\mathbb{V}_{\mathbb{C}}(F)$ is rational. What about algebraic and local solutions if $\mathbb{V}_{\mathbb{C}}(F)$ is not rational?
- etc.

References and Acknowledgments

(J. Cano and S. Falkensteiner and J.R. Sendra, Existence and Convergence of Puiseux Series Solutions for First Order Autonomous Differential Equations. Journal of Symbolic Computation, 108:137-151, 2022.

- S. Falkensteiner, J.J. Mitteramskogler, J.R. Sendra, F. Winkler, The Algebro-Geometric Method: solving algebraic differential equations by parametrizations. Bulletin of the AMS, 2022.

The speaker is partly supported by the OeAD project FR 09/2022.

