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D-finite functions: the holonomic world
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Basic notation

Throughout this talk we consider:
K: a computable field contained in C.

K[[x ]]: ring of formal power series over K.

′ is the standard derivation w.r.t. x :∑
n≥0

cnxn

′ =
∑
n≥0

(cnxn)′ =
∑
n≥0

(n + 1)cn+1xn.

DD-finite functions
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Links to package

Package dd_functions
All results presented in this talk are included in the SageMath
package dd_functions.

Repository:
https://github.com/Antonio-JP/dd_functions

Documentation:
https://antonio-jp.github.io/dd_functions/

Demo:
https://mybinder.org/v2/gh/Antonio-JP/dd_functions.
git/master?filepath=dd_functions_demo.ipynb

DD-finite functions

https://github.com/Antonio-JP/dd_functions
https://antonio-jp.github.io/dd_functions/
https://mybinder.org/v2/gh/Antonio-JP/dd_functions.git/master?filepath=dd_functions_demo.ipynb
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D-finite functions

Definition
Let f (x) ∈ K[[x ]]. We say that f (x) is D-finite if there exists
d ∈ N and polynomials p0(x), . . . , pd (x) ∈ K[x ] (not all zero) such
that:

pd (x)f (d)(x) + . . .+ p0(x)f (x) = 0.

DD-finite functions
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Examples

Many special functions are D-finite:

Exponential functions: ex .
Trigonometric functions: sin(x), cos(x).
Logarithm function: log(x + 1).
Bessel functions: Jn(x).

Hypergeometric functions: pFq

(
a1, . . . , ap
b1, . . . , bq

; x
)
.

Airy functions: Ai(x),Bi(x).
Combinatorial generating functions: F (x),C(x), . . .

DD-finite functions
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Closure properties

f (x), g(x) D-finite of order d1, d2.
a(x) algebraic over K(x) of degree p.

Property Function Order bound
Addition f (x) + g(x) d1 + d2
Product f (x)g(x) d1d2

Differentiation f ′(x) d1
Integration

∫
f (x) d1 + 1

Be Algebraic a(x) p

DD-finite functions
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Working with D-finite functions

There are several implementations of D-finite functions:

mgfun: Maple package, by F. Chyzak and B. Salvy

HolonomicFunctions: Mathematica package, by C. Koutschan

ore_algebra: Sage package, by M. Kauers et al.

DD-finite functions
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Differentially definable functions

DD-finite functions
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Non-D-finite examples

There are power series that are not D-finite:

Double exponential: f (x) = eex .
Tangent: tan(x) = sin(x)

cos(x) .

℘-Weierstrass function.
Gamma function: f (x) = Γ(x + 1).
Partition Generating Function: f (x) =

∑
n≥0 p(n)xn.

DD-finite functions



D-finite Diff. definable Dn-finite Simple functions Conclusions

DD-finite functions

Definition
Let f (x) ∈ K[[x ]]. We say that f (x) is D-finite if there exists
d ∈ N and polynomials p0(x), . . . , pd (x) ∈ K[x ] (not all zero) such
that:

pd (x)f (d)(x) + . . .+ p0(x)f (x) = 0.

D-finite: NO
Double exponential: f (x) = eex .
Tangent: tan(x) = sin(x)

cos(x) .

DD-finite functions
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DD-finite functions

Definition
Let f (x) ∈ K[[x ]]. We say that f (x) is DD-finite if there exists
d ∈ N and D-finite functions r0(x), . . . , rd (x) (not all zero) such
that:

rd (x)f (d)(x) + . . .+ r0(x)f (x) = 0.

DD-finite: YES
Double exponential: f (x) = eex → f ′(x)− ex f (x) = 0
Tangent: tan(x) = sin(x)

cos(x) → cos2(x) tan′′(x)− 2 tan(x) = 0.

DD-finite functions
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Differentially definable functions

Definition
Let R ⊂ K[[x ]] be a differential ring and f (x) ∈ K[[x ]]. We say
that f (x) is differentially definable over R if there exists d ∈ N and
elements in R r0(x), . . . , rd (x) (not all zero) such that:

rd (x)f (d)(x) + . . .+ r0(x)f (x) = 0.

We denote the set of all diff. definable functions over R by D(R).

D-finite functions: D(K[x ]).
DD-finite functions: D(D(K[x ])) = D2(K[x ]).

DD-finite functions
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Characterization via Linear Algebra

Theorem
The following are equivalent:

f (x) is differentially definable over R (f (x) ∈ D(R))

m

The F -vector space 〈f (x), f ′(x), f ′′(x), . . . 〉 has finite dimension.

R ⊂ K [[x ]] is a differential subring
F is its field of fractions.

DD-finite functions
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Closure properties

f (x), g(x) D-finite of order d1, d2.
a(x) algebraic over K(x) of degree p.

Property Function Order bound
Addition f (x) + g(x) d1 + d2
Product f (x)g(x) d1d2

Differentiation f ′(x) d1
Integration

∫
f (x) d1 + 1

Be Algebraic a(x) p

DD-finite functions
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Closure properties

f (x), g(x) in D(R) of order d1, d2.
a(x) algebraic over F of degree p.

Property Function Order bound
Addition f (x) + g(x) d1 + d2
Product f (x)g(x) d1d2

Differentiation f ′(x) d1
Integration

∫
f (x) d1 + 1

Be Algebraic a(x) p

DD-finite functions
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Closure properties

f (x), g(x) in D(R) of order d1, d2.
a(x) algebraic over F of degree p.

Property Function Order bound
Addition f (x) + g(x) d1 + d2
Product f (x)g(x) d1d2

Differentiation f ′(x) d1
Integration

∫
f (x) d1 + 1

Be Algebraic a(x) p

Proof for addition:
〈(f + g)(n) : n ∈ N〉F = 〈f (n) + g (n) : n ∈ N〉F

⊂ 〈f (n) : n ∈ N〉F + 〈g (n) : n ∈ N〉F

DD-finite functions



D-finite Diff. definable Dn-finite Simple functions Conclusions

Closure properties

f (x), g(x) in D(R) of order d1, d2.
a(x) algebraic over F of degree p.

Property Function Order bound
Addition f (x) + g(x) d1 + d2
Product f (x)g(x) d1d2

Differentiation f ′(x) d1
Integration

∫
f (x) d1 + 1

Be Algebraic a(x) p

Proof for addition:
〈(f + g)(n) : n ∈ N〉F = 〈f (n) + g (n) : n ∈ N〉F

⊂ 〈f (n) : n ∈ N〉F + 〈g (n) : n ∈ N〉F

DD-finite functions



D-finite Diff. definable Dn-finite Simple functions Conclusions

Dn-finite functions: iterating the process

DD-finite functions
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Dn-finite functions

Remark

R ⊂ K[[x ]] diff. ring⇒ D(R) ⊂ K[[x ]] diff. ring

↓

Iterate the process

Dn-finite functions
Dn-finite functions are the nth iteration over K[x ], i.e., Dn(K[x ]).

K[x ] ⊂ D(K[x ]) ⊂ D2(K[x ]) ⊂ . . . ⊂ Dn(K[x ]) ⊂ . . .

DD-finite functions
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Dn-finite functions

Remark

R ⊂ K[[x ]] diff. ring⇒ D(R) ⊂ K[[x ]] diff. ring

↓

Iterate the process

Dn-finite functions
Dn-finite functions are the nth iteration over K[x ], i.e., Dn(K[x ]).

K[x ] ⊂ D(K[x ]) ⊂ D2(K[x ]) ⊂ . . . ⊂ Dn(K[x ]) ⊂ . . .

DD-finite functions



D-finite Diff. definable Dn-finite Simple functions Conclusions

New Properties

f (x) ∈ Dn(K[x ]) of order d1.
g(x) ∈ Dm(K[x ]) of order d2.
a(x) algebraic over Dm(K[x ]) of degree p.

Property Function Is in Order bound
Composition f ◦ g Dn+m(K[x ]) d1
Alg. subs. f ◦ a Dn+m(K[x ]) pd1

a(x) algebraic over Dm(K [x ]) implies a(x) ∈ Dm+1(K[x ]).
Then f (a(x)) is in Dn+m+1(K[x ]).

DD-finite functions
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Dn ( Dn+1: Iterated exponentials

K [x ] ( D(K [x ]) ⊂ D2(K [x ])⊂ . . .⊂Dn(K [x ])⊂ . . .

ex /∈ K [x ], eex−1 /∈ D(K [x ]).

DD-finite functions
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Dn ( Dn+1: Iterated exponentials

K [x ] ( D(K [x ]) ( D2(K [x ])⊂ . . .⊂Dn(K [x ])⊂ . . .

ex /∈ K [x ], eex−1 /∈ D(K [x ]).

Iterated Exponentials

e0(x) = 1,
ên(x) =

∫ x
0 en(t)dt,

en+1(x) = exp(ên(x)).

DD-finite functions
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Dn ( Dn+1: Iterated exponentials

K [x ] ( D(K [x ]) ( D2(K [x ]) ( . . . ( Dn(K [x ]) ( . . .

ex /∈ K [x ], eex−1 /∈ D(K [x ]).

Iterated Exponentials

e0(x) = 1,
ên(x) =

∫ x
0 en(t)dt,

en+1(x) = exp(ên(x)).

{
en+1(x) ∈ Dn+1(K [x ])
en+1(x) /∈ Dn(K [x ])

DD-finite functions
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Diff. Algebraic functions

Definition
Let R ⊂ K[[x ]] be a differential ring and f (x) ∈ K[[x ]]. We say
that f (x) differentially algebraic over R if there is n ∈ N and
P(y0, . . . , yn) ∈ R[y0, . . . , yn] such that

P(f (x), f ′(x), . . . , f (n)(x)) = 0.

We denote by DA(R) the set of all differentially algebraic functions
over R.

Diff. definable D(R) Diff. algebraic DA(R)
↓ ↓

Linear diff. equations Polynomial diff. equations

DD-finite functions
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Inclusion into Diff. Algebraic

D(R) ⊂ DA(R).
R ⊂ S ⇒ DA(R) ⊂ DA(S).
DA(K[x ]) = DA(K).

Proposition: DA(Dn(R)) = DA(Dn−1(R)).
Theorem: Dn(K[x ]) ⊂ DA(K).

DD-finite functions
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Inclusion into Diff. Algebraic

D(R) ⊂ DA(R).
R ⊂ S ⇒ DA(R) ⊂ DA(S).
DA(K[x ]) = DA(K).

Proposition: DA(Dn(R)) = DA(Dn−1(R)).
Theorem: Dn(K[x ]) ⊂ DA(K).

Proposition
Let R ⊂ K[[x ]] be a differential ring. Then DA(D(R)) = DA(R).

The proof is constructive.

DD-finite functions
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Inclusion into Diff. Algebraic

D(R) ⊂ DA(R).
R ⊂ S ⇒ DA(R) ⊂ DA(S).
DA(K[x ]) = DA(K).
Proposition: DA(Dn(R)) = DA(Dn−1(R)).

Theorem: Dn(K[x ]) ⊂ DA(K).

Theorem
For all n ∈ N, if f (x) ∈ Dn(K[x ]), then f (x) ∈ DA(K).

DD-finite functions
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Inclusion into Diff. Algebraic

D(R) ⊂ DA(R).
R ⊂ S ⇒ DA(R) ⊂ DA(S).
DA(K[x ]) = DA(K).
Proposition: DA(Dn(R)) = DA(Dn−1(R)).
Theorem: Dn(K[x ]) ⊂ DA(K).

Example: double exponential

exp(exp(x)− 1) −→ f ′(x)− exp(x)f (x) = 0
↓

f ′′(x)f (x)− f ′(x)2 − f ′(x)f (x) = 0

DD-finite functions
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Inclusion into Diff. Algebraic

D(R) ⊂ DA(R).
R ⊂ S ⇒ DA(R) ⊂ DA(S).
DA(K[x ]) = DA(K).
Proposition: DA(Dn(R)) = DA(Dn−1(R)).
Theorem: Dn(K[x ]) ⊂ DA(K).

Example: tangent

tan(x) −→ cos(x)2f ′′(x)− 2f (x) = 0
↓

−2f (5)(x)f ′′(x)2f (x) + 12f (4)(x)f ′′′(x)f ′′(x)f (x)−
6f (4)(x)f ′′(x)2f ′(x)− 12f ′′′(x)3f (x)+
12f ′′′(x)2f ′′(x)f ′(x)− 4f ′′′(x)f ′′(x)3−
8f ′′′(x)f ′′(x)2f (x) + 8f ′′(x)3f ′(x) = 0

DD-finite functions
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Reverse inclusion

Is the other inclusion true? Can we have DA(K[x ]) = D∞(K[x ])?

DD-finite functions
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Reverse inclusion

Is the other inclusion true? Can we have DA(K[x ]) = D∞(K[x ])?

For some diff. algebraic functions, we can find an n ∈ N:

Riccati differential equation
Let y(x) be a solution to the Riccati differential equation

y ′(x) = c(x)y(x)2 + b(x)y(x) + a(x),

where a(x), b(x) ∈ Dn(K[x ]) and c(x) ∈ Dn−1(K[x ]).
Then y(x) ∈ Dn+2(K[x ]).

DD-finite functions
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Reverse inclusion

Is the other inclusion true? Can we have DA(K[x ]) = D∞(K[x ])?

But that is not always the case

Theorem (Noordman, Top, van der Put)
Let y(x) be a non-constant solution to the differential equation

y ′(x) = y(x)3 − y(x)2.

Then, there is no n ∈ N with y(x) ∈ Dn(K[x ]).

DD-finite functions
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Simple functions: handling singularities

DD-finite functions
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Singularities on differential equations

Zero and Singular set
Let f (x) ∈ K[[x ]]:

Zero set: Z (f ) = {α ∈ C : f (α) = 0}.
Singular set: S(f ) = {α ∈ C : α singularity of f }.

Theorem
Let f (x) ∈ K[[x ]] that satisfy the linear diff. equation

rd (x)f (d)(x) + . . .+ r0(x)f (x) = 0,

for some r0(x), . . . , rd (x) ∈ K[[x ]]. Then:

S(f ) ⊆ Z (rd )
d⋃

i=0
S(ri ).

DD-finite functions
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Creating new singularities

Closure properties computations may create new singularities

DD-finite functions



D-finite Diff. definable Dn-finite Simple functions Conclusions

Creating new singularities

Closure properties computations may create new singularities

Adding two D-finite functions I
ex −→ ∂ − 1.
Ai(x) −→ ∂2 − x .
ex + Ai(x):

(x − 1)∂3 − x∂2 − (x2 − x)∂ + (x2 − x + 1)

DD-finite functions
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Creating new singularities

Closure properties computations may create new singularities

Adding two D-finite functions II
log(x + 1) −→ (x + 1)∂2 + ∂.
sin(x) −→ ∂2 + 1.
log(x + 1) + sin(x):

(x + 1)(x2 + 2x + 3)∂4 + (x2 + 2x + 7)∂3+
(x + 1)(x2 + 2x + 3)∂2 + (x2 + 2x + 7)∂

DD-finite functions
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Creating new singularities

Closure properties computations may create new singularities

Multiplying two D-finite functions
Ai(x + 1) −→ ∂2 − x .
J1(x) −→ x2∂2 + x∂ + (x − 1)2.
Ai(x)J1(x):

x2(4x3 + 4x2 − 3)∂4 + 4x(x − 1)(x2 + 3x + 3)∂3−
2x2(4x4 − 4x2 + 6x + 9)∂2−
2x2(6x3 + 10x2 − 4x − 27)∂−

(4x7 + 12x6 + 12x5 − x4 − 28x3 − 11x2 + 6x − 9)

DD-finite functions
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Desingularization

Desingularization
INPUT: a differential equation L · f (x) = 0.
OUTPUT: a differential equation L̃ · f (x) = 0 such that:

1 For all g(x) with L · g(x) = 0, L̃ · g(x) = 0.
2 L̃ has no apparent singularities.

Previous work on desingularization
For differential systems over Q(x): M. Barkatou et al.
For Ore Operators: S. Chen, M. Jaroschek, M. Kauers,
M. F. Singer

Input → Closure property → Desing. → Output w/o sing.

DD-finite functions
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Desingularization

Desingularization
INPUT: a differential equation L · f (x) = 0.
OUTPUT: a differential equation L̃ · f (x) = 0 such that:

1 For all g(x) with L · g(x) = 0, L̃ · g(x) = 0.
2 L̃ has no apparent singularities.

Our approach
Being able to obtain directly through closure properties an
operator that has no new singularities by using only linear
algebra.

Input → Closure property → Output w/o new sing.

DD-finite functions
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Two key concepts

Noetherian modules
M is a Noetherian module if all its submodules are finitely
generated.

Localization ring
Given a multiplicatively closed set S ⊂ R, the localized ring of R
over S (denoted by RS) is the minimal extension to R where we
can divide by elements in S.

DD-finite functions
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S-simple diff. definable functions

Definition
Let R ⊂ K[[x ]] a differential subring and S ⊂ R multiplicatively
closed. We say that f (x) ∈ K[[x ]] is S-simple differentially
definable over R if there are r0(x), . . . , rd−1(x) ∈ R and s(x) ∈ S
such that:

s(x)f (d)(x) + rd−1(x)f (d−1)(x) + . . .+ r0(x)f (x) = 0.

We denote the set of all these functions by D(R, S).

DD-finite functions
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S-simple diff. definable functions

Definition
Let R ⊂ K[[x ]] a differential subring and S ⊂ R multiplicatively
closed. We say that f (x) ∈ K[[x ]] is S-simple differentially
definable over R if there are r0(x), . . . , rd−1(x) ∈ R and s(x) ∈ S
such that:

s(x)f (d)(x) + rd−1(x)f (d−1)(x) + . . .+ r0(x)f (x) = 0.

We denote the set of all these functions by D(R, S).

D-finite case
The set S controls the singularities of the functions in D(K[x ],S)!!

DD-finite functions
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S-simple diff. definable functions

D-finite case
The set S controls the singularities of the functions in D(K[x ],S)!!

Consider f (x) ∈ D(K[x ], S) for the following sets:
1 S = K: f (x) is analytic in C.
2 S = {p(x)n : n ∈ N}: f (x) can only have singularities in the

zeros of p(x).
3 S = K[x ] \ ℘ where ℘ is a prime ideal. Then f (x) does not

have singularities in any α ∈ V (℘).

DD-finite functions
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Adapting the main characterization

Characterization theorem - diff. def. case
Let R ⊂ K[[x ]] and f (x) ∈ K[[x ]]. It is equivalent:

1 f (x) ∈ D(R)
2 The following Fr(R)-vector space has finite dimension

〈f , f ′(x), f ′′(x), ...〉

DD-finite functions
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Adapting the main characterization

Characterization theorem - S-simple case
Let R ⊂ K[[x ]], S ⊂ R m. c. and f (x) ∈ K[[x ]]. It is equivalent:

1 f (x) ∈ D(R, S)
2 The following RS-module is finitely generated

〈f , f ′(x), f ′′(x), ...〉

DD-finite functions
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Addition is closed

Theorem (addition)
Let R ⊂ K[[x ]] be Noetherian, S ⊂ R m.c. and
f (x), g(x) ∈ D(R,S). Then f (x) + g(x) is again in D(R,S)

Proof:
Let M(f ) = 〈f (x), . . . , f (n)(x)〉RS .

M(f + g) ⊂ M(f ) + M(g)

R Noetherian ⇒ M(f ),M(g) Noetherian ⇒
M(f ) + M(g) Noetherian

Hence, M(f + g) is fin. generated and f (x) + g(x) ∈ D(R,S).

DD-finite functions
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Closure properties

Theorem (product)
Let R ⊂ K[[x ]] be Noetherian, S ⊂ R m.c. and
f (x), g(x) ∈ D(R,S). Then f (x)g(x) is again in D(R, S)

Theorem (derivation)
Let R ⊂ K[[x ]] be Noetherian, S ⊂ R m.c. and f (x) ∈ D(R,S).
Then f ′(x) is again in D(R, S)

Theorem (integration)
Let R ⊂ K[[x ]] be Noetherian, S ⊂ R m.c. and f (x) ∈ D(R,S).
Then for any F (x) with F ′(x) = f (x), F (x) ∈ D(R, S).

DD-finite functions
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Closure properties

Theorem
Let R ⊂ K[[x ]] be Noetherian and S ⊂ R multiplicatively closed.
Then D(R, S) is a differential extension of R closed under
integration.

f (x), g(x) S-simple D-finite of order d1, d2.

in D(R,S) Order bound
Addition (f + g) Unknown
Product (fg) Unknown

Differentiation f ′ Unknown
Integration

∫
f d1 + 1

DD-finite functions



D-finite Diff. definable Dn-finite Simple functions Conclusions

Closure properties examples

Adding two D-finite functions I
ex −→ ∂ − 1.
Ai(x) −→ ∂2 − x .
ex + Ai(x):

(x − 1)∂3 − x∂2 − (x2 − x)∂ + (x2 − x + 1)

DD-finite functions
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Closure properties examples

Adding two D-finite functions I
ex −→ ∂ − 1.
Ai(x) −→ ∂2 − x .
ex + Ai(x):

(x − 1)∂3 − x∂2 − (x2 − x)∂ + (x2 − x + 1)
↓

∂4 − (x2 + 1)∂3 + (x2 + 1)∂2 + (x3 + x − 2)∂ − (x3 − x − 1)

DD-finite functions
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Closure properties examples

Adding two D-finite functions II
log(x + 1) −→ (x + 1)∂2 + ∂.
sin(x) −→ ∂2 + 1.
log(x + 1) + sin(x):

(x + 1)(x2 + 2x + 3)∂4 + (x2 + 2x + 7)∂3+
(x + 1)(x2 + 2x + 3)∂2 + (x2 + 2x + 7)∂

DD-finite functions
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Closure properties examples

Adding two D-finite functions II
log(x + 1) −→ (x + 1)∂2 + ∂.
sin(x) −→ ∂2 + 1.
log(x + 1) + sin(x):

(x + 1)(x2 + 2x + 3)∂4 + (x2 + 2x + 7)∂3+
(x + 1)(x2 + 2x + 3)∂2 + (x2 + 2x + 7)∂

↓
4(x + 1)2∂5 + p4(x)∂4 + p3(x)∂3 + p2(x)∂2 + p1(x)∂,

deg(pi (x)) ≤ 5

DD-finite functions
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Closure properties examples

Multiplying two D-finite functions
Ai(x + 1) −→ ∂2 − x .
J1(x) −→ x2∂2 + x∂ + (x − 1)2.
Ai(x)J1(x):

x2(4x3 + 4x2 − 3)∂4 + 4x(x − 1)(x2 + 3x + 3)∂3−
2x2(4x4 − 4x2 + 6x + 9)∂2−
2x2(6x3 + 10x2 − 4x − 27)∂−

(4x7 + 12x6 + 12x5 − x4 − 28x3 − 11x2 + 6x − 9)

DD-finite functions
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Closure properties examples

Multiplying two D-finite functions
Ai(x + 1) −→ ∂2 − x .
J1(x) −→ x2∂2 + x∂ + (x − 1)2.
Ai(x)J1(x):

195x3∂5 + p4(x)∂4 + p3(x)∂3 + p2(x)∂2 + p1(x)∂
deg(pi (x)) ≤ 12

DD-finite functions
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Simple DD-finite functions

All results for S-simple D(R) require R Noetherian.
D-finite functions are not Noetherian.
Can we extend the result to DD-finite functions?

DD-finite functions
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Simple DD-finite functions

All results for S-simple D(R) require R Noetherian.
D-finite functions are not Noetherian.
Can we extend the result to DD-finite functions?

YES!
Instead of working with the whole D(K[x ]), we restrict to a smaller
Noetherian subring.

DD-finite functions
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Simple DD-finite functions

All results for S-simple D(R) require R Noetherian.
D-finite functions are not Noetherian.
Can we extend the result to DD-finite functions?

Definition
Let S ⊂ K[[x ]] be a multiplicatively closed set. We denote the set
of S-simple Dn-finite functions with Dn(K[x ], S) and we define it
recursively by:

D1(K[x ],S) = D(K[x ],K[x ] ∩ S).
Dn(K[x ], S) = D(Dn−1(K[x ],S),Dn−1(K[x ],S) ∩ S).

Intuitively, we control the leading coefficient of the equations that
define the elements in the whole chain of rings.

DD-finite functions
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Conclusions

Achievements
Extension of the holonomic framework.
Running implementation of closure properties.
Relation to differentially algebraic functions.
Control of singularities throughout closure properties.

Future work
Fast computation of truncation of Dn-finite functions.
Development of certified numerical evaluations.
Combinatorial meaning of the induced sequences.
Multivariate DD-finite functions.

DD-finite functions
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Thank you!
Contact webpage:

http://www.lix.polytechnique.fr/~jimenezpastor/

https://www.dk-compmath.jku.at/people/antonio

Code available:

https://github.com/Antonio-JP/dd_functions

DD-finite functions

http://www.lix.polytechnique.fr/~jimenezpastor/
https://www.dk-compmath.jku.at/people/antonio
https://github.com/Antonio-JP/dd_functions
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