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D-finite functions: the holonomic world
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Basic notation

Throughout this talk we consider:

e K: a computable field contained in C.
o K[[x]]: ring of formal power series over K.

o ' is the standard derivation w.r.t. x:

/

dex™ | =D (anx") = (n+ 1)capax”.

n>0 n>0 n>0

E%! DD-finite functions



D-finite
(o] J

Links to package

Package dd_functions
All results presented in this talk are included in the SageMath
package dd_functions.

o Repository:
https://github.com/Antonio-JP/dd_functions

o Documentation:
https://antonio-jp.github.io/dd_functions/

e Demo:
https://mybinder.org/v2/gh/Antonio-JP/dd_functions.
git/master?filepath=dd_functions_demo.ipynb
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@000

D-finite functions

Definition

Let f(x) € K[[x]]. We say that f(x) is D-finite if there exists

d € N and polynomials po(x), ..., pqs(x) € K[x] (not all zero) such
that:

pa(X)F D (x) + ...+ po(x)f(x) = 0.
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Examples

Many special functions are D-finite:

@ Exponential functions: e*.

e Trigonometric functions: sin(x), cos(x).
@ Logarithm function: log(x + 1).

°

Bessel functions: J,(x).

Hypergeometric functions: ,Fq < Zl’ Y ZP ;x).
1y, Dg

Airy functions: Ai(x), Bi(x).
Combinatorial generating functions: F(x), C(x),...
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Closure properties

f(x), g(x) D-finite of order di, d>.
a(x) algebraic over K(x) of degree p.

] Property H Function \ Order bound ‘
Ad(dition f(x) + g(x) di+ do
Product f(x)g(x) did,

Differentiation '(x) d1
Integration J f(x) di+1
Be Algebraic a(x) p
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Working with D-finite functions

There are several implementations of D-finite functions:

e mgfun: Maple package, by F. Chyzak and B. Salvy
@ HolonomicFunctions: Mathematica package, by C. Koutschan

@ ore_algebra: Sage package, by M. Kauers et al.
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Differentially definable functions
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Non-D-finite examples

There are power series that are not D-finite:

eX

Double exponential: f(x) =e

Tangent: tan(x) = SntJ

cos(x)

o-Weierstrass function.
Gamma function: f(x) = I'(x + 1).
Partition Generating Function: f(x) = 3,50 p(n)x".
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DD-finite functions

Definition

Let f(x) € K[[x]]. We say that f(x) is D-finite if there exists

d € N and polynomials po(x), ..., pqs(x) € K[x] (not all zero) such
that:

pa(X)F D (x) + ...+ po(x)f(x) = 0.

D-finite: NO
@ Double exponential: f(x) = e®".
@ Tangent: tan(x) = z‘g;((i))
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DD-finite functions

Definition
Let f(x) € K[[x]]. We say that f(x) is DD-finite if there exists
d € N and D-finite functions ro(x), ..., rq(x) (not all zero) such
that:

ra()F D (x) + ... + ro(x)f (x) = 0.

DD-finite: YES
@ Double exponential: f(x) = e® — f/(x) — ef(x) =0
e Tangent: tan(x) = ") _ c0s2(x) tan”(x) — 2 tan(x) = 0.

cos(x)
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Differentially definable functions

Let R C K[[x]] be a differential ring and f(x) € K[[x]]. We say
that f(x) is differentially definable over R if there exists d € N and
elements in R ro(x), ..., rq(x) (not all zero) such that:

ra(x)F D (x) + ... + ro(x)f(x) = 0.

We denote the set of all diff. definable functions over R by D(R).

e D-finite functions: D(K[x]).
o DD-finite functions: D(D(K[x])) = D?(K[x]).
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Characterization via Linear Algebra

The following are equivalent:

f(x) is differentially definable over R (f(x) € D(R))
0

The F-vector space (f(x), f'(x), f”’(x),...) has finite dimension.

e R C K|[[x]] is a differential subring

@ F is its field of fractions.
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Closure properties

f(x), g(x) D-finite of order di, d>.
a(x) algebraic over K(x) of degree p.

] Property H Function \ Order bound ‘
Ad(dition f(x) + g(x) di+ do
Product f(x)g(x) did,

Differentiation '(x) d1
Integration J f(x) di+1
Be Algebraic a(x) p
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Closure properties

f(x),g(x) in D(R) of order di, d.
a(x) algebraic over F of degree p.

] Property H Function \ Order bound ‘
Ad(dition f(x) + g(x) di+ do
Product f(x)g(x) did,

Differentiation '(x) d1
Integration J f(x) di+1
Be Algebraic a(x) p
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Closure properties

f(x),g(x) in D(R) of order di, d.
a(x) algebraic over F of degree p.

] Property H Function \ Order bound ‘
Ad(dition f(x) + g(x) di+ do
Product f(x)g(x) did,
Differentiation f'(x) d
Integration J f(x) di+1
Be Algebraic a(x) p
Proof for addition:
(F+8)™ : neN)p=(f"+¢" . neN)F
c (f" : neNe+ (g -
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Closure properties

f(x),g(x) in D(R) of order di, d>.
a(x) algebraic over F of degree p.

] Property H Function \ Order bound ‘
Ad(dition f(x) + g(x) di+ do
Product f(x)g(x) did,
Differentiation f'(x) d
Integration J f(x) di+1
Be Algebraic a(x) p
Proof for addition:
(F+8)" : neN)p=(f"+g : neN)
c(fM : neNe+ (g -
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D"-finite functions: iterating the process
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D"-finite functions

R c K[[x]] diff. ring = D(R) C K[[x]] diff. ring
1

Iterate the process
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D"-finite functions

R c K[[x]] diff. ring = D(R) C K[[x]] diff. ring
1

Iterate the process

D"-finite functions

D"-finite functions are the nth iteration over K[x], i.e., D"(K[x]).

K[x] ¢ D(K[x]) € D*(K[x]) C ... C D"(K[x]) C ... ]
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New Properties

f(x) € D"(K[x]) of order di.
g(x) € D™(K][x]) of order d>.
a(x) algebraic over D (K[x]) of degree p.

] Property H Function \ Is in \ Order bound
Composition fog D"™™M(K[x]) di
Alg. subs. foa D"T™M(K[x]) pds
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New Properties

f(x) € D"(K[x]) of order di.
g(x) € D™(K][x]) of order d>.
a(x) algebraic over D (K[x]) of degree p.

] Property H Function \ Is in \ Order bound
Composition fog D"™™M(K[x]) di
Alg. subs. foa D™ (K[x]) pdi

o a(x) algebraic over D™(K[x]) implies a(x) € D™ (K[x]).
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New Properties

f(x) € D"(K[x]) of order di.
g(x) € D™(K][x]) of order d>.
a(x) algebraic over D (K[x]) of degree p.

] Property H Function \ Is in \ Order bound
Composition fog D"™™M(K[x]) di
Alg. subs. foa D™ (K[x]) pdi

o a(x) algebraic over D™(K[x]) implies a(x) € D™ (K[x]).
@ Then f(a(x)) is in D™™™(K[x]).

E%! DD-finite functions



New Properties

f(x) € D"(K[x]) of order di.
g(x) € D™(K][x]) of order d>.
a(x) algebraic over D (K[x]) of degree p.

] Property H Function \ Is in \ Order bound
Composition fog D"™™M(K[x]) di
Alg. subs. foa D" ™(K[x]) pdi

o a(x) algebraic over D™(K[x]) implies a(x) € D™ (K[x]).
@ Then f(a(x)) is in D™™™(K[x]).
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D" C D"': Iterated exponentials

K[x] € D(K[x]) € D*(K[x])C...C D"(K[x])C.... ]

e ¢ Klx]
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D" C D"': Iterated exponentials

K[x] € D(K[x]) € D*(K[x])C...C D"(K[x])C.... ]

¢ Klx], e ¢ D(K[x]).
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D" C D"': Iterated exponentials

K[x] € D(K[x]) € D*(K[x])C...C D"(K[x])C ... ]

¢ Klx], e ¢ D(K[x]).
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D" C D"': Iterated exponentials

K[x] € D(K[x]) € D*(K[x])C...C D"(K[x])C ... ]

¢ Klx], e ¢ D(K[x]).

Iterated Exponentials

o &,(x) = [ en(t)dt,
o ent1(x) = exp(én(x)).
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D" C D"': Iterated exponentials

KIx] € D(K[) € DA(KD) € ... S DK € ... |

¢ Klx], e ¢ D(K[x]).

Iterated Exponentials

° &(x) = Jg en ent1(x) € D™H(K[X])
° e,,f_lzx) f)eX:(tgit);))_ { ent1(x) & D"(K[x])
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Diff. Algebraic functions

Definition

Let R C K][[x]] be a differential ring and f(x) € K[[x]]. We say
that f(x) differentially algebraic over R if there is n € N and
P(yo,..-,¥n) € R[¥0,---,¥n] such that

P(f(x), f'(x),...,f"(x)) =0.

We denote by DA(R) the set of all differentially algebraic functions
over R.

<
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Diff. Algebraic functions

Definition

Let R C K][[x]] be a differential ring and f(x) € K[[x]]. We say
that f(x) differentially algebraic over R if there is n € N and
P(yo,..-,¥n) € R[¥0,---,¥n] such that

P(f(x), f'(x),...,f"(x)) =0.

We denote by DA(R) the set of all differentially algebraic functions
over R.

<

Diff. definable D(R) Diff. algebraic DA(R)
1 +

Linear diff. equations Polynomial diff. equations
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Inclusion into Diff. Algebraic

o D(R) c DA(R).
e RC S = DA(R) C DA(S).
e DA(K][x]) = DA(K).
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Inclusion into Diff. Algebraic

o D(R) c DA(R).
e RC S = DA(R) C DA(S).
e DA(K][x]) = DA(K).

Proposition
Let R C K[[x]] be a differential ring. Then DA(D(R)) = DA(R).

The proof is constructive.
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Inclusion into Diff. Algebraic

D(R) C DA(R).

R C S = DA(R) C DA(S).

DA(K[x]) = DA(K).

Proposition: DA(D"(R)) = DA(D""1(R)).

For all n € N, if f(x) € D"(K[x]), then f(x) € DA(K).
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Inclusion into Diff. Algebraic

D(R) C DA(R).

R C S = DA(R) C DA(S).

DA(K[x]) = DA(K).

Proposition: DA(D"(R)) = DA(D""1(R)).
Theorem: D"(K[x]) C DA(K).

Example: double exponential

exp(exp(x) — 1) — Il’(x) —exp(x)f(x)=0
f"(x)f(x) — f(x)? — F/(x)f(x) =0
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Inclusion into Diff. Algebraic

o D(R) C DA(R).

o RC S= DA(R) C DA(S).

o DA(K[x]) = DA(K).

e Proposition: DA(D"(R)) = DA(D""1(R)).
e Theorem: D"(K[x]) C DA(K).

Example: tangent

tan(x) — cos(x)if”(x) —2f(x)=0
~26) ()7 ()2 (x) + 12FD (O F () (x)F(x)

6 (x)F7(x)2F/(x) — 12" (x)3F (x)+

x)3 -

0

L2F"(x)2F"(x)F(x) — 4F" (x)"(x)
8" (x)f"(x)2F (x) + 8F"(x)3f'(x) =
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Reverse inclusion

Is the other inclusion true? Can we have DA(K[x]) = D*°(K][x])? )
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Reverse inclusion

Is the other inclusion true? Can we have DA(K[x]) = D*°(K][x])? |

For some diff. algebraic functions, we can find an n € N:

Riccati differential equation

Let y(x) be a solution to the Riccati differential equation
y'(x) = c(x)y(x)? + b(x)y(x) + a(x),

where a(x), b(x) € D"(K[x]) and c(x) € D"1(K[x]).
Then y(x) € D"(K[x]).
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Reverse inclusion

Is the other inclusion true? Can we have DA(K[x]) = D*°(K][x])? )

But that is not always the case

Theorem (Noordman, Top, van der Put)

Let y(x) be a non-constant solution to the differential equation
y'(x) = y(x)* = y(x)*.

Then, there is no n € N with y(x) € D"(K[x]).
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Simple functions: handling singularities

E%! DD-finite functions



Simple functions
@000

Singularities on differential equations

Zero and Singular set

Let f(x) € K[[x]]:
o Zeroset: Z(f)={a e C : f(a)=0}.
o Singular set: S(f) = {a € C : a singularity of f}.

Let f(x) € K[[x]] that satisfy the linear diff. equation

ra(X)FD(x) + ... + ro(x)f(x) =0,

for some rp(x), ..., rg(x) € K[[x]]. Then:

d

S(F) € Z(ra) | S(ri).

i=0
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Singularities on differential equations

Zero and Singular set

Let f(x) € K[[x]]:
o Zeroset: Z(f)={a e C : f(a)=0}.
o Singular set: S(f) = {a € C : a singularity of f}.

Let f(x) € K[[x]] that satisfy the linear diff. equation

ra(X)FD(x) + ... + ro(x)f(x) =0,

for some rp(x), ..., rg(x) € K[[x]]. Then:

d

S(F) € Z(ra) | S(r).

i=0
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Creating new singularities

Closure properties computations may create new singularities J
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Creating new singularities

Closure properties computations may create new singularities J

Adding two D-finite functions |

o & — 00— 1.

o Ai(x) — 9% — x.
e &+ Ai(x):

(x —1)® —x0? — (x> = x)0 + (x> = x + 1)
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Creating new singularities

Closure properties computations may create new singularities J

Adding two D-finite functions |

o & — 00— 1.

o Ai(x) — 9% — x.
e &+ Ai(x):

(x —1)2® —x0? — (x> = x)0 + (x> = x + 1)
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Creating new singularities

Closure properties computations may create new singularities J

o log(x +1) — (x +1)9? + 0.
e sin(x) — 9% + 1.
o log(x + 1) + sin(x):

(x + 1)(x® +2x + 3)0* + (x> + 2x + 1)+
(x +1)(x> +2x +3)0% + (x2 + 2x + 7)0
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Creating new singularities

Closure properties computations may create new singularities J

o log(x +1) — (x +1)9? + 0.
e sin(x) — 9% + 1.
o log(x + 1) + sin(x):

(x + 1)(x? + 2x + 3)0* + (x® + 2x + 7)33+
(x +1)(x> +2x +3)0% + (x2 + 2x + 7)0
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Creating new singularities

Closure properties computations may create new singularities J

o Ai(x +1) — 9% — x.
o Ji(x) — x20% + x0 + (x — 1)
o Ai(x)Jh(x):

x?(4x3 + 4x% — 3)0* + 4x(x — 1)(x® + 3x +3)03—
2x2(4x* — 4x® + 6x + 9)0%—
2x2(6x3 4 10x% — 4x — 27)0—

(4x7 +12x°% + 12x% — x* — 28x3 — 11x% + 6x — 9)
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Desingularization

Desingularization
e INPUT: a differential equation L - f(x) = 0.
o OUTPUT: a differential equation £ - f(x) = 0 such that:

© For all g(x) with £- g(x) =0, L g(x)=0.
© L has no apparent singularities.

Previous work on desingularization

o For differential systems over Q(x): M. Barkatou et al.

@ For Ore Operators: S. Chen, M. Jaroschek, M. Kauers,
M. F. Singer

Input — Closure property — Desing. — Output w/o sing.
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Desingularization

Desingularization
o INPUT: a differential equation L - f(x) = 0.
o OUTPUT: a differential equation £ - f(x) = 0 such that:

© For all g(x) with £- g(x) =0, L g(x)=0.
© L has no apparent singularities.

Our approach

Being able to obtain directly through closure properties an
operator that has no new singularities by using only linear
algebra.

Input — Closure property — Output w/o new sing.
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Two key concepts

Noetherian modules

M is a Noetherian module if all its submodules are finitely
generated.

Localization ring

Given a multiplicatively closed set S C R, the localized ring of R
over S (denoted by Rs) is the minimal extension to R where we
can divide by elements in S.
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S-simple diff. definable functions

Let R C K][[x]] a differential subring and S C R multiplicatively
closed. We say that f(x) € K[[x]] is S-simple differentially
definable over R if there are ry(x),...,rq—1(x) € R and s(x) € S
such that:

s FD ) + rg1()FI (%) + ... + ro(x)f(x) = 0.

We denote the set of all these functions by D(R, S).
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S-simple diff. definable functions

Definition

Let R C K][[x]] a differential subring and S C R multiplicatively
closed. We say that f(x) € K[[x]] is S-simple differentially
definable over R if there are ry(x),...,rq—1(x) € R and s(x) € S
such that:

s FD ) + rg1()FI (%) + ... + ro(x)f(x) = 0.

We denote the set of all these functions by D(R, S).

D-finite case
The set S controls the singularities of the functions in D(K[x], S)!!
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S-simple diff. definable functions

The set S controls the singularities of the functions in D(K[x], S)!!

Consider f(x) € D(K[x], S) for the following sets:
Q@ S =K: f(x) is analytic in C.
@ S={p(x)" : neN}: f(x) can only have singularities in the
zeros of p(x).

@ S =K]x]\ p where p is a prime ideal. Then f(x) does not
have singularities in any a € V().

EE! DD-finite functions



Simple functions
oce

Adapting the main characterization

Characterization theorem - diff. def. case

Let R C K[[x]] and f(x) € K[[x]]. It is equivalent:
Q@ f(x) € D(R)
@ The following Fr(R)-vector space has finite dimension

(f, f'(x), f"(x),...)

E%! DD-finite functions



Simple functions
oce

Adapting the main characterization

Characterization theorem - S-simple case

Let R C K[[x]], S € R m. c. and f(x) € K[[x]]. It is equivalent:
Q@ f(x) e D(R,S)
@ The following Rs-module is finitely generated

(f, f'(x), f"(x),...)
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Addition is closed

Theorem (addition)

Let R C K[[x]] be Noetherian, S € R m.c. and
f(x),g(x) € D(R,S). Then f(x) + g(x) is again in D(R, S)

E%! DD-finite functions



Simple functions
®00

Addition is closed

Theorem (addition)

Let R C K[[x]] be Noetherian, S € R m.c. and
f(x),g(x) € D(R,S). Then f(x) + g(x) is again in D(R, S)

Proof:
Let M(f) = (f(x),..., f(")(x))RS.
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Addition is closed

Theorem (addition)

Let R C K[[x]] be Noetherian, S € R m.c. and
f(x),g(x) € D(R,S). Then f(x) + g(x) is again in D(R, S)

Proof:
Let M(f) = (f(x),..., f(")(x))RS.

M(f +g) C M(f) + M(g)
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Addition is closed

Theorem (addition)

Let R C K[[x]] be Noetherian, S € R m.c. and
f(x),g(x) € D(R,S). Then f(x) + g(x) is again in D(R, S)

Proof:
Let M(f) = (f(x),..., f(")(x))RS.

M(f +g) C M(f) + M(g)

R Noetherian = M(f), M(g) Noetherian =
M(f) + M(g) Noetherian
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Addition is closed

Theorem (addition)

Let R C K[[x]] be Noetherian, S € R m.c. and
f(x),g(x) € D(R,S). Then f(x) + g(x) is again in D(R, S)

Proof:
Let M(f) = (f(x),..., f(")(x))RS.

M(f + g) € M(f) + M(g)

R Noetherian = M(f), M(g) Noetherian =
M(f) + M(g) Noetherian

Hence, M(f + g) is fin. generated and f(x) + g(x) € D(R, S).
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Closure properties

Theorem (product)

Let R C K[[x]] be Noetherian, S € R m.c. and
f(x),g(x) € D(R,S). Then f(x)g(x) is again in D(R, S)

Theorem (derivation)

Let R C K[[x]] be Noetherian, S C R m.c. and f(x) € D(R, S).
Then f’(x) is again in D(R, S)

A\

Theorem (integration)

Let R C K[[x]] be Noetherian, S C R m.c. and f(x) € D(R, S).
Then for any F(x) with F'(x) = f(x), F(x) € D(R, S).
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Closure properties

Let R C K[[x]] be Noetherian and S C R multiplicatively closed.
Then D(R, S) is a differential extension of R closed under
integration.

f(x), g(x) S-simple D-finite of order di, da.

| [ in D(R,S) | Order bound

Addition (f +g) Unknown

Product (fg) Unknown

Differentiation ' Unknown
Integration Jf d+1
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Closure properties examples

Adding two D-finite functions |

e e —0—1.

o Ai(x) — 9% — x.
e X + Ai(x):

(x —1)8% —x0? — (x2 = x)0+ (x> —x +1)
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Closure properties examples

Adding two D-finite functions |

e e —0—1.

o Ai(x) — 9% — x.
e X + Ai(x):

(x —1)0% — x0% — (x2 = x)0 + (x> —x + 1)

!
= (2 +1)P+ (2 +1)0°+ (3 +x-2)0— (x> —x—-1
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Simple functions
ooce

Closure properties examples

o log(x +1) — (x +1)9% + 0.
e sin(x) — 9% + 1.
@ log(x + 1) + sin(x):

(x + 1)(x? + 2x + 3)0* + (x + 2x + 7)03+
(x +1)(x%> +2x +3)0% + (x2 + 2x + 7)0

ﬁ! DD-finite functions



Simple functions
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Closure properties examples

o log(x +1) — (x +1)9% + 0.
e sin(x) — 9% + 1.
@ log(x + 1) + sin(x):

(x + 1)(x? + 2x + 3)0* + (x + 2x + 7)33+
(x +1)(x%> +2x +3)0% + (x2 + 2x + 7)0
!
4(x 4+ 1)20° + pa(x)0* + p3(x)D* + pa(x)0* + p1(x)9,
deg(pi(x)) <5

EE! DD-finite functions
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Closure properties examples

o Ai(x+1) — 8% — x.
o J1(x) — x20% + x0 + (x — 1)2.
o Ai(x)h(x):

x?(4x3 + 4x% — 3)0* + 4x(x — 1)(x? +3x +3)03—
2x%(4x* — 4x? + 6x + 9)0*—
2x2(6x3 + 10x% — 4x — 27)0—

(4x7 +12x°% + 12x5 — x* — 28x3 — 11x% 4+ 6x — 9)

EE! DD-finite functions
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Closure properties examples

o Ai(x+1) — 8% — x.
o J1(x) — x20% + x0 + (x — 1)2.
o Ai(x)h(x):

195x30° + pg(x)0* + p3(x)93 + p2(x)0? + p1(x)0
deg(pi(x)) < 12

ﬁ! DD-finite functions
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Simple DD-finite functions

o All results for S-simple D(R) require R Noetherian.
@ D-finite functions are not Noetherian.

@ Can we extend the result to DD-finite functions?
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Simple DD-finite functions

o All results for S-simple D(R) require R Noetherian.
@ D-finite functions are not Noetherian.

@ Can we extend the result to DD-finite functions?

Instead of working with the whole D(K[x]), we restrict to a smaller
Noetherian subring.

E%! DD-finite functions
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Simple DD-finite functions

o All results for S-simple D(R) require R Noetherian.
@ D-finite functions are not Noetherian.

@ Can we extend the result to DD-finite functions?

Definition
Let S C K[[x]] be a multiplicatively closed set. We denote the set
of S-simple D"-finite functions with D"(K[x], S) and we define it
recursively by:

o DY(K[x],S) = D(K[x], K[x] N S).

o D"(K[x],S) = D(D"}(K[x],S),D"}(K[x], S) N S).

Intuitively, we control the leading coefficient of the equations that
define the elements in the whole chain of rings.

ﬁ! DD-finite functions
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Conclusions

@ Extension of the holonomic framework.

@ Running implementation of closure properties.
@ Relation to differentially algebraic functions.

@ Control of singularities throughout closure properties.

@ Fast computation of truncation of D"-finite functions.

@ Development of certified numerical evaluations.

@ Combinatorial meaning of the induced sequences.

@ Multivariate DD-finite functions.

EE! DD-finite functions
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Thank you!

Contact webpage:
@ http://www.lix.polytechnique.fr/~jimenezpastor/
@ https://www.dk-compmath. jku.at/people/antonio
Code available:

@ https://github.com/Antonio-JP/dd_functions

EE! DD-finite functions
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