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Appetizer

Let X = {x1,...,xn} be a finite set of indeterminates,
and (X) the free monoid on X.

(X) as a set: all the words in the alphabet X, including the empty
word e (later identified with 1 € Z over rings).

Monoid operation (multiplication): concatenation (string gluing)
X3X1 - XoX3 = x3X1Xox3 which is associative but non-commutative

Xp © X] = XoX{ £ X1Xp = X1 * X.

For a commutative ring R, the monoid ring R(X) is the set of
polynomials ) . r;w;, where r; € R and w; € (X) subject to the
usual addition and the multiplication, induced from (X).

Free associative algebra: K(X) for a field K ring: Z(X).
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Q: why doing these terribly general free algebras?

A: well, every associative algebra is an epimorphic image of a
certain free associative algebra in the following way:

Suppose A is gen. by ai,...,an over K then
0:K{x,...,xm) — A, Xx;— a;

is a homomorphism of K-algebras with the kernel
T = kerp C K(X), which is a two-sided ideal. Hence there is a
canonical isomorphism of K-algebras

A= K(xt,...,xm)/Z.

Example: commutator ideal
Klxt, ..oy xm] = K(x1, ..., xm)/({xjxi —xixj | 1 < i <j < n}).

Effective computations: we need Grobner bases over K(X)!
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Let X be a finite set of indeterminates,
(X) the free monoid on X and P = Z(X) or K(X).
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Let X be a finite set of indeterminates,

(X) the free monoid on X and P = Z(X) or K(X).

We can write any element f € P\ {0} as
f=cti+...+cpty

with
e coefficients ¢; € Z \ {0},
e monomials t; € (X) and

@ terms c;t;.
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Let X be a finite set of indeterminates,
(X) the free monoid on X and P = Z(X) or K(X).
We can write any element f € P\ {0} as

f=cti +...+cpty

with
e coefficients ¢; € Z \ {0},
e monomials t; € (X) and

@ terms cjt;.

A global monomial ordering < on (X) is a well-ordering
satisfying

Q@ x <y= uxw < uyw for all x, y, u, w € (X) and

@ 1< xforall x € (X).

Remark: there is no finite classification of orderings over (X).
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Let t, < ... < t1. Then, with respect to < we define
o LC(f) := ¢ is the leading coefficient,
e LM(f) := t; is the leading monomial and
@ LT(f):= city is the leading term.
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as the two—sided ideal generated by the leading terms of the
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as the two—sided ideal generated by the leading terms of the
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We have a natural notion of divisibility on (X): u divides w if and
only if there exist p,q € (X) such that w =p-u-gq, ie uvisa
subword of w.
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Let t, < ... < t1. Then, with respect to < we define
o LC(f) := ¢ is the leading coefficient,
@ LM(f) := t; is the leading monomial and
e LT(f) := a1ty is the leading term.

For ) # G C P we define

L(G) = (LT(g) | g € G\ {0})

as the two—sided ideal generated by the leading terms of the
elements in G.

We have a natural notion of divisibility on (X): u divides w if and
only if there exist p,q € (X) such that w =p-u-gq, ie uvisa
subword of w.

Hence a division algorithm of a polynomial p with respect to a
set F follows.
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Algorithm 1.1 NF
Input: fed Geg;
Output: k£ A, a normal form of f with respect to &,

B i=ufs

while ( (h # 0) and (G = {g € & Ln(g) divides Ln(h)} £ 0) ) do
choose any g € Gy;
compute [ = [{g),r = r{g) € Mon(T) such that lm(h) = (- lm(g) - r;

h=h— dctiny deoger:
lelg) -
end while
return h;
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What does it mean for an ideal of P to be two—sided?

An element f is in the two—sided ideal of P, generated by
{&1,--.,8m}, iff there exist £j;, pjj € P and d; € N, such that

m d;

i=1 j=1

This is a two—sided presentation of f.
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What does it mean for an ideal of P to be two—sided?

An element f is in the two—sided ideal of P, generated by
{&1,--.,8m}, iff there exist £j;, pjj € P and d; € N, such that

m d;

i=1 j=1

This is a two—sided presentation of f.

Note, that P¢ = P ®7z POPP naturally acts on P via

d d
dtiopi|eg=> ti-g-p P
j=1 j=1

(opp: “opposite”)
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Thus, we can use P€ for an easier encoding

m d;
:ZZ ij8i U:Z ZE’J®WU ogi =: Zplgl‘
i=1 j=1

i=1 \ j=1

=pi

with p; € P€, where we leave out the “o" denoting the action.
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Thus, we can use P€ for an easier encoding

m d; m
f=>> li& pi=)

i=1 j=1 i=1 \ j=

d; m
Ui pij | egi =Y _ pigi
1 i=1

=p;

with p; € P€, where we leave out the “o" denoting the action.

Let Z = (G) for a non—empty subset G C P. Clearly L(G) C L(Z).
G is called a Grobner basis for Z, if L(G) = L(Z).
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Thus, we can use P€ for an easier encoding

m d; . d; .
F=2.2 li-gi-9i=> (D li®py|ee=) pe
1 i=1

i=1 j=1 i=1 \ j=

=p;

with p; € P€, where we leave out the “o" denoting the action.

Let Z = (G) for a non—empty subset G C P. Clearly L(G) C L(Z).

G is called a Grobner basis for Z, if L(G) = L(Z).

Computationally: a single S-polynomial of a critical pair of
polynomials (f, g) from the commutative case is replaced by the
set of overlaps O(f, g): for f = xy,g = yz we have

X 1Y
y |z
X 1Y
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Q: why coefficients in Z are important?

A: Results of computations over Z contain information of
computations over prime fields GF(p) and rings Z/mZ of all
characteristics.

Later in the talk we will illustrate this in an example.
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Q: why coefficients in Z are important?

A: Results of computations over Z contain information of
computations over prime fields GF(p) and rings Z/mZ of all
characteristics.

Later in the talk we will illustrate this in an example.

We concentrate on free algebras Z{X), provide theoretical
algorithmic advances and detect intrinsic phenomena.
These occuring neither in K(X) nor over Z[X]!

Notably, Grébner bases over Z(X) are — in a sense — more often
infinite than over K(X).
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Models of Computation

Problem: R(X) is not Noetherian, even if a ring R is a field, thus
a generating set and a Grobner basis need not be finite.
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Models of Computation

Problem: R(X) is not Noetherian, even if a ring R is a field, thus
a generating set and a Grobner basis need not be finite.

Solution: 1) Formulate procedures in such a way, that in case
when a Grobner basis of a module with respect to a given
monomial ordering is finite, the procedure computes it and
terminates (as suggested by Mora, Pritchard).
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Models of Computation

Problem: R(X) is not Noetherian, even if a ring R is a field, thus
a generating set and a Grobner basis need not be finite.

Solution: 1) Formulate procedures in such a way, that in case
when a Grobner basis of a module with respect to a given
monomial ordering is finite, the procedure computes it and
terminates (as suggested by Mora, Pritchard).

2) Compute up to a specified length bound (generalizes a degree
bound). In the situation, when a module is N-graded, computing
wrt an ordering, compatible with the grading yields a truncated
Grobner basis, which is a part of the complete one.

In particular, the word problem in this case is decidable.
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Models of Computation

Problem: R(X) is not Noetherian, even if a ring R is a field, thus
a generating set and a Grobner basis need not be finite.

Solution: 1) Formulate procedures in such a way, that in case
when a Grobner basis of a module with respect to a given
monomial ordering is finite, the procedure computes it and
terminates (as suggested by Mora, Pritchard).

2) Compute up to a specified length bound (generalizes a degree
bound). In the situation, when a module is N-graded, computing
wrt an ordering, compatible with the grading yields a truncated
Grobner basis, which is a part of the complete one.

In particular, the word problem in this case is decidable.

3) Bad news: if a module cannot be graded by N or N”, and no
finite Grobner basis exists, we know very little on the module. In

particular, in this situation the word problem is undecidable.
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Genetics (A. Cohen et al.): check the latest Nobel Prize!

In 2005, the Dutch journal "Natuur en Techniek” asked:

is there a DNA change of cows so that they could produce cola
instead of milk. There are tools to perform the following five
allowed DNA string operations on the A, C, G, T

TCAT — T, GAG — AG,CTC — TC,AGTA — A, TAT — CT.

Question:

Can one (and how) transform the gene of milk
TAGCTAGCTAGCT to the gene of cola CTGACTGACT?
Is there a way to avoid hitting a retrovirus (close to corona,
originally related to mad cow disease) CTGCTACTGACT ?

In order to answer these questions, we need Grobner bases over
free algebras.
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Create K(A, C, G, T), collect the rules into the two-sided ideal
Z=(TCAT — T,...,), and check, whether the difference of gene
sequences milk-cola belongs to the ideal Z (ideal membership
problem).
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Create K(A, C, G, T), collect the rules into the two-sided ideal
Z=(TCAT — T,...,), and check, whether the difference of gene
sequences milk-cola belongs to the ideal Z (ideal membership
problem).

The Grobner basis F of Z is finite and nice indeed:
AF=GA—-A HL=CT —-T,=TCA- TA,

fr=TAT — T, fy = ATA— A, f; = AGT — AT.

Now we perform division with remainder wrt the Grobner basis F:
(milk) TAGCTAGCTAGCT —¢, TAGTAGTAGT

—)f6 TATATAT —)fs TAT —f T
(cola) CTGACTGACT —f, CTACTACT —¢, TATAT —4 T
(retro) CTGCTACTGACT —x TGT
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With a Grobner bases theory for objects in a certain category,
one usually strives to answer the questions like
@ ideal/submodule membership problem:

o in a boolean form (yes/no) or
o in a certified form (an instance of the division with remainder
algorithm)

@ what are the linear relations with coefficient in a given ring
between the given elements? (known as syzygies)

@ what is a subideal/submodule, expressed with a subset of the
set of variables? (elimination of variables)

@ and many more...

The answers to these questions in form of theory, algorithms and
implementations . ..

are rudimentary known for commutative polynomial rings with
coefficients in effective fields K[X] = K[xi, ..., xn];
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The answers to these questions in form of theory, algorithms and
implementations ...

for commutative polynomial rings with coefficients in principal
ideal rings R[X] have been only recently formulated in an
implementable way.

Thanks to the work of many people, among other D. Lichtblau,
J. Apel, F. Pauer, O. Wienand, G. Pfister, A. Friihbis-Kriiger,
A. Popescu, C. Eder, T. Hofmann, Teo Mora and F. Pritchard.
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The answers to these questions in form of theory, algorithms and
implementations ...

for commutative polynomial rings with coefficients in principal

ideal rings R[X] have been only recently formulated in an
implementable way.

Thanks to the work of many people, among other D. Lichtblau,
J. Apel, F. Pauer, O. Wienand, G. Pfister, A. Friihbis-Kriiger,
A. Popescu, C. Eder, T. Hofmann, Teo Mora and F. Pritchard.

“A Manual for creating own Grobner basis theory” by Teo Mora

Solving Polynomial Equation Systems IV:
Buchberger Theory and Beyond

This recent book (becoming the standard reference) summarizes
modern Grobner bases (Buchberger) theory for e.g. associative
algebras over effective rings.
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The answers to the questions above in form of theory, algorithms
and implementations ...

for associative free non-commutative algebras with coefficients in
effective fields K(X) = K(x1,...,xn)

are known; there are implementations in MAGMA (actual), GBNP
(GAP) and NCALGEBRA (MATHEMATICA) (modern),
BERGMAN, FELIX, OPAL (older).

SINGULAR:LETTERPLACE 4-1-3

We utilize the Letterplace correspondence by La Scala and
Levandovskyy, which allows e.g. to use commutative data
structures and special Letterplace Grobner bases. It has been
formulated in an implementable way.

With SINGULAR 4-1-3, we offer the broadest functionality among
all these systems at a decent speed.
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The answers to the questions above in form of theory, algorithms
and implementations ...

for non-commutative free associative algebras with coefficients in
rings R(X) = R(x1,...,Xn)

It suffices to implement R =7 and R = Z/mZ for m € N as
coefficients for our rings!

Block elimination orderings allow the treatment of (Z({Y)/J)(X)
via computing in Z(Y, X) subject to an appropriate ordering. We
offer at least two types of such block elimination orderings.

To the best of our knowledge, there are no computer algebra
systems, with which we could compare our implementation in
Z(X).
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Decidabililty |

Everyone knows that the word problem in K(X) is undecidable, i.e.
given p and | C K(X), there is no algorithm to check p € /.
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p € | & the remainder of division of p wrt a Grobner basis G is 0.
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given p and | C K(X), there is no algorithm to check p € /.

p € | via Grobner bases

p € | & the remainder of division of p wrt a Grobner basis G is 0.

Assuming a well-ordering <, the bottleneck is the computation of
a Grobner basis: since R(X) is not Noetherian (even for a ring R
being a field), a Grobner basis need not be finite.

Can we say more? Yes!
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Decidabililty |

Everyone knows that the word problem in K(X) is undecidable, i.e.
given p and | C K(X), there is no algorithm to check p € /.

p € | via Grobner bases
p € | & the remainder of division of p wrt a Grobner basis G is 0.

Assuming a well-ordering <, the bottleneck is the computation of
a Grobner basis: since R(X) is not Noetherian (even for a ring R
being a field), a Grobner basis need not be finite.

Can we say more? Yes!

Finite GB = Decidable
If a Grobner basis of an ideal / wrt < is finite, it will be computed
in finitely many steps. GB Algorithm need to have this property.
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Decidabililty I

Graded by Well-ordered Monoid = Decidable

If a generating set of an ideal / can be graded via a monoid I,
which is (think about N, N")

o well-ordered (say, via <),
@ has only finitely many elements smaller wrt < than the
identity,
then computing wrt any ordering, compatible with I yields a
truncated Grobner basis.
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Decidabililty I

Graded by Well-ordered Monoid = Decidable

If a generating set of an ideal / can be graded via a monoid I,
which is (think about N, N")

o well-ordered (say, via <),
@ has only finitely many elements smaller wrt < than the
identity,
then computing wrt any ordering, compatible with I yields a
truncated Grobner basis.

In other words: operations with elements, whose LMs are bigger
than some v € I, do not change the elements whose LMs are
smaller than ~.

Since p has a finite graded degree, say 7, we have

pel & pecBocyln
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Decidabililty Il

Bad news

if a module (or an ideal) cannot be graded by I', and no finite
Grobner basis exists, we know very little on the module.
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Decidabililty Il

Bad news

if a module (or an ideal) cannot be graded by I', and no finite
Grobner basis exists, we know very little on the module.

Computing up to a degree bound does not result in a trustable
truncation since

manipulating elements, whose LMs are bigger than some v €T,
will change the elements whose LMs are smaller than ~y.

Thus, if p ¢ I, even by increasing the truncation bound we will be
involved in the infinite computation, what is the real meaning of
undecidability.

Good news

knowing the affirmative answer p € | in advance makes the
computation of the certificate (or a proof) for this decidable!
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Decidabililty 1V: algebras of iterated two-sided inverses

An important exception: algebras of iterated two-sided inverses

Let A be a fin. pres. assoc. algebra and a € A be regular.

Adjoining to A a new variable t with relations ta— 1, at — 1,
we obtain an algebra, containing A as a subalgebra.

Repeating this finitely many times, we obtain an algebra of iterated
two-sided inverses over A.
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Decidabililty 1V: algebras of iterated two-sided inverses

An important exception: algebras of iterated two-sided inverses
Let A be a fin. pres. assoc. algebra and a € A be regular.

Adjoining to A a new variable t with relations ta— 1, at — 1,
we obtain an algebra, containing A as a subalgebra.

Repeating this finitely many times, we obtain an algebra of iterated
two-sided inverses over A.

(Amitsur, P. M. Cohn): doing this for all elements of K(X) \ {0},
we obtain the free field on X, the universal field of fractions of
K(X).
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Decidabililty: algebras of iterated two-sided inverses

Almost a miracle: Cohn and Reutenauer (1999) J

The word problem in the free field is decidable.

By using
@ Higman's linearization trick from the ring theory,
@ linear realizations, stemming initially from control theory
@ test for maximality of the inner rank of a matrix over K(X)

one can not only prove the decidability, but also give algorithms to
compute the boolean form of the word problem!

J. Hoffmann, R. Schnur (Saarbriicken): implementations
ncrat.lib in SINGULAR and FreeFractions.jl in OSCAR.
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Algebraic Analysis with LETTERPLACE

The newly released subsystem SINGULAR:LETTERPLACE can
perform computations (Grébner bases and numerous advanced
applications of them) within free associative algebras over fields
and over Z.

Example (L.-S.-Z. paper, ISSAC 2020)

In D1(Q) = Q(x,0 | dx = x0 + 1), consider the subalgebra S,
generated by {x0?,x20}. S is even Z-graded as D; itself.

Questions: (1) does the Euler derivation x0 belong to S?
(2) What is the kernel of the homo of QQ-algebras

Q(a, b) = Q(x,0)/(0x — x0 — 1), ars xD?, b x20,

i.e. find a presentation of S.

Questions like these require computations in the free algebra.
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Answers

Use a for x92, b for x20 and ¢ for xd. Then ¢ € S since

(1) ¢ = — 25 (6(ab)® — 21ba’b + 24(ba)* — 9b*a> — 32ab — 76ba ) .
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Use a for x92, b for x20 and ¢ for xd. Then ¢ € S since

(1) ¢ = — 25 (6(ab)® — 21ba’b + 24(ba)* — 9b*a> — 32ab — 76ba ) .

(2) S 2 Q(a, b)/J, where J is generated by long and complicated
ab® — 3bab?® + 3b%ab — b3a — 6b2, . . .,

9a%bab — 108ba’ba + 171baba®> — 72b°a° + 34a°b — 800aba — . ..
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Answers

Use a for x92, b for x20 and ¢ for xd. Then ¢ € S since

(1) ¢ = — 25 (6(ab)® — 21ba’b + 24(ba)* — 9b*a> — 32ab — 76ba ) .

(2) S = Q(a, b)/J, where J is generated by long and complicated
ab® — 3bab?® + 3b%ab — b3a — 6b2, . . .,

9a°bab — 108ba’ba + 171baba® — 72b*a* + 34a”b — 800aba — ...

Since {a, b, c} generate the same algebra as {a, b} by (1), we have

S = Q(a, b, c)/(cb—bc—b, ca—ac+a, ba—ab+3c®—c, c3—ab+c?).

The Grobner basis property of the latter ideal of relations imply,
that we are dealing with a GR-algebra incarnation of S:

Q(a, b, c | ba = ab—3c?®+c, cb = bc+b, ca= ac—a)/{c3—ab+c?)
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What is and what does LETTERPLACE

The name Letterplace comes from the Letterplace
correspondence between the ideals of the free associative algebra
K(X) and the so-called Letterplace ideals of the infinitely gen.
commutative algebra K[X | N] = K[x;(j) : x; € X, j € N].

e By means of the correspondence, Letterplace Grobner bases from
K[X | N] are transferred back to Grobner bases in K(X).
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e This theory together with algorithms was introduced by
R. La Scala and V. Levandovskyy (JSC papers 2009, 2013 etc).

In the modern implementation in SINGULAR: LETTERPLACE the
user operates with objects in free algebras.
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What is and what does LETTERPLACE

The name Letterplace comes from the Letterplace
correspondence between the ideals of the free associative algebra
K(X) and the so-called Letterplace ideals of the infinitely gen.
commutative algebra K[X | N] = K[x;(j) : x; € X, j € N].

e By means of the correspondence, Letterplace Grobner bases from
K[X | N] are transferred back to Grobner bases in K(X).

e This theory together with algorithms was introduced by
R. La Scala and V. Levandovskyy (JSC papers 2009, 2013 etc).

In the modern implementation in SINGULAR: LETTERPLACE the
user operates with objects in free algebras.

But: internally all computations happen in the Letterplace ring.

The very theory allows to use commutative data structures and
reuse via reinterpretation some of the functionality.
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Bimodules and One-sided Modules

For treating not only ideals, but also bimodules, we have to work
with a free bimodule of finite rank.

generator of a free bimodule, commuting only with the constants

For a finitely presented algebra R, let €; denote the i-th canonical
from the ground field/ring. |

Then the free bimodule of rank r € N is F,(A) = @_; Ae; A.

Operations with one-sided ideals/modules over K(X): easy;
over fin. pres. algebra A = K(X)/Z and F,(A): involved ! \

We already provide right Grobner bases for the above.
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Grobner Technology = Grobner Trinity + Grobner Basics

Grobner Trinity consists of three components

©@ STD/GB Grobner basis G of a module M

@ SYZ Grobner basis of the syzygy module of M

© LIFT the transformation matrix between two bases G and M
The function LIFTSTD computes all the trinity data at once.
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Grobner Technology = Grobner Trinity + Grobner Basics

Grobner Trinity consists of three components

©@ STD/GB Grobner basis G of a module M

@ SYZ Grobner basis of the syzygy module of M

© LIFT the transformation matrix between two bases G and M
The function LIFTSTD computes all the trinity data at once.

Grobner Trinity should be formulated separately for one-sided (left
and right) and for two-sided modules (bimodules).

Therefore we have twostd and rightstd functions.
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Grobner basics (as coined by Buchberger, Sturmfels et al.)

. are the most important and fundamental applications of
Grobner Bases.
Universal Grobner Basics

o Ideal (resp. module) membership problem (reduce, NF)
Intersection of ideals resp. submodules
Quotient and saturation of ideals
Kernel of a module homomorphism (modulo)

Intersection with subrings (aka elimination of variables)

Kernel of a ring homomorphism and algebraic dependence
between polynomials

o Hilbert series of modules (ncHilb.1lib, fpadim.lib)

We offer these and other functionality incl. various dimensions with
our latest release, both over effective fields and over Z as coeffs.

27 /34



Monomial Orderings

One advantage of the Letterplace Correspondence is the
formulation of the theory for K(X) and Z(X) in terms of
commutative polynomial data structures.

In the free case there's no analogon to Robbiano’'s Lemma and
there’s no classification of monomial orderings.

We provide the following monomial orderings

dp degree right lexicographical ordering
Dp degree left lexicographical ordering
Wp (w) w—weighted degree left lexicographical ordering
1lp/rp left /right total elimination ordering
(a(v),<) | extra v—weight ordering extension of <
where w = (wq,...,wy),w; € Ny and v = (vi,...,v,),v; € Ny
are weight vectors for the ordered list of variables x1, ..., x,.

Note: 1p and rp and iterated (a(V1), a(Vv2),..,a(VN),<) for
certain vectors V; are block elimination orderings.
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Fundamental Functionality

Below, F is a set of generators and G is a two-sided Grébner basis
for an ideal or a submodule.

liftstd(F, TI[, S1)

twostd(F) a two-sided Grobner basis of F

reduce(p, G) a normal form of a poly/vector p wrt G

syz(F) a generating set of the syzygy bimodule of F

modulo (M, F) kernel of a bimodule homomorphism, defined
by M into a bimodule, presented by F

1ift (M, N) computation of a bi-transformation matrix

between a module M and its submodule N
two-sided Grobner basis, bi-transformation
matrix T and (optionally) a generating set S
for the syzygy bimodule of F

rightstd(F)

a right Grobner basis of F
especially useful over quotient rings (qring)
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Genetics Example

LIB "freegb.lib";

ring r = 0,(A,C,G,T),Dp;

ring R = freeAlgebra(r,15);

ideal I=T*C*AxT-T,GxA*G-AxG,C*T*xC-T*C,A*G*T*xA-A,T*xA*xT-Cx*T,;
option(prot); ideal J = twostd(I);

poly milk = TxA*G*C*xTxA*xGxC*T*A*xG*xCxT;

reduce(milk, J); // T

poly cola = CxT*G*AxCxTxG*xA*Cx*T;

reduce(cola, J); // T, same as milk, so "yes" to cola
poly retro = CxT*G*CxTxAxC*T*GxA*xCxT;

reduce(retro, J); // TGT, not the same, so "no" to retro

with the help of the function 1ift we are able to extract the exact
way of the transformation of milk into the cola.
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Some live examples over Z({x, y, z)

LIB "freegb.lib";

ring r = integer, (x,y,2),dp;

ring R = freeAlgebra(r, 7);

ideal I = 3x, 2y;

option(prot); // explain here what the protocol means
I = twostd(I); I;

ideal J = z*xy - y*z + 272, zxx + y~2, y*x - 3*x*y;
J = twostd(J); J; // we see the impact of 7 on leadcoeffs

ring r7 = 7,(x,y,2),dp; // this time we compute over Z/7Z :
ring R7 = freeAlgebra(r7, 7);

ideal J = zxy - y*z + z72, z*x + y 2, y*x — 3*x*y;
J = twostd(J); J;
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Advanced Functionality: libraries in SINGULAR language

freegb.lib main initialization library (also contains legacy,
conversion and technical routines)

fpaprops.lib various properties such as GK dimension and
Noetherianity of fin. pres. algebras

fpadim.lib vector space dimensions and bases

of fin.-dim. algebras, and finite Hilbert series
fpalgebras.lib | predefined relations of many algebras including
group algebras of fin. gen. groups

ncHilb.1lib computations of multi-graded Hilbert series of
(Tiwari, LaScala) | not necessary fin. pres. algebras (automata)
ncfactor.lib factorization of polynomials over free and
(Heinle-L) fin. pres. algebras
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Advanced Functionality

fpaprops.1lib, one of our flagships, offers computations of
e Gel'fand—Kirillov dimension (aka growth) of K(X)/T
@ an upper bound of the global dimension of K(X)/Z
@ whether the factor algebra is left/right/weak Noetherian

@ whether the factor algebra is prime or semiprime
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Integro-differential algebra

LIB "freegb.lib";

ring r = 0,(D,I,x),dp;

ring R = freeAlgebra(r, 5);

ideal J = Dxx-x*xD-1, I*x-x*I+I*I, D*xI-1;
J = twostd(J); J; // infinite GB!

ring r = 0,(D,I,x),rp; // other ordering
ring R = freeAlgebra(r, 5);

ideal J = D*x—-x*D-1, I*x-x*I+IxI, D*I-1,;
J = twostd(J); J; // a finite GB

LIB "fpaprops.lib";

1pGkDim(J); // 3

1pGlDimBound(J); // 3 hence gldim=GKdim=3
lpIsPrime(J); // 0

1lpIsSemiPrime(J); // O

1pNoetherian(J); //0
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