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Abstract

A crystal is a kind of directed labeled graph arising in the field of representation theory.
We consider an adapted abstract notion of crystals, called K-graphs. A K-graph structure
on a free monoid is a directed colored graph structure satisfying certain conditions for
the product of the monoid. A K-congruence on the free monoid is one that identifies
isomorphic connected components of the K-graph. In this work we define a notion of K-
string rewriting systems which generate such K-congruences. For a class of K-graphs called
proper, the interaction of the string rewriting system with the K-graph structure reduces
the proofs of the rewriting properties of termination and (local) confluence to a family of
reduced words in the free monoid, called words of highest weight. From this we deduce
K-versions of Newman’s lemma, critical pair lemma, and Squier’s coherent completion
theorem. Finally we illustrate these constructions with an example for the plactic monoid
of type A. The constructions in this work are phrased in terms of K-graphs, though many
of their applications lie in the original context of crystals.

1 Introduction

A central approach in the study of confluence in rewriting theory is to reduce the problem to
a subset of branchings namely to local-confluence, and to critical branchings. This approach
is detailed in two results: Newman’s Lemma [8], where the property of confluence of a termi-
nating string rewriting system is equated to the property of local confluence; and the Critical
Pair Lemma (CPL) [6], where the local confluence of a string rewriting system is equated to
confluence of its critical branchings, which are pairs of overlapping rules on a minimal source.

In an algebraic context, rewriting theory has found applications in the higher dimensional
study of objects like monoids, small categories, and algebras over a field. This consists of real-
izing the object in question by a presentation with generators and oriented relations compatible
with the defining axioms of the algebraic object. In this context, a confluence diagram may
be regarded as a relation between two rewriting sequences, which in turn are relations in the
presentation itself, thus one may view the confluence diagrams as relations between relations.
A question in this direction is how to obtain a set of generating relations between relations
from the given presentation, so that any confluence diagram of the rewriting system can be de-
scribed in terms of this specified set. This question is answered by Squier in [10] in the context
of monoids and small categories. Namely, given a presentation of a monoid or a small category
by generators and oriented relations, the rewriting system of which is convergent, then the
generating relations between relations are the confluence diagrams of critical branchings. The
data of generators, generating relations, and generating relations between relations is called a
coherent presentation. An important aspect of the study of relations between relations in pre-
sentations of monoids, is that it provides an algorithmic approach to the study of the monoid’s
lower-dimensional homology. Note however that a critical branching may admit several con-
fluence diagrams in Squier’s construction. To complete this algorithmic point of view, Malbos
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and Guiraud in [3] employ a notion of a normalization strategy which is a deterministic way to
choose confluence diagrams for critical branchings. In their work, they take the ideas of Squier
even further: they show that for a small category presented by generators and oriented rela-
tions, whose string rewriting system is convergent, one can construct a cofibrant replacement
for the category. In a grander scheme these constructions facilitate an algorithmic approach to
the study of the homology of small categories.

The works of Squier, and Guiraud and Malbos provide a way of determining coherent pre-
sentations of small categories and monoids from convergent ones. Finding a convergent presen-
tation in the first place and computing the confluence diagrams of critical branchings remains
a difficult task, as in general this problem is heavily dependent on the intrinsic properties of
the monoid and the presentation.

In this work, we consider a notion of a string rewriting system adapted to the theory
of crystals, and give corresponding versions of three classical results in rewriting theory. The
notion of crystals was first defined by Kashiwara in [5] in his study of representations of complex
semisimple Lie algebras. We phrase our constructions in terms of an abstracted version of
crystals called K-graphs, which have been adapted from [1]. This work emerged from a study
of coherence of the plactic monoid of type C in [7], and forms part of a forthcoming PhD thesis
by the author.

In Section 2 we introduce the notion of a K-graph as a directed colored graph satisfying
certain conditions. We then consider a K-graph structure on the free monoid generated by the
vertices of a K-graph. A K-congruence is one that identifies isomorphic connected components
of the K-graph on the free monoid. We then introduce a notion of a K-string rewriting system.
This is a string rewriting system that is compatible with the K-graph structure, and such
that the congruence generated by it is a K-congruence. In Section 3 we show that if K is
proper, then the study of rewriting properties of termination, and local confluence is reduced
to a subfamily of words called words of highest weight. In particular we obtain K-versions of
Newman’s lemma, the critical pair lemma, and of Squier’s coherent completion theorem. In
Appendix A we illustrate these constructions and results with an example of the plactic monoid
of type A. Finally in Section 4 we briefly discuss how this approach could be extended to higher
dimensions in accordance with the work of Guiraud and Malbos [3].

2 K-string rewriting systems

A K-graph is a directed colored graph Γ with vertex set V (Γ), and with edges colored from a
set I, satisfying the following conditions

(P1) for any x ∈ V (Γ) and i ∈ I, there exists at most one edge e with source (target) x and
color i,

(P2) for any i ∈ I, there exists no infinite directed path in Γ with edges colored by i.

It is practical to realize the K-graph structure via the Kashiwara operators, which are partial
maps ei and fi on V (Γ) defined by setting

x
i−→ y if and only if y = fi.x, and x = ei.y.

Remark 2.1. The notion of crystals was introduced by Kashiwara in [5] in his study of the
representation theory of quantum groups. In this work the constructions are phrased in terms
of K-graphs, which are an abstract graph-theoretic adaptation of crystals as introduced in [1].
We remark that a large class of crystals satisfies (P1), (P2).
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Given a K-graph Γ, the graph structure extends to the free monoid on the vertices V (Γ) of
Γ, denoted Γ∗. The Kashiwara operators ei and fi extend to Γ∗ inductively on the lengths of
words w = uv ∈ Γ∗ as follows

ei.(uv) =

{
(ei.u)v if ϕi(u) ≥ εi(v),
u(ei.v) if ϕi(u) < εi(v),

(1)

and

fi.(uv) =

{
(fi.u)v if ϕi(u) > εi(v),
u(fi.v) if ϕi(u) ≤ εi(v),

(2)

where εi, ϕi : Γ∗ −→ N are also defined inductively via

εi(w) = #{ei.w, e2
i .w, . . . }, ϕi(w) = #{fi.w, f2

i .w, . . . },

which are finite quantities by an iteration of (P2). We remark here a few consequences of these
definitions:

i) ei and fi are partial operators on Γ∗: e.g. if ϕi(u) ≥ εi(v) and ei.u is undefined, then
ei.(uv) is also undefined;

ii) the definition of ei and fi on a word w is independent of the factorization w = uv;

iii) ei and fi are inverse operators: fi.(ei.w) = w and ei.(fi.w) = w.

Thus the free monoid Γ∗ carries a directed colored graph structure, and we call it the free
K-monoid generated by Γ. As Γ∗ is a graph, we have a notion of connected components in Γ∗.
The connected component of w ∈ Γ∗ is denoted by B(w). Using this notion, we specify a type
of congruence on the free K-monoid.

Definition 2.2. Let Γ be a K-graph, and Γ∗ the corresponding free K-monoid. A K-congruence
on Γ∗ is a congruence ∼ such that if w ∼ w′, then

i) there exists a directed colored graph isomorphism p : B(w) −→ B(w′) such that p(w) = w′,

ii) if ei.w (resp. fi.w) is defined, then so is ei.w
′ (resp. fi.w

′) and we have

ei.w ∼ ei.w′ (resp. fi.w ∼ fi.w′).

The largest such congruence, denoted ∼Γ is defined by setting w ∼Γ w
′ if and only if there

exists an isomorphism p as in Definition 2.2 i).
We specify here a class of K-graphs that occurs often and has practical combinatorial ad-

vantages. A word w ∈ Γ∗ is called a word of highest weight if ei.w is undefined for all i ∈ I. If Γ
is such that every connected component B(w) ⊂ Γ∗ contains a unique word of highest weight,
the K-graph Γ is called proper.

Next we introduce a notion of string rewriting which is compatible with a K-graph structure.
One may view the next definition simply as an oriented generating data for a K-congruence,
hence the similarity with Definition 2.2.

Definition 2.3. A K-string rewriting system is a string rewriting system (Γ∗, R) where Γ is a
K-graph, and such that if w =⇒ w′ is a rewriting rule in R, then

i) there exists a directed colored graph isomorphism p : B(w) −→ B(w′) such that p(w) = w′,
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ii) if ei.w (resp. fi.w) is defined, then so is ei.w
′ (resp. fi.w

′) and we have

(ei.w =⇒ ei.w
′) ∈ R (resp. (fi.w =⇒ fi.w

′) ∈ R).

For a K-string rewriting system (Γ∗, R), the congruence in Γ∗ generated by R is a K-
congruence. Thus K-string rewriting systems are well-adapted at studying such congruences.
We call a K-string rewriting system proper if Γ∗ is proper.

3 Confluence for K-string rewriting systems

Here we interpret Newman’s lemma and the critical pair lemma in the context of K-string
rewriting systems.

For a K-string rewriting system (Γ∗, R), denote by Seq(Γ∗, R) the set of rewriting sequences
of (Γ∗, R); by Br(Γ∗, R) the set of branchings of (Γ∗, R); and by Crit(Γ∗, R) the set of critical
pairs of (Γ∗, R). We denote the length function on Seq(Γ∗, R) by |·|. We then have the following
result.

Theorem 3.1. Let (Γ∗, R) be a K-string rewriting system. Then the Kashiwara operators ei
and fi extend to Seq(Γ∗, R), Br(Γ∗, R), and Crit(Γ∗, R) and commute with the source and target
maps of the K-rewriting system. In particular

i) for s ∈ Seq(Γ∗, R) and i ∈ I such that ei.s (resp. fi.s) is defined, we have a commutative
square

w1
s +3

OO

i

w2

ei.w1 ei.s
+3 ei.w2

i

OO

resp.

fi.w1
fi.s +3

OO

i

fi.w2

w1 s
+3 w2

i

OO

and |ei.s| = |s| (resp.|fi.s| = |s|),

ii) for a branching (α, β) ∈ Br(Γ∗, R) and i ∈ I such that ei.(α, β) (resp. fi.(α, β)) is defined,
we have

(α, β) is confluent if and only if ei.(α, β) is confluent(
resp. (α, β) is confluent if and only if fi.(α, β) is confluent

)
.

This result shows that the property of termination and of confluence of a K-string rewriting
system is independent of the action of the Kashiwara operators. If the K-graph Γ is proper,
we can use this result to obtain reduced versions of classical rewriting results in our context as
follows. Let (Γ∗, R) be a proper K-string rewriting system and consider an abstract rewriting
system ((Γ∗)0, R0) where

(Γ∗)0 := {w ∈ Γ | w a word of highest weight in Γ∗},

and

R0 := {tuv tαv
=⇒ tu′v | tuv ∈ (Γ∗)0, u

α
=⇒ u′ ∈ R}.

We have the following consequence of Theorem 3.1.
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Corollary 3.2. Let (Γ∗, R) be a proper K-string rewriting system. Then (Γ∗, R) is terminating
respectively (locally) confluent if and only if ((Γ∗)0, R0) is terminating respectively (locally)
confluent.

Using this result, we then obtain corresponding K-versions of two classical results in rewrit-
ing theory.

Theorem 3.3 (Newman’s lemma forK-SRS). Let (Γ∗, R) be a proper K-string rewriting system.
Then (Γ∗, R) is confluent if and only if ((Γ∗)0, R0) is terminating and locally confluent.

To state the Critical Pair Lemma, we remark that the notion of critical pairs descends to the
abstract rewriting system ((Γ∗)0, R0). These are the branchings (α, β) with α, β ∈ R0 which
are critical in R.

Theorem 3.4 (K-Critical Pair Lemma). Let (Γ∗, R) be a proper K-string rewriting system.
Then (Γ∗, R) is locally confluent if and only if the critical pairs of ((Γ∗)0, R0) are confluent.

3.5 Squier’s coherent extension for K-string rewriting systems

Given a convergent string rewriting system X, Squier’s theorem [10] asserts that the confluence
diagrams of X can be interpreted in terms of a homotopy basis, which is a set Ω consisting of
confluence diagrams of critical pairs. Note that one may choose different confluence diagrams
for Ω. The work of Guiraud and Malbos in [3] gives a deterministic procedure of constructing
these base confluence diagrams via normalization strategies, in the case when X is reduced.

In the context of K-string rewriting systems, we have the following interpretation of Squier’s
coherent completion theorem.

Theorem 3.6 (Squier’s theorem for K-string rewriting systems). Let (Γ∗, R) be a convergent
K-string rewriting system. Then one can choose a coherent completion (Γ∗, R,Ω) such that
Ω admits a K-graph structure. Moreover if Γ is a proper K-graph, then this Ω is entirely
determined by the confluence diagrams of ((Γ∗)0, R0).

This result, along with Theorems 3.3 and 3.4 reduce the study of confluence of a proper
K-string rewriting system (Γ∗, R) to the study of confluence of the abstract rewriting system
((Γ∗)0, R0). In practice, the combinatorics of K-graphs is simplified at words of highest weight,
hence the task of studying confluence is easier for ((Γ∗)0, R0).

4 Conclusions

The study of monoids via rewriting theory hinges on two parameters: The first consists of
identifying a well-behaved string rewriting system that presents the given monoid; and the
second consists of using the combinatorics of the rewriting system and the corresponding monoid
to obtain computational results, as for instance expliciting Squier’s coherent completion.

The notion of K-string rewriting systems provides a framework for studying K-congruences
via adapted string rewriting systems. Firstly, if the K-graph is proper, we obtain versions
of Newman’s lemma and critical pair lemma in this context, which reduce the verification of
properties of termination and confluence of the given K-SRS. Secondly, given a K-convergent
string rewriting system, the expliciting of Squier’s coherent extension is reduced to computations
with words of highest weight.

In [3], Guiraud and Malbos construct a cofibrant replacement for a monoid presented by
a convergent presentation. The fact that a K-graph structure and K-string rewriting systems
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interact well on free monoids, especially manifested in Squier’s coherence theorem, suggests
that this behaviour extends to higher dimensions in the context of [3].
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A Example: Plactic monoid of type A

We give here a concrete example of a K-string rewriting system.
Consider the K-graph

An : 1
1−→ 2

2−→ 3
3−→ · · · n−2−→ n− 1

n−1−→ n, (3)

and set
Col(An)1 := {w = x1x2 · · ·xk | x1 < x2 < · · · < xk, xi ∈ An, k ≤ n}.

Remark A.1. The K-graph in (3) is called the crystal base of type An.

Such words whose letters are increasing, are called column words in A∗n. The set Col(An)1

satisfies the conditions (P1) and (P2) hence is a K-graph itself. Define an order � on Col(An)1

by setting w � w′ for two columns w = x1 · · ·xk and w′ = y1 · · · yl if

i) k ≥ l,

ii) xi ≤ yi for i = 1, 2, . . . , l.

Schensted’s insertion algorithm, as first introduced in [9], and later adapted to a column ap-
proach, see [2], describes a procedure of inserting a letter x ∈ An into a column c1 ∈ Col(An)1

as follows.
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Schensted’s algorithm of inserting a letter into a column (SA):

Input: a column c = x1 · · ·xk; a letter x ∈ An;

if x > xk:

set c′ = x1x2 · · ·xkx

return: c′

if xl ≥ x > xl−1 for some l ≤ k:

set c′ = x1 · · ·xl−1xxl+1 · · ·xk, and x′ = xl

return: x′c′

The insertion of a letter x into a column c, denoted (c← x), outputs either one column, or two
columns, with c = x′ being the other column. This notion can be extended to an insertion of a
letter into a product of two columns as follows

(c1c2 ← x) =

{
(c1(c2x)) if (c2 ← x) is first case in SA,

(c1 ← xl)c
′
2 if (c2 ← x) is second case in SA.

In [1] Cain, Gray, and Malheiro show that the map [ , ] : Col(An)×2
1 −→ Col(An)×2

1 defined
for c1, c2 ∈ Col(An)1 with c2 = x1x2 · · ·xk by setting

[c1, c2] = (((c1 ← x1)← x2)← · · · )← xk,

induces a string rewriting system Col(An) := (Col(An)∗1,Col(An)2) where Col(An)2 consists of
rewriting rules of the form

Col(An)2 := {c1c2 =⇒ [c1, c2] | c1, c2 ∈ Col(An)1, c1 � c2}.

Moreover they prove that this rewriting system is convergent. The monoid presented by Col(An)
is called the plactic monoid of type A.

We then have the following result.

Theorem A.2 ([1]). The string rewriting system Col(An) is a finite reduced convergent K-string
rewriting system.

We can then apply Theorem 3.6 to Col(An), and use the combinatorics of Col(An) at highest
weight to prove the following.

Theorem A.3. Squier’s homotopy bases for the K-string rewriting system Col(An) consists of
confluence diagrams of the form

t′u′v
t′αu′v +3 t′u′′v′ αt′u′′v′

�&
tuv

tαuv &.

αtuv 08

t′′u′′′v′

tu1v1 αtu1v1
+3 t1u2v2

t1αu2v2

:B

We remark that this result has also been proven by Hage and Malbos in [4] using different
techniques.
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