
Formalized Signature Extension Results for Confluence,

Commutation and Unique Normal Forms ∗

Alexander Lochmann1, Fabian Mitterwallner1, Aart Middeldorp1

Department of Computer Science, University of Innsbruck, Austria
{alexander.lochmann,fabian.mitterwallner,aart.middeldorp}@uibk.ac.at

Abstract

Ground-confluence and confluence do not coincide. However, for the class of left-linear
right-ground TRSs confluence can be reduced to ground-confluence by extending the
signature with fresh constants. We present a formalization in Isabelle/HOL of a more
general result, for linear variable-separated rewrite systems. From this formalization we
obtain a sound procedure to decide confluence, commutation and unique normal forms of
such systems. We implemented this procedure in the decision tool FORT-h, which also can
produce machine checkable proofs, and in the certifier FORTify to validate these.

1 Introduction

Dauchet and Tison [2] proved the decidability of the first-order theory of rewriting for the class
of ground rewrite systems. The recent tool FORT-h [6] implements an extension of the decision
procedure for the larger class of linear variable-separated rewrite systems. FORT-h is capable
of producing certificates that witness the steps in the decision procedure. These certificates
are validated by FORTify [6], a verified Haskell program obtained from the Isabelle/HOL
formalization of the underlying theory reported in [5].

The decision procedure is based on tree automata techniques and hence is restricted to
properties on ground terms. In this paper we are concerned with extending FORT-h and FORTify
to deal with confluence-related properties on arbitrary terms. These include commutation (COM)
and unique normal forms with respect to conversion (UNC) and reduction (UNR). This allows
the combination of these tools to be the first participant that produces provably correct answers
in the categories COM, UNC and UNR of the Confluence Competition (CoCo).

We assume familiarity with (first-order) term rewriting [1], but do not impose the usual
variable restrictions on rewrite rules. In the next section we present the formalized signature
extension results that allow to reduce confluence-related properties to properties on ground
terms. Section 3 explains the changes made to FORT-h and FORTify. We conclude in Section 4
with suggestions for future research.

2 Theory

We start this section by recalling the results of [3, 7, 8] concerning the reduction of confluence-
related properties to their ground versions. The first lemma is from [7,8]. Here P consists of

∗This work is supported by the Austrian Science Fund (FWF) project P30301.

http://project-coco.uibk.ac.at/

Formalized Signature Extension Results Lochmann, Mitterwallner, Middeldorp

the following properties

CR : ∀ s∀ t∀u (s→∗ t ∧ s→∗ u =⇒ t ↓ u) confluence

SCR : ∀ s∀ t∀u (s→∗ t ∧ s→∗ u =⇒ ∃ v (t→= v ∧ u→∗ v)) strong confluence

WCR : ∀ s∀ t∀u (s→ t ∧ s→ u =⇒ t ↓ u) local confluence

NFP : ∀ s∀ t∀u (s→∗ t ∧ s→! u =⇒ t→! u) normal form property

UNR : ∀ s∀ t∀u (s→! t ∧ s→! u =⇒ t = u) unique normal forms wrt reduction

UNC : ∀ t∀u (t↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u) unique normal forms wrt conversion

For a property P ∈ P, GP denotes the property P restricted to ground terms.

Lemma 1. Let R be a left-linear right-ground TRS over a signature F that contains at least
one constant.

1. (F ,R) � P ⇐⇒ (F] {c},R) � GP for all P ∈ P \ {UNC}

2. (F ,R) � UNC ⇐⇒ (F] {c, d},R) � GUNC

3. If R is ground or F is monadic then (F ,R) � P ⇐⇒ (F ,R) � GP for all P ∈ P.

The constants c and d are assumed to be fresh (i.e., c, d /∈ F) throughout this paper.
A signature is monadic if every function symbol has arity at most one. A formalization in
Isabelle/HOL of the third item has been reported in [3].

Definition 2. A TRS R is variable-separated if Var(l) ∩ Var(r) = ∅ for all l→ r ∈ R.

We emphasize that the usual restriction Var(r) ⊆ Var(l) is not imposed on these systems.
For linear variable-separated TRSs the first item of Lemma 1 does not hold. In [3] a (non-
formalized) proof is presented that two fresh constants are sufficient to reduce confluence to
ground confluence.

Lemma 3 ([3, Theorem 6.4]). If R is a linear variable-separated TRS over a signature F then
(F ,R) � CR ⇐⇒ (F] {c, d},R) � GCR.

The necessity of adding two fresh constants follows from the following example from [3].

Example 4. Consider the linear variable-separated TRS R consisting of the single rule a→ x over
the signature F = {a}. Since x R← a→R y with distinct variables x and y, R is not confluent.
Ground-confluence holds trivially as a →R a is the only rewrite step between ground terms.
Adding a single fresh constant b does not destroy ground-confluence (a→R a and a→R b are
the only steps). By adding a second fresh constant c, ground-confluence is lost: b R← a→R c.

We generalize Lemma 3 to commutation (COM) and unique normal forms (UNC and UNR),
where

COM : ∀ s∀ t∀u (s→∗R t ∧ s→∗S u =⇒ ∃ v (t→∗S v ∧ u→∗R v)) commutation

The proof below is formalized. In the proof we restrict attention to rewrite sequences that involve
a root step. Root steps are important since they permit the use of two arbitrary substitutions on
the left and right of rule used in the root step, due to variable separation of the rules. Therefore
we start with a preliminary result (Lemma 6) which provides abstract conditions that permit
this restriction. We write →∗ε∗R for the relation →∗R · →ε

R · →∗R. The proof of Lemma 6 is
obtained by a straightforward induction on the term structure and the multi-hole context closure
of the rewrite relation, and is omitted.

2

Formalized Signature Extension Results Lochmann, Mitterwallner, Middeldorp

Definition 5. A binary predicate P on terms over a given signature F is closed under multi-hole
contexts if P (C[s1, . . . , sn], C[t1, . . . , tn]) holds whenever C is a multi-hole context over F with
n > 0 holes and P (si, ti) holds for all 1 6 i 6 n.

Lemma 6. Let A and B be TRSs over the same signature F and let P be a binary predicate
that is closed under multi-hole contexts over F .

1. If P (s, t) for all terms s and t such that s→∗ε∗A t then P (s, t) for all terms s and t such
that s→∗A t.

2. If P (s, t) for all terms s and t such that s→∗ε∗A · →∗B t or s→∗A · →∗ε∗B t then P (s, t) for
all terms s and t such that s→∗A · →∗B t.

We show how Lemma 6 is instantiated for the properties of interest.

• For UNC we use part 1 with P1(s, t) : NF(s) ∧ NF(t) =⇒ s = t and R∪R− for A.

• For UNR we use part 2 with the same predicate P1 and R− for A and R for B.

• For COM we use part 2 with P2(s, t) : s→∗S · →∗R− t and R− for A and S for B.

Lemma 7. The properties P1 and P2 are closed under multi-hole contexts.

The next lemma is a key result. It allows the removal of introduced fresh constants while
preserving the reachability relation. Note that variable-separation is not required.

Lemma 8. Let R be a linear TRS over a signature F that contains a constant c which does
not appear in R. If s→∗R t with c ∈ Fun(s) \ Fun(t) then s[u]p →∗R t using the same rewrite
rules at the same positions, for all terms u and positions p ∈ Pos(s) such that s|p = c.

The restriction to linear TRSs can also be lifted, at the expense of a more complicated
replacement function and proof. Since the decision procedure implemented in FORT-h relies on
linearity and variable-separation, we present a simple proof for linear TRSs. Due to calculations
involving positions, the formalization in Isabelle/HOL was anything but simple.

Proof. We use induction on the length of s→∗R t. If this length is zero then there is nothing to
show as Fun(s) \ Fun(t) = ∅. Suppose s→R v →∗R t and write s = C[`σ]→R C[rσ] = v. Let
p′ be the position of the hole in C and let p ∈ Pos(s) with s|p = c. We distinguish two cases.

If p′ ‖ p then s[u]p = (C[u]p)[`σ]p′ →R v′ with v′ = (C[u]p)[rσ]p′ . Since v|p = C|p = c we
can apply the induction hypothesis to v →∗R t. This yields v′ →∗R t and hence s[u]p →∗R t as
desired.

In the remaining case, p′ 6 p. From s|p = c and the fact that c does not appear in R we
infer that there exists a variable y ∈ Var(`) such that c ∈ Fun(σ(y)). Let q be the (unique)
position of y in ` and consider the substitution

τ(x) =

{
σ(y)[u]q′ if x = y

σ(x) otherwise

Here q′ = p\(p′q) is the position of c in σ(y). If y /∈ Var(r) then v = C[rσ] = C[rτ] and thus
s[u]p = C[`τ]→R C[rτ] = v →∗R t. If y ∈ Var(r) then there exists a unique position q′′ ∈ Pos(r)
such that r|q′′ = y. So v|p′q′′q′ = c and we obtain s[u]p = C[`τ] →R C[rτ] = v[u]p′q′′q′ →∗R t
from the induction hypothesis.

3

Formalized Signature Extension Results Lochmann, Mitterwallner, Middeldorp

Using the preceding two lemmata, the main result easily follows.

Lemma 9. Linear variable-seperated TRSs R and S over a common signature F commute if
and only if R and S ground-commute over F] {c, d}.

Proof. First we prove the if direction. So suppose R and S ground-commute on terms in
T (F] {c, d}). In order to conclude that R and S commute on terms in T (F ,V), according to
Lemma 6 it suffices to show the inclusions

→∗ε∗R− · →
∗
S ⊆ →∗S · →∗R− →∗R− · →

∗ε∗
S ⊆ →∗S · →∗R−

on terms in T (F ,V). Suppose s →∗ε∗R− · →
∗
S t. Let the substitution σc map all variables to

c and let σd map all variables to d. Since rewriting is closed under substitutions and the
variable-separated rule used in the root step →ε

R− allows changing the substitution, we obtain
sσc →∗ε∗R− · →

∗
S tσd. From ground commutation we obtain sσc →∗S · →∗R− tσd. Note that

s and t are terms in T (F ,V) and hence do not contain the constants c and d. Therefore,
d /∈ Fun(sσc) and c /∈ Fun(tσd). As a consequence, repeated applications of Lemma 8 transform
sσc →∗S · →∗R− tσd into a sequence s→∗S · →∗R− t in which c and d do not appear, proving the
first inclusion. Note that in our setting TRSs are closed under rule reversal. Hence we can apply
Lemma 8 in both directions, which allows us to remove the constant d from the term t. The
second inclusion →∗R− · →

∗ε∗
S ⊆ →∗S · →∗R− is obtained in the same way.

For the only-if direction we assume that R and S commute on terms in T (F ,V) and use
Lemma 6 to establish the commutation of R and S on terms in T (F]{c, d}). We prove the first
inclusion. The second inclusion follows then by a symmetric argument. So let s→∗ε∗R− · →

∗
S t

and consider the following mapping φ : T (F] {c, d})→ T (F , {x, y}):

φ(t) =


x if t = c

y if t = d

f(φ(t1), . . . , φ(tn)) if t = f(t1, . . . , tn)

Here x and y are distinct variables in V . A straightforward induction proof shows φ(u)→∗R− φ(v)
whenever u →∗R− v, for all u, v ∈ T (F] {c, d}). The same holds for S. Hence, the given
sequence from s to t is transformed into φ(s) →∗ε∗R− · →

∗
S φ(t). Since c and d do not appear

in the transformed sequence, we obtain φ(s)→∗S · →∗R− φ(t) from the commutation of R and
S. Define the substitution τ = {x 7→ c, y 7→ d}. Since rewriting is closed under substitution,
s = φ(s)τ →∗S · →∗R− φ(t)τ = t.

The proofs for the unique normal form properties (UNC and UNR) are obtained in a similar
manner.

Lemma 10. Let R be a left-linear variable-separated TRS over a signature F that contains at
least one constant.

• (F ,R) � UNR ⇐⇒ (F] {c, d},R) � GUNR.

• (F ,R) � UNC ⇐⇒ (F] {c, d},R) � GUNC.

3 FORT-h and FORTify

The overall design of FORT-h and FORTify is shown in Figure 1. If FORT-h does not time out,
it produces a certificate in the certificate language that is formally described in [6, Section 4].

4

Formalized Signature Extension Results Lochmann, Mitterwallner, Middeldorp

FORT-h

TRSs

formula

yes

no

timeout

certificate

FORTify

4 / error
(A)

(B)

Figure 1: FORT-h and FORTify.

Certificates can be viewed as a recipe for the certifier to perform certain operations on tree
automata and formulas in order to confirm the yes/no claim of FORT-h. The certifier is the
verified Haskell code base that is generated by Isabelle’s code generation facility, corresponding
to module (B) of FORTify. Module (A) contains a Haskell parser to translate strings representing
formulas (TRSs, signatures, certificates) to semantically equivalent objects in the data types
obtained from the generated code in module (B). The reader is referred to [6] for further details.

Here we briefly describe the required changes to this setup in order to accommodate the
results mentioned in the preceding sections.

FORT-h already had support for some properties on open terms [6] based only on Lemma 3.
If the input formula was one of the predefined macros for a property on open terms (e.g. CR),
it would execute the decision procedure with the signature extended by two constants on the
formula of the corresponding ground property (e.g. GCR). To improve the performance of the
decision procedure we implemented the optimizations described in Lemma 1. This means the
number of additional constants now depends on the properties of the input TRS, which in some
cases leads to smaller signatures, therefore leading to faster decisions by the tool.

The more interesting changes relate to FORTify. Since the certificate serves as a proof that
a formula holds for ground terms, we chose to keep the certificate format unchanged. The
signature extension described in Lemmata 1, 3 and 9 were implemented as a preprocessing
step of the formula which, just like FORT-h, checks if the input formula is a property on open
terms. If that is the case, the signature is extended and the formula set to the corresponding
ground property. Here care has to be taken that both FORT-h and FORTify use the same
definitions for their ground property, since this formula has to match the one in the certificate.
The choice to keep the certificate unchanged also means that the interface between FORT-h
and FORTify remains unchanged and FORTify is fully backwards compatible. Note that this
preprocessing step is implemented in module (A) of FORTify (see Figure 1) by hand, hence is

5

Formalized Signature Extension Results Lochmann, Mitterwallner, Middeldorp

not code generated from the formalization.

4 Conclusion

We showed that commutation of linear variable-separated TRSs reduces to ground-commutation
after the signature is extended with two fresh constants. (This is not to be confused with
signature extension results for commutation, which are studied in [4,9].) The proof is formalized
in Isabelle/HOL and can be obtained from the website

https://fortissimo.uibk.ac.at/iwc2021

accompanying this paper. Precompiled binaries of the new versions of FORT-h and FORTify are
available from the same site. A similar formalized proof for NFP is expected soon.

The current implementation of FORTify supports certifying decisions of the properties UNR,
UNC, CR, and COM of FORT-h. At the moment these properties must appear at the root of the
input formula. This restriction comes from the underlying decision procedure presented in [5] in
which the signature is assumed to be fixed. Possible future work is to permit these properties
to appear within a formula. This would allow certifying results for a formula like GCR ∧ ¬CR.
FORT-h already has support for this, but the results cannot be certified.

Another improvement would be moving the signature extension procedure from module (A)
into the formally verified module (B). While this would necessarily change the interface between
(A) and (B), the certificate format could still remain unchanged for backwards compatibility.

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
doi:10.1017/CBO9781139172752.

[2] Max Dauchet and Sophie Tison. The theory of ground rewrite systems is decidable. In Proc. 5th
LICS, pages 242–248, 1990. doi:10.1109/LICS.1990.113750.

[3] Bertram Felgenhauer, Aart Middeldorp, T. V. H. Prathamesh, and Franziska Rapp. A verified
ground confluence tool for linear variable-separated rewrite systems in Isabelle/HOL. In Proc. 8th
CPP, pages 132–143, 2019. doi:10.1145/3293880.3294098.

[4] Nao Hirokawa. Commutation and signature extensions. In Proc. 4th IWC, pages 23–27, 2015.

[5] Alexander Lochmann, Aart Middeldorp, Fabian Mitterwallner, and Bertram Felgenhauer. A verified
decision procedure for the first-order theory of rewriting for linear variable-separated rewrite systems.
In Proc. 10th CPP, pages 250–263, 2021. doi:10.1145/3437992.3439918.

[6] Fabian Mitterwallner, Alexander Lochmann, Aart Middeldorp, and Bertram Felgenhauer. Certifying
proofs in the first-order theory of rewriting. In Proc. 27th TACAS, volume 12652 of LNCS, pages
127–144, 2021. doi:10.1007/978-3-030-72013-1_7.

[7] Franziska Rapp and Aart Middeldorp. Confluence properties on open terms in the first-order theory
of rewriting. In Proc. 5th IWC, pages 26–30, 2016.

[8] Franziska Rapp and Aart Middeldorp. FORT 2.0. In Proc. 9th IJCAR, volume 10900 of LNAI,
pages 81–88, 2018. doi:10.1007/978-3-319-94205-6_6.

[9] Kiraku Shintani and Nao Hirokawa. CoLL: A confluence tool for left-linear term rewrite systems. In
Proc. 25th CADE, volume 9195 of LNCS, pages 127–136, 2015. doi:10.1007/978-3-319-21401-6_8.

6

https://fortissimo.uibk.ac.at/iwc2021
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.1145/3293880.3294098
https://doi.org/10.1145/3437992.3439918
https://doi.org/10.1007/978-3-030-72013-1_7
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-319-21401-6_8

	Introduction
	Theory
	FORT-h and FORTify
	Conclusion

