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Abstract

We study the confluence properties of non-symmetric operadic rewriting systems using
linear algebra methods. We extend the completion procedure F4, known for commuta-
tive and non-commutative algebras, to operads. This procedure allows us to parallelize
completion by applying a Gaussian elimination process in order to treat multiple critical
branchings simultaneously. We discuss heuristics and strategies to optimize this procedure
in the operadic context: first to reduce the set of critical branchings to be examined and
then to parallelize the elimination.

1 Introduction
Algebraic rewriting theory aims at studying rewriting relations in algebraic and categorical
structures such as monoids, categories, equational theories, linear algebras, operads and higher-
dimensional algebras, and categories. Proofs of confluence of an algebraic rewriting system
(AlgRS) are mainly based on the critical branching lemma (CBL) that proves local confluence
from confluence of a set of critical branchings, which correspond to confluence obstructions in-
duced by minimal overlappings of rules. The CBL approach is used various contexts, including
automated theorem proofs, word problems in universal algebras, and polynomial ideal mem-
bership. CBL’s were proved for numerous AlgRS’s: rewriting on strings [24], terms [18], and
higher-dimensional categories [14, 15]. CBL’s also have various formulations in linear struc-
tures, for commutative algebras [4], associative algebras [1, 2, 23], non-symmetric and shuffle
operads [7, 20], and higher-dimensional linear categories [10]. In algebraic rewriting, the CBL
constitutes the first step in the construction of cofibrant replacements of algebraic and categor-
ical structures [13, 15, 19].

The principle of the critical branching completion procedure (CBCP) on an AlgRS can be
formulated as follows:

Input: A set R of rules of an algebraic rewriting system.

R ′ := R;
C := critical branchings of R ′;
while C 6= ∅ do

Select a subset B of branchings in C, and remove them from C;
Add rewriting rules to R ′ to make the non-confluent branchings of B confluent;
Update C with branchings induced by the new rules;

return R ′;
If the additional rewriting rules are oriented with respect to a termination order, such as

a monomial order, the procedure returns a terminating rewriting system. If moreover the
procedure terminates, then the result is a convergent rewriting system. Otherwise, it builds
an increasing sequence of rewriting systems, whose limit is convergent. The resulting rewriting
system is finite if and only if the input is finite and the procedure terminates.
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Concrete implementations of CBCP are based on the preparation of the AlgRS (autore-
ductions and adding new generators), the type of critical branchings considered, a filtration
on the critical branchings, and the parallelization of the computation of their confluence at
each step. The choice of branchings to consider can depend on a study of overlapping pat-
terns (Buchberger’s criterion [5], Triangle Lemma [3]), or relations between critical branchings
and Gebauer-Möller criteria [12, 20, 22]. The filtration on critical branchings gives the order
in which to examine the critical branchings and depends on the shape of the rules (reduced,
homogeneous...). Finally, several methods can be used to compute confluence in parallel wrt
the filtration. One approach is based on Gaussian elimination, mainly developed for the com-
putation of commutative [11] and non-commutative Gröbner bases [6, 25], see also [16]. This
principle also appears in [3] for the study of non-symmetric operads.

However, these optimizations were not fully developed in the case of operadic rewriting.
Indeed, this algebraic paradigm is complex due to the linear context, the problem of manag-
ing symmetric actions, and the complexity of operadic patterns. Rewriting systems for non-
symmetric operads were studied in [3, 8, 20], and the question of management of the action
of symmetries on terms was addressed in [7], which introduces a notions of Gröbner bases for
shuffle operads, and implemented in [9].

In this work, we study the optimization of completion procedures for operadic rewriting sys-
tems (ORS). We define a completion algorithm for ORS resolving non-confluence by Gaussian
elimination with respect to a chosen confluence obstruction strategy. This work is part of a
general program that aims to define computational tools for mathematicians studying higher
algebras and higher categories. Indeed, novel higher structures appear in numerous fields such
as geometry, physical mathematics, representation theory and quantum topology. Higher struc-
tures are generally defined by complex presentations by generators and relations, so there is
real need for efficient completion procedures in algebraic contexts.

This abstract is organised as follows. In Section 2, we recall the notion of rewriting systems
for non-symmetric operads and we explain some strategies for the implementation of CBCP.
Section 3 presents the completion algorithm for ORS’s by Gaussian elimination.

2 Confluence of operadic rewriting systems

In this section we recall the notion of operadic rewriting systems on a ground field K of zero
characteristic and the different approaches to obtaining a CBL for these systems.

2.1. Operadic rewriting systems. A collection is a sequence (V(n))n∈N of vector spaces
indexed by arities n > 0. A (non-symmetric) operad is a collection P with an identity element
ε ∈ P(1), and equipped with composition maps ◦ : P(k)⊗P(n1)⊗ . . .⊗P(nk) → P(n1+ . . .+nk)
satisfying identity and associativity conditions. The set of monomials T (Σ) is the term algebra
on a graded set Σ = (Σ(n))n>0. As for the free algebra generated by a family of indeterminates,
we define the free operad F(Σ) on Σ, where, for n > 0, F(Σ)(n) is the vector space spanned by
monomials of arity n, called (homogeneous) polynomials. The support of f =

∑
i∈I λiui is the

set of monomials Supp(f) := {ui | i ∈ I} that appear in its decomposition. A context of F(Σ) of
inner arity k is a term C of T (Σ ∪ {2k}), where 2k is a symbol of arity k that appears exactly
once in C. For a monomial u of arity k, we denote by C[u] the monomial C where we replace
2k by u; we extend this notation to polynomials by linearity.

An operadic rewriting system (ORS) is the data X = (Σ, R) made of a graded set Σ and
a relation R ⊂ T (Σ) × F(Σ), whose elements are rewriting rules α : s(α) → t(α). We define
the graph RX, whose vertices are the elements of F(Σ) and whose edges are the λC[α] + 1b :
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λC[s(α)] + b→R λC[t(α)] + b, where α ∈ R, C is a context, λ ∈ K \ {0}, and b is a polynomial
of F(Σ). An edge of RX is a rewriting monomial when λ = 1 and b = 0, and a rewriting
step when C[s(α)] /∈ Supp(b). Denote by RmX the set of rewriting monomials of X and by ·
the composition of paths in RX. The paths in RX made of rewriting steps are called rewriting
paths of X. A polynomial a in F(Σ) is in normal form wrt X if there is no rewriting step with
source a. A reduction strategy is a map σ, which to any monomial u associates an identity if u
is reduced, and a rewriting monomial σ(u) of source u otherwise. The ORS X is terminating if
there does not exist an infinite rewriting path.

A monomial order on T (Σ) is a total order ≺ stable by product, that is, for all u, u ′ ∈
T (Σ)(k), v, v ′ ∈ T (Σ)(`), and 1 6 i 6 k, (u ≺ u ′, v ≺ v ′) implies u ◦i v ≺ u ′ ◦i v ′. An ORS
X is compatible with ≺ if, for every rewriting rule α ∈ R and every monomial v ∈ Supp(t(α)),
v ≺ s(α). Note that if ≺ is well-founded, then X is terminating.

A branching (resp. local branching) is a pair (f, g) of rewriting paths (resp. rewriting steps)
such that f 6= g and s(f) = s(g). The local branchings of X are classified as follows:

i) additive branchings: (λf + µ1v + 1c, λ1u + µg + 1c), where f : u → a, g : v → b ∈ RmX ,
λ, µ ∈ K \ {0}, c is a 0-cell, u 6= v, and u, v /∈ Supp(c).

ii) multiplicative branchings: (λC[f, 1v] + 1c, λC[1u, g] + 1c), where C is a two-hole context,
f : u→ a, g : v→ b ∈ RmX , λ ∈ K \ {0}, c is a 0-cell, and C[u, v] /∈ Supp(c).

iii) intersecting branchings: the rest of the local branchings. A critical branching is an inter-
secting branching that is minimal for the order induced by (f, g) ⊆ (C[f] + 1c, C[g] + 1c)
for a context C and a polynomial c of F(Σ).

In a schematic way, we can illustrate local branchings for an ORS as follows, where the high-
lighted parts of tree monomials indicate the sources of the rewriting rules:

additive multiplicative intersecting critical

+

A branching (f, g) is confluent if there exist rewriting paths h and k such that t(f ·h) = t(g ·k).
Given a set B of branchings of X, X is B-confluent if every b ∈ B is confluent. If B is the set of
all branchings, then we say that X is confluent. We say that X is convergent if it is terminating
and confluent.

2.2. Strategies for completion procedures. A completion procedure wrt a given monomial
order ≺ transforms an ORS into a convergent one by adding rules, oriented wrt the order ≺,
to amend non-confluent branchings. Such a procedure is based on a map that selects a type of
branching whose confluence implies the confluence of all branchings, defined as follows.

A map CO that associates to every ORS X a set of branchings CO(X) of X is a confluence
obstruction map when every terminating ORS X is confluent iff it is CO(X)-confluent. For
example, there exists a minimal confluence obstruction map M defined as M(X) = ∅ if X is
confluent, andM(X) = {b} if X is non-confluent and b is a non-confluent branching. However,
it is impracticable to write a completion procedure wrt M, as it would imply being able to
determine confluence and compute a non-confluent branching in the first place.

Another approach is to consider confluence-generating sets of branchings. A set B of branch-
ings of an ORS X is confluence-generating if, for any branching (f, g) of X, there exist branchings
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(f1, g1), . . . , (fn, gn), which are additive, multiplicative, or in B, rewriting paths f ′ and g ′, and
contexts C1, . . . , Cn such that f = C1[f1] · f ′, g = Cn[gn] · g ′, and for all 1 6 i 6 n − 1,
Ci[gi] = Ci+1[fi+1]. We get the following lemma:

2.3. Lemma. A map B that associates to every ORS X a confluence-generating set of branch-
ings B(X) is a confluence obstruction map.

The converse is not true, however: consider M(X), which is not confluence-generating as
soon as X is confluent with a branching.

There are several examples confluence-generating sets in the literature. The classical one is
the set of critical branchings, in which case Lemma 2.3 is the CBL, also called Buchberger’s
criterion for linear rewriting systems [4, 23]. Smaller confluence-generating sets were developed
to take into account additional relations between critical branchings. These sets, along with
the corresponding proofs of Lemma 2.3, were defined for commutative algebras [5, 22], non-
commutative algebras [16, 17], and non-symmetric operads [20].

Small confluence-generating sets appear to be a good compromise between minimizing the
size of a confluence obstruction map and minimizing the number of times the confluence ob-
struction map is called. The question is then to find a minimal confluence-generating set. In
certain cases, the answer is known: for instance, for quadratic ORS’s, critical branchings form
a minimal confluence-generating set.

3 Confluence by elimination

Linear rewriting can be done without a monomial order [13, 19], but in most applications the
rewriting rules are compatible with a monomial order. In this case convergent AlgRS’s are
Gröbner bases, and rewriting properties are formulated algebraically. Branchings are described
by S-polynomials and confluence means that every S-polynomial reduces to zero. Finally, the
elimination of critical branchings is encoded by relations among relations (syzygies). In this
section we give an implementation of the CBCP for ORS using Gaussian elimination inspired
by the F4 algorithm [16].

Fix an ORS X = (Σ,≺, R) compatible with a monomial order ≺. Let P = {f1, . . . , fn} be a

GetRM(σ)(X, P)
Input: An ORS X = (Σ,≺, R),
A list of rewriting monomials P.
Output: A list of rewriting monomials R ′.

1 R ′ := P;
2 T := ∪f∈P Supp(t(f));
3 treated := lm(P);
4 while T 6= ∅ do
5 select u ∈ T ;
6 T := T \ {u};
7 treated := treated ∪ {u};
8 if σ(u) not an identity then
9 R ′ := R ′ ∪ {σ(u)};

10 T := T ∪ {Supp(t(σ(u))) \ treated};

11 return R ′;

set of rewriting monomials on Σ,
and consider the totally ordered set
Supp(P) := ∪f∈P Supp(s(f) − t(f)) =
{u1 ≺ · · · ≺ uk}. We define the matrix
MP ∈Mn,k(K) where (MP)i,j is the co-
efficient of uj in s(pi) − t(pi). Thus we
can read the elements of P as the rows
of MP, where the largest nonzero coef-
ficient is the source monomial and the
other coefficients correspond to the tar-
get polynomial. For examples, see the
matrices in the appendix.

The first step of completion is as fol-
lows. We fix a reduction strategy σ. For
each rewriting monomial p of P, we cal-
culate a reduction path, starting with p,
from s(p) to a normal form, which fol-
lows σ after the first step. We then re-
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turn the set R ′ := GetRM(σ)(X, P) of rewriting monomials wrt R that appear in these paths.
As for the case of non-commutative algebras [16, Prop. 4.21], if P is finite, then GetRM(X, P)
terminates.

Reduction(X, P)
Input: An ORS X = (Σ,≺, R),
A list of rewriting monomials P.
Output: A list of rewriting rules P ′.

1 R ′ := GetRM(σ)(X, P);
2 M ′ := RowReduce(MR ′);
3 P ′ := {α row of M ′

| α 6= 0 and s(α) /∈ s(R ′)};
4 return P ′;

The next step is to reduce the ma-
trix MR ′ to its row reduced echelon form,
RowReduce(MR ′), by Gaussian elimination.
The resulting rows whose largest monomials
are not sources of rewriting monomials in R ′

form a set of new rewriting rules P ′, which is
the result of Reduction(X, P).

Finally, we choose a confluence obstruc-
tion map CO and a selection strategy S, that
returns a subset of branchings, in order to
parallelize the completion procedure. The selection strategy in the procedure F4 is equivalently
a filtration on Branchings. For instance, the normal selection strategy consists in filtering
branchings by weight of the source, and starting with those of minimal leading weight [11]. For
homogeneous presentations, this appears to works well.

3.1. Theorem. Let X be an ORS, CO a confluence obstruction map and S a selection strategy.
If the procedure F4(C,S) terminates on X, then the ORS F4(CO,S)(X) is convergent.

F4(CO,S)(X)
Input: An ORS X = (Σ,≺, R).
Output: A convergent ORS

X ′ = (Σ,≺, R ′).

1 R ′ := R;
2 AddedRules := true;
3 while AddedRules do
4 AddedRules := false;
5 Branchings := CO(Σ, R ′);
6 while Branchings 6= ∅ do
7 B := S(Branchings);
8 Branchings := Branchings \ B;
9 P := ∪{f,g}∈B{f, g};

10 P ′ := Reduction((Σ,≺, R ′), P);
11 if P ′ 6= ∅ then
12 R ′ := R ′ ∪ P ′;
13 AddedRules := true;

14 return (Σ,≺, R ′);

The proof works as follows. F4(CO,S)(X)
terminates only if, at some iteration of the
first while loop, P ′ is an empty set for every
iteration of the second while loop. This only
happens if X ′ is CO(X ′)-convergent, which is
equivalent to convergence of X ′.

Note that an associative algebra can be
seen as a non-symmetric operad concentrated
in arity 1. By specifying CO and S and re-
stricting F4 to associative algebras, we re-
cover some previously published procedures.
If CO returns the set of critical branchings, we
get the non-commutative F4 procedure intro-
duced in [25]. If S selects a single branching
and CO returns the set of critical branchings,
we get the non-commutative Buchberger pro-
cedure [1, 2]. If CO eliminates critical branch-
ings following the optimizations of [17, 25]
(interreduction and chain criterion), then we
recover their procedures.
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Appendix

As an illustration, we execute algorithm F4 on an ORS presenting the anti-associative operad.
First, we introduce some notations.

Preliminaries. We represent monomials by planar trees with numbered inputs. For instance,

w =

x

1 y
2

z
u

3 4

v
5 6

is a monomial where the arities are ar(x) = 3, ar(y) = 1, and ar(z) = ar(u) = ar(v) = 2.
The weight of a monomial u is the number of its inner vertices. For instance, |w| = 5.

Let P be a collection. For x ∈ P(k), y ∈ P(n), and 1 6 i 6 k, denote by

x ◦i y := x ◦ (ε, . . . , ε, y
i
, ε, . . . , ε)

the elementary composition of x and y.

Example. Consider the following ORS that presents the anti-associative operad [21]

X := 〈x ∈ X(2) | f : x ◦1 x→ −x ◦2 x〉.

Let us study the execution of algorithm F4 with:

1. the confluence obstruction map that selects essential branchings, [20],

2. the selection strategy that selects the branchings of lowest weight,

3. the reverse path-lexicographic monomial order ≺, [3],

4. the reduction strategy σ given by taking the smallest rewriting monomial for the context
path-lexicographic order defined in [20].

At the first iteration of the algorithm F4, there is one essential branching (f ◦1 x, x ◦1 f).
The algorithm GetRM applied to (X, {f ◦1 x, x ◦1 f}) returns the set

R ′ = {x ◦1 f, f ◦2 x, x ◦2 f, f ◦1 x, f ◦3 x}.

Then the matrix MR ′ is of the following form
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x
x

x

x
x
x

x
x x

x
x

x

x
x
x

f

x
1 0 1 0 0

x
f 1 1 0 0 0

f

x
0 1 0 1 0

f

x
0 0 1 0 1

x
f 0 0 0 1 1



.

where the columns are ordered by reverse path-lexicographic order. We check that RowReduce(MR ′)
is the 5 × 5 identity matrix, and that Reduction(X, {f ◦1 x, x ◦1 f}) returns one rewriting rule,
g : x ◦2 (x ◦2 x) → 0, which we add to the ORS. At the next iteration, there are four essential
branchings:

P := {(f ◦3 (x ◦2 x), g ◦1 x), (x ◦ (f ◦3 x), g ◦2 x), (x ◦2 (x ◦2 f), g ◦3 x), (x ◦2 g, g ◦4 x)}.

Using the selection strategy, we once again select all branchings. The matrix MGetRM(σ)(X,P)

is



x
x x

x

x
x

x x

x
x
x

x

x
x
x
x

f

x
x

1 0 0 1

x
f

x
0 1 0 1

x
x
f

0 0 1 1

g
x

1 0 0 0

g
x

0 1 0 0

g
x

0 0 1 0

g
x

0 0 0 1

x

g
0 0 0 1


Since each column corresponds to the source of a rewriting monomial in R ′, the algorithm
Reduction cannot produce new rewriting rules. Thus, the procedure F4 terminates and the final
convergent presentation is

〈 x ∈ X(2) | f : x ◦1 x→ −x ◦2 x, g : x ◦2 (x ◦2 x) → 0 〉.
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