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Abstract

Network rewriting can be summarised as a generalisation of term rewriting to support
that operations can have multiple out-parameters (coarity greater than 1) as well as the
traditional multiple in-parameters (arity greater than 1). When fleshing out this idea, one
is forced to make certain choices, which are discussed in this paper; network rewriting
represent one way of making these choices: respect algebraic linearity, preserve acyclicity,
and stay abstract (as opposed to imposing a geometric foundation).

In a 2014 IWC paper, it was reported that for network rewriting there emerges a third
kind of ambiguity (critical pair) besides the classical overlap and inclusion ambiguities,
namely wrap ambiguities where the way two redexes wrap around each other without
overlapping can cause a rewrite of one to block the other. At that point it was not known
how to enumerate these ambiguities, but here a generic method for this based on boolean
matrices and SAT-solving is presented.

1 Discussion of models

Term rewriting operates on expressions as formalised in mathematical logic, where every com-
bination of subexpressions to make a larger expression is by the use of an abstract function
symbol taking zero or more arguments, and every expression is either a function application
or a variable. However in modern algebra it is increasingly becoming necessary to deal with
expressions that do not easily fit into this model; these theories comprise operations that vary
not only in the number of in-parameters (arguments) they take, but also in the number of
out-parameters they produce. To deal with these natively, one may relax the unspoken con-
straint that every expression has an underlying rooted (hence directed) tree structure, to allow
the underlying structure to be that of a directed graph: operations are still vertices, there is
an incoming edge for every in-parameter, and an outgoing edge for every out-parameter; an
edge from one vertex to another means that an out-parameter of the first vertex is identified
with an in-parameter of the second. Expressions are thus modelled as something like data-flow
networks.

Whereas it may seem obvious that the optimal implementation of a certain computation
may well be in terms of subroutines with multiple out-parameters—for example a single division
operation that returns both a quotient and a remainder—it need not be immediately clear why
said computation could not specified in terms of only single-result operations (such as separate
quotient and remainder). A full explanation of this would have to explore the differences
between cartesian and tensor products, but that is too long a digression to get into here; the
interested reader may instead see [1]. The heart of the matter is however that many of the
theories which make use of these operations with multiple results depend critically upon these
being entangled, which means they have to be computed together.

In fact the interpretation of more general graphs as denoting expressions is not a trivial
matter; the recursive interpretation for terms depends critically on them having a tree structure,
which we just rejected. A data-driven evaluation—determine values on the outgoing edges from
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a vertex once values have been determined for all its incoming edges—is not out of the question,
but would need to deal with entanglement explicitly, thus losing in generality. Instead the
interpretation is mostly by decomposing the directed graphs into elementary pieces for which
(function) values are given, and then a suitable algebraic structure (often a category) is used to
recompose these elementary values into a value for the whole. The means of composition that
this algebraic structure provides places restrictions on what a graph may look like if it is to be
interpreted as an expression.

One axis of variation is what topological structure (if any) these graphs should be embedded
into, which corresponds to the choice between symmetric, braided, or plain monoidal categories
for governing the recomposition process. The symmetric case corresponds to abstract graphs,
and should thus be the natural choice from a computer science or logic point of view (being
less of an ontological commitment), but the plain and braided cases appear to be more popular
in the category theory literature. A reason for that popularity is likely that topology has long
been a prominent area for applications of category theory.

Another axis of variation is whether cycles should be allowed, and if so how an interpretation
of those is concretely achieved; cycles in a data-flow network naively cause deadlock, when an
operation vertex is waiting for input that (possibly in several steps) depend on an output of said
vertex. Classically terms may be given something like a cycle in the underlying graph structure
through some manner of fixed-point operator, but the rewriting of such is not entirely trivial. On
the category side, the most direct way of supporting cycles is through the use of traced monoidal
categories, where there is an operation trace/contraction/feedback that allows identifying an
output with an input. A less direct way is by introducing ‘cap’ and ‘cup’ operations satisfying
the zig-zag identities—this can be done as a matter of rewriting, but is often worked into the
notation as ‘raising/lowering indices’ or ‘bending edges’ (allowing both endpoints to be heads or
both tails)—and in particular the caps make heavy use of entanglement. However traces, caps,
and cups can all be problematic when it comes to their interpretation in concrete applications;
as a rule of thumb they are straightforward in finite-dimensional cases (the trace of matrix is
trivial to evaluate) but may be impossible in infinite-dimensional cases (the trace of the identity
operator becomes infinite). Hence it is for a general rewriting framework safest disallow cycles
in expression, leaving it to users to add explicit caps and cups where appropriate.

A third axis concerns whether multiple edges may attach to the same “port” of a vertex, or
equivalently, whether (internal) edges should have exactly two endpoints. Term graphs certainly
suggest that using a single output as input in multiple places has its uses, and the share graphs
of Hasegawa [2] aim to support this; likewise Ştefănescu [5] cover a number of variations in
this regard, and also give examples of where such things may be appropriate. However in
higher algebra there are strong reasons not to allow such things—changing the multiplicity of
an intermediate result completely destroys multilinearity. In practice it is straightforward to
introduce explicit operations for duplicating (coproduct) or destroying (counit) data, so a 1-to-1
restriction on the graphs is not a significant expressive loss, and several interesting algebraic
theories even arise as a reformulation of classical theories to satisfy this linearity constraint;
Hopf algebras arise from groups in that way. An notable consequence for rewriting is that
unification disappears as a separate problem; it rather happens implicitly as part of overlaps
involving rules for the coproduct and counit.

Finally it may be remarked that the ‘monoid’ in ‘monoidal category’ refers to the fact that
the set of types supported constitute a monoid under concatenation/tensor product. In practice
only free monoids seem to be used, which corresponds to having a set of atomic types given
by the user, that do not interact except in operation vertices. A graph model for this should
then make sure to label every edge with one of these atomic types—the type of data that
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may be carried along that edge—but for rewriting that is mostly rendundant since the type
of an edge can be inferred from the vertices it is incident with, and overlapping existing type-
consistent graphs will only generate new type-consistent graphs. Hence it is perfectly possible
(an notationally easier) to set up the rewriting framework as being untyped, in which case
symocats simplify to what MacLane called a PROP. It turns out networks—directed acyclic
open graphs where vertices are with respect to in- and out-degree consistently decorated with
symbols from a doubly ranked alphabet and each edge attach to a separate port of a vertex
it is incident with—are modulo network isomorphism exactly the elements of the free PROP

generated by that doubly ranked alphabet [3, Sec. 5].

2 Formal feedbacks

Even if cycles can be problematic for the interpretation of networks as expressions, they are
quite useful when it comes to analysing the structure of networks, since they permit expressing
any whole as an A part beside a B part, having some outputs of that A ⊗ B combinations
connected back to select inputs of it, without getting into details of whether A comes before B
dependency-wise, B comes before A, or in fact it might be both. Interestingly enough, this is
possible even in the free PROP, since it supports formal feedbacks [3, Sec. 9].

The idea is that one may to any network G associate a boolean matrix Trf(G) called the
transferrence of G: this has a 1 in position (i, j) iff there is a directed path in G from input j to
output i; this Trf may also be interpreted as a PROP homomorphism into the PROP of boolean
matrices. If G and H are networks whose transferrences have block matrix decompositions
Trf(G) = [ a11 a12

a21 a22
] and Trf(H) =

[
b22 b23
b32 b33

]
where a22 is q × r and b22 is r × q, then the matrix

a22b22 is nilpotent iff the symmetric join G 1q
r H is acyclic, that one obtains by identifying

the q last outputs of G with the q first inputs of H and likewise the r first outputs of H with
the r last inputs of G. This carries over to the free PROP, which canonically comes with a
filtration F indexed by boolean matrices, such that Fa is the set of all elements µ of the free
PROP that have a transferrence ≤ a in the standard matrix order. F being a PROP filtration,
it follows from µ ∈ Fa and ν ∈ Fb that µ ◦ ν ∈ Fa◦b (if a ◦ b is defined) and µ ⊗ ν ∈ Fa⊗b,
but more importantly each 1q

r may, provided a and b satisfy the above nilpotency condition,

be regarded as an operation Fa×Fb −→ Fc for c =
[
a11+a12b22(a22b22)

∗a21 a12(b22a22)
∗b23

b32(a22b22)
∗a21 b33+b32a22(b22a22)

∗b23

]
,

where p∗ =
∑∞

k=0 p
k denotes the Kleene star of the boolean matrix p. Joining with a width q

identify is also known as the width q (formal) feedback ↑q. A symmetric join on all inputs and
outputs of the right factor is for simplicity denoted o.

In [3, Sec. 10] this was used to construct a rewriting theory for networks, where a rewrite
rule µ→ µ′ with µ, µ′ ∈ Fb could be placed into a context defined by some ν ∈ Fa and used to
do ν o µ→ ν o µ′ whenever that symmetric join is defined; the machinery of formal feedbacks
make it feasible to ensure that this always respects the ordering with which these rules are
compatible. It was however in the detailed analysis of the resulting ambiguities (critical pairs)
observed that one could not claim that resolving only overlap and inclusion ambiguities would
suffice unless assuming that b = Trf(µ1) (rewrite rule is “sharp”), and in [3, Ex. 10.28] an
example was given of a wrap ambiguity where two redexes would block each other despite being
disjoint, by virtue of each having a input that depends on output from the other. The two rules  s1→

  ,

  s2→

 
3
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give rise to the critical pair


s1←



 =

  =




s2→



 . (1)

Characterising those situations where this happened were then left as an open problem. A
compounding factor is that this mainly seemed to arise where the transferrence of a network
would change without decreasing (rather increase or be outright incomparable), which is trou-
blesome when one seeks to find a compatible ordering: the rules involved in this are often also
not (easily) orientable. That is however a different story.

3 Networks with obligations

Eliding the interconnections between the two redexes, which would go from output 3 to input
1 and from output 2 to input 4, the ambiguity looks like  s1←

  s2→

  .

In either branch, applying the other rule to its redex is blocked because doing so would create
a cycle due to the change introduced by the first rule, whereas in the initial configuration both
rules can be applied. Since nilpotency of transferrence matrices allows us to test for acyclicity,
we can formulate a condition for the transferrence [ p11 p12

p21 p22 ] of a context ν that would cause this:
the block p22 connecting outputs of the ambiguity back to inputs thereof must have(

1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

)
p22 nilpotent, but

(
1 1 0 0
1 1 0 0
0 0 1 0
0 0 1 1

)
p22,

(
1 1 0 0
0 1 0 0
0 0 1 1
0 0 1 1

)
p22 non-nilpotent. (2)

The only solution to this is that p22 =

(
0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

)
, which indeed places us in the situation

depicted in (1).
How could one automatically solve such problems, nilpotency being a rather nonlinear con-

straint? It turns out that they can quite conveniently be formulated as boolean satisfiability
problems, with the elements of p22 as individual boolean variables. Nilpotency as such may
seem difficult to encode, but the nilpotency of a boolean n × n matrix A is equivalent to the
claim that An = 0, and repeated boolean multiplications are straightforward to encode if one
introduces helper variables for the elements of the intermediate products; exponentiation by
squaring helps to further reduce the number of multiplications that need to be encoded. Non-
nilpotency of a boolean matrix A is conversely equivalent to the claim that its Kleene plus
A+ = AA∗ =

∑n
k=1A

k does not have a zero diagonal, which again is thus possible to encode
in terms of repeated boolean multiplications.

In hindsight, a problem with the [3] rewriting theory is that it assigns a transferrence to each
rule, when what it in fact needs is to know what restrictions may be imposed by the context
in which the rule is to act. For the derived rule a completion would produce from (2) the least
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possible transferrence is

(
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

)
, but that is also too large to allow that both dependencies

expressed by the p22 matrix above—this derived rule would not be able to resolve the very
ambiguity from which it was derived! That is clearly not satisfactory, but such is sometimes
the lure of the algebra; the theory of the PROP filtration F simply looked too good for it to
not be the right basis for the rewrite theory. It still has its uses, but it is not what should
characterise the rewrite rules.

A better approach is instead to let each rewrite rule come with an obligation of supporting
a certain amount of feedback imposed by the context in which it is to operate—essentially that
p22 matrix derived above. The basic sets Y(r) of objects being rewritten are indexed by boolean
matrices r, and consist of all µ in the free PROP such that Trf(µ)r is (defined, square, and)
nilpotent; ordinary algebraic expressions have obligation r = 0, but higher obligations arise
when resolving ambiguities. A rule µ→ µ′ supporting obligations r can be applied to make the
rewrite step νoµ→ νoµ′ while respecting obligations q iff the transferrence Trf(ν) = [ p11 p12

p21 p22 ]
also satisfies (i) that qp11 is nilpotent and (ii) that p21q(p11q)

∗p12 + p22 6 r; in other words
the context does not by ifself violate the target obligations q, and combining the context with
those obligations does not create effective obligations exceeding those that this rule supports.

For enumerating wrap ambiguities, this leads to a slightly more complicated set of constraints
that just the (2) combination of nilpotency and non-nilpotency, but it is all possible to handle
with the same set encoding tricks, of which the theoretically foremost is that one need only
consider matrix powers up to a known bound.

References

[1] John C. Baez and Mike Stay. Physics, Topology, Logic and Computation: A Rosetta Stone. Pp. 95–
174 in New Structures for Physics (ed. Bob Coecke), Lecture Notes in Physics vol. 813, Springer,
Berlin, 2011. arXiv:0903.0340v3.

[2] Masahito Hasegawa. Models of sharing graphs. CPHC/BCS Distinguished Dissertations. Springer-
Verlag London, Ltd., London, 1999. A categorical semantics of let and letrec, Dissertation, Uni-
versity of Edinburgh, Edinburgh. doi:10.1007/978-1-4471-0865-8.

[3] Lars Hellström. Network Rewriting I: The Foundation, April 2012. arXiv:1204.2421 [math.RA].
arXiv:1204.2421.
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