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ABSTRACT
Modern works on style transfer focus on transferring style
from a single image. Recently, some approaches study multi-
ple style transfer; these, however, are either too slow or fail to
mix multiple styles. We propose ST-VAE, a Variational Au-
toEncoder for latent space-based style transfer. It performs
multiple style transfer by projecting nonlinear styles to a lin-
ear latent space, enabling to merge styles via linear interpo-
lation before transferring the new style to the content image.
To evaluate ST-VAE, we experiment on COCO for single and
multiple style transfer. We also present a case study revealing
that ST-VAE outperforms other methods while being faster,
flexible, and setting a new path for multiple style transfer.

1. INTRODUCTION

Style transfer is a well-visited topic [1, 2, 3, 4]. Given a target
and a reference image, its goal is to synthesize an image with
content from the target and style from the reference. Typi-
cally, ‘style’ refers to color, texture, or brushstroke [5, 6].

Most style transfer works are limited as they typically fo-
cus either solely on single style [1, 2, 4, 7] or on one set of
styles [5, 8, 9]. In real-life applications, however, a user is
rarely satisfied with a single style and instead seeks for mul-
tiple ones usually by iteratively applying styles [10]. To ad-
dress multiple style transfer, the common practice is to inter-
polate different styles or assign different weights in the fea-
ture space [2, 3]. Besides slow, the main limitation of such
methods is that features are nonlinear and linear interpolation
cannot guarantee style mixture in spatial space.

To tackle these issues, we introduce a Variational AutoEn-
coder for latent space-based style transfer, coined ST-VAE.
It is a flexible framework that adapts to single or multiple
style transfer. It consists of (1) an Image AutoEncoder for im-
age reconstruction, where the style manipulation takes place
in the feature space instead of the pixel space (Section 3.1);
and (2) a Variational autoencoder-based Linear Transforma-
tion (VLT) that first learns the feature covariance for style and
content images (Section 3.2.1) and then maps the covariance
to a latent space via KL divergence (Section 3.2.2). Multiple
style transfer is achieved as latent space-based linear inter-
polation. Experiments on the COCO dataset [11] and com-
parisons to modern methods show that ST-VAE achieves fine

visual quality (Section 4). We also conduct a user study re-
vealing that our results are superior to the state of the art.

Our contributions are: (1) we introduce ST-VAE, a novel
method for single and multiple style transfer; (2) it casts style
fusion as mixture models setting the path for future study; and
(3) it outperforms all methods quantitatively and qualitatively.

2. RELATED WORK

Single image style transfer. Style transfer with DL was
introduced in [10]. Since then, it has gained a lot of popu-
larity and several works address it by using features to blend
statistics from content and style images. AdaIN [3] proposes
to match the mean and variance of intermediate features be-
tween content and reference images. Other works use higher-
order statistic analysis [7, 12, 13, 14]. For instance, [12] ex-
plores the non-local feature correlations, whereas WCT [4]
refines style transfer by directly embedding the Whitening
and Coloring Transforms into a network. Recent works tackle
it with Generative Adversarial Networks (GAN) [15, 16, 17,
18]. A representative work is CycleGAN [5] that uses two sets
of GANs to form a mapping loop between domain A and B.
[15] proposes to disentangle contents and styles from images
so the stylization can be resolved in the style space, while [19]
includes segmentation information for conditional editing.
Multiple style transfer is a less explored topic. The goal
is to mix multiple styles and add them to the content image.
Most approaches [1, 3, 8, 9, 12, 20] cast it as feature inter-
polation, i.e. interpolate between different styles and transfer
the new style to the content images. [3] interpolates the means
and variances of the style feature maps, whereas [21] adds the
style interpolation into the loss and trains a model for different
style mixture. However, these solutions are time-consuming
and the range of mean and variance for different style images
varies a lot, and hence simple interpolation does not guaran-
tee the desired style mixture. Other works use GANs, e.g. [9]
uses 1D codes as a condition for style transfer; however, the
network is trained on a fixed number of styles, and hence it
cannot transfer styles outside the training data. [8] proposes
a GAN to train a spatial transformation matrix; however, the
network performs poorly on styles outside the training data,
and there are no multiple or convincing style transfer studies.
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Fig. 1: ST-VAE. (a) At training, IAE is trained and then is kept frozen. After, VLT learns the covariance of style images via linear-
transformation module and projects them to components of a multi-dimensional Gaussian distribution via KL minimization via the variation
module. To transfer styles, it computes the covariance between style and content and multiplies it to the content features to obtain the new
projected features. (b) At test time, given several input style images, ST-VAE samples styles in the latent space by model mixture (magenta).

3. METHOD

Here, we describe the Variational AutoEncoder for latent
space-based Style Transfer (ST-VAE) that performs multiple
style transfer by projecting nonlinear styles to a linear latent
space, and it fuses them by linear interpolation (Figure 1).
It consists of an Image AutoEncoder (IAE), i.e. an encoder-
decoder performing image reconstruction (Section 3.1); and a
Variational autoencoder-based Linear Transformation (VLT),
responsible for latent space-based style manipulation (Sec-
tion 3.2). The training comprises two phases (Figure 1(a)).
First, IAE is trained for image reconstruction. Second, IAE is
frozen and VLT learns the covariance of different styles via
the linear-transformation module and then the variation
module projects them to different components of a multi-
dimensional Gaussian distribution via KL minimization. At
test time, the style transfer is processed in the latent space via
a mixture of Gaussian distributions (magenta in Figure 1(b)).

3.1. Image AutoEncoder (IAE)

IAE is a symmetric encoder-decoder that extracts features
for image reconstruction. The encoder’s structure follows
VGG-19 [22] by keeping all conv layers and discarding the
fc ones. The decoder is symmetric to the encoder and up-
samples the feature abstraction to reconstruct the input im-
age. Unlike [5, 23, 24], IAE has no short connections. IAE
performs style transfer in the feature domain. The encoder
learns a one-to-one mapping E from images X to features M,
while the decoder learns a mapping D to reconstruct the im-
ages. These mappings ensure that each image corresponds to
a unique and compact feature.

3.2. VAE-based Linear Transformation (VLT)

VLT is built upon a Variational AutoEncoder and is respon-
sible for latent space based style manipulation. It consists
of a linear transformation (Section 3.2.1), which learns the
covariance matrices of the content and style features; and a
variation module (Section 3.2.2), which projects the styles
to a normal Gaussian space. After, the content and style co-
variance matrices are multiplied for stylization.
Notation. Let Fc, Fs 2 RC⇥N be the vectorized feature maps
of content and style image, respectively that are obtained at
the top-most encoder layer. N is the feature length for content
and style image and C is the number of channels.

3.2.1. Linear Transformation module

To perform content and style transfer, we deploy a two-fold
objective. First, we find a linear transformation T 2 RC⇥C to
transfer content Fc to the desired feature maps Fd, such that
Fd = TFc. Second, we find a nonlinear mapping model �,
such that �s = �(Fs), where �s is the transformed style fea-
ture maps. This is in line with [4, 13] that cast the stylization
as a covariance matching process. Our objective is:

Lstyle =
1

NC
||F̄dF̄

T
d � �̄s�̄

T
s ||l

s.t.F̄c = Fc �mean(Fc), F̄d = T F̄c.
(1)

Equation (1) describes the l-th order minimization, where
F̄d is the desired feature vector. F̄dF̄T

d is the covariance of
F̄d. Following [4], we find the covariance of F̄d, with the
whitening process, i.e. singular value decomposition. We find
the eigenvector matrix E and the diagonal eigenvalue matrix
D as: cov(�s) = �̄s�̄Ts = EsDsET

s , and hence we estimate
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Fig. 2: Image synthesis using two style images for the same content image for AdaIN [3] and ST-VAE (ours). The weights of the styles are
shown above each stylized image. ST-VAE transitions between styles smoother than AdaIN, especially on the building edges and windows.
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where ⌃ 2 RC⇥C is C-dimensional orthogonal matrix.
Equation (2) shows that the transformation T is determined by
the covariance of the content and style image features. Once
T is calculated, Fd is obtained by T F̄c + mean(Fs), which
aligns it to the mean and covariance of the style image.

3.2.2. Variation module

The variation module is a projection model responsible for
multiple style transfer. Only a few works explore controllable
or weighted style transfer [1, 3, 25] by manually adjusting
the weights for linear interpolation, but they cause inconsis-
tent style transition as the features are nonlinear. Instead, we
embed the variation module into the transformation model to
map features into a linear space spanned by mixture models.

VAE is defined as: P (X)=
R
P (X, z)P (z|X) dz, where X

is the input and z is sampled from the latent space Z [24,
26, 27]. To regularize the latent space, we use the Kull-
back–Leibler (KL) divergence that measures the probability
close to a normal distribution. The variation module learns
parameters ✓ for maximizing the data log likelihood P✓(X):

logP✓(X) = EQ!(z|X)[logP✓(X, z)]�KL[Q!(z|X)||P✓(z|X)]. (3)

Equation (3) shows that the encoder learns parameters ! to
approximate posterior Q!(z|X), while the decoder learns ✓
to represent the likelihood P✓(X, z). The real prior distribu-
tion P✓(z|X) is a Gaussian distribution and the approximated
posterior follows z ⇠ Q!(z|xi) = N (z;µi,�2

i I ). We use

the variation module to cast the multiple style transfer prob-
lem as a generative sampling process: by projecting arbitrary
style images to a hidden distribution, each style image corre-
sponds to one sample on the latent space. Thus, the multiple
style transfer becomes data interpolation in the latent space,
performed by a multivariate Gaussian mixture model.
Training Loss. We train our model using the style Lstyle and
content losses Lcontent and KL divergence as follows:

Lcontent = E|| (T (X))�  (X)||1, and
LVLT = Lcontent + �Lstyle + �KL[Q�(z|X)||N (0, 1)],

(4)

where � and � are the weighting parameters to balance style
and KL losses,  i is the i-th feature maps extracted from the
pre-trained VGG-16 model [22]. Recall that we use VGG-16
to compute losses, while we modify VGG-19 for IAE.

4. EXPERIMENTS

We report results on single and multiple style transfer, runtime
and quantitative evaluations (more examples in sup. material).
Implementation details. For content loss, we use relu4 1
to compute differences between content and stylized images.
For perceptual loss, we combine first- and second-order statis-
tics to measure the similarity between reference and stylized
images. We train IAE on COCO [11]. For VLT, we use
COCO as content and WikiArt [6] as style. At training, we
keep the ratio and crop a region of 256⇥256 as patches. For
augmentation, we randomly flip and rotate the contents. We
train with Adam optimizer, a learning rate of 10�4 and batch
size of 8 for 100k iterations (8h, NVIDIA GTX1080Ti GPU).
Discussion. ST-VAE transfers textures and styles efficiently
(appr. 100 fps). For efficiency, the input features are first com-
pressed for transformation learning and then uncompressed to
match the original dimension (‘conv’ in Figure 1). Instead of
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1 to 5 (5 being the highest). 20 users were asked to rate synthesized images. Overall, we collect
500 votes for each method and observe that images from ST-VAE are unanimously rated the best.

Image 256⇥ 512⇥ 1024⇥
size 256 512 1024
Gatys [10] 16.51 59.45 251.44
AdaIN [3] 0.019 0.071 0.288
WCT [4] 0.922 1.080 4.001
LT [13] 0.01 0.036 0.146
Ours 0.01 0.041 0.145

Table 1: Running time comparison
on different image resolutions, mea-
sured in seconds using the original
source code on a GTX 1080Ti GPU.
Red indicates the best results, blue in-
dicates the second best results.
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Fig. 4: Results of seven style transfer methods. ST-VAE has more
similar affinity with the content than other methods, e.g. it preserves
the objects in (b,d), while others fail to produce detailed structures.

fixed-size content and style [10, 12], ST-VAE does not depend
on the image resolution, thus handling arbitrary style transfer.

General style transfer. ST-VAE performs robust style trans-
fer without affecting the structure of the content images. To
show its effectiveness, we compare it to the state of the art:
Gatys [10], AdaIN [3], WCT [4], and LT [13]. Figure 4 shows
five content and style images and the results with all methods.
For a fair evaluation, we choose content images from [12]
and [28] that are not part of our training set. ST-VAE success-
fully transfers the desired styles and textures and preserves
the details of the content better. For instance, in Figure 4(a)

ST-VAE clearly reconstructs the windows and doors.
Multiple style transfer. Figure 2 shows the style mixture re-
sults when using two style images for ST-VAE and AdaIN [3].
Note, the style interpolation is done by assigning different
weights to the style images. We focus on the texture tran-
sition. We observe that ST-VAE successfully preserves the
content information better than AdaIN while transitioning be-
tween styles in a smoother way. For instance, it successfully
preserves the clouds and windows while transferring styles,
while AdaIN losses these details. Furthermore, ST-VAE re-
sults in smooth changes between foreground and background
without any boundary effects, while AdaIN fails.
Quantitative evaluation. To evaluate ST-VAE, we conduct a
user study, where users are presented with 5 synthetic images
in random order and are asked to rate their quality from 1 to
5 (5 the highest). We use five methods: Gatys, AdaIN, WCT,
LT and ours. For each method, we synthesize 400 images (10
content, 40 styles) and randomly select 20. We collect 500
votes from 20 users and report the results in Figure 3, where
we observe that ST-VAE is favoured amongst all.
Computational cost. Table 1 reports the run-times on style
transfer with different resolutions. In most cases, ST-VAE
leads to the lowest run-time; for instance, for low-resolution
images it generates images within 0.01s.

5. CONCLUSION

We introduced ST-VAE, a Variational AutoEncoder based
style transfer method that maps features into a multivariate
Gaussian distribution for both single and multiple style trans-
fer with more consistent style transitions. The linear transfor-
mation enables feed-forward training and testing, thus making
ST-VAE very efficient. Our experiments show that ST-VAE
performs favourably against the state of the art, both quantita-
tively and qualitatively. Future work involves extending it to
videos by exploiting the temporal continuity of frames [29].
Acknowledgements. This work was partly funded by the
Google chair at École Polytechnique.
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