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Séminaire de Géométrie Algorithmique et Combinatoire, Paris
March 2017



Boxicity

d-box: the cartesian product of d intervals [x1, y1]× . . .× [xd , yd ] of R

The boxicity of a graph G , denoted by box(G ), is the smallest d such that G
is the intersection graph of some d-boxes.

Definition (Roberts 1969)
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Boxicity and poset dimension

The dimension of a poset P is the minimum number of total orders realizing P
(i.e. such that x <P y if and only if x < y in all the total orders).

If P is a poset of height 2 and G is its comparability graph, then
box(G ) ≤ dim(P) ≤ 2 box(G ).

Theorem (Adiga, Bhowmick, Chandran 2011)
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Boxicity and poset dimension

The dimension of a poset P is the minimum number of total orders realizing P
(i.e. such that x <P y if and only if x < y in all the total orders).

If P is a poset of height 2 and G is its comparability graph, then
box(G ) ≤ dim(P) ≤ 2 box(G ).

Theorem (Adiga, Bhowmick, Chandran 2011)

In particular if G is bipartite, it can be viewed as a poset PG and we have
box(G ) ≤ dim(PG ) ≤ 2 box(G ) :



Dimension of the incidence poset

Incidence poset of G : the elements are the vertices and edges of G , with the
inclusion relation.

If G is a graph and P is its incidence poset, then box(G∗) ≤ dim(P) ≤
2 box(G∗), where G∗ denotes the 1-subdivision of G .

Observation

Subdivided Kn

boxicity Θ(log log n)
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Graphs with small boxicity

Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).

Planar graphs have boxicity at most 3 (Thomassen 1986).

Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).

Graphs with treewidth k have boxicity at most k + 1 (Chandran, Sivadasan
2007).

Graphs with maximum degree ∆ have boxicity O(∆ log2 ∆) and some have
boxicity Ω(∆ log ∆) (Adiga, Bhowmick, Chandran 2011).

Graphs with Euler genus g have boxicity O(
√
g log g), and some have boxicity

Ω(
√
g log g).

Theorem (E. 2015)

Graphs with Euler genus g without non-contractible cycles of length at most
40 · 2g have boxicity at most 5.

Theorem (E. 2015)
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A proper coloring is acyclic if any two color classes induce a forest.
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Observation

the rest
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containing every non-edge of G
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Boxicity of graphs on surfaces

If a graph G has Euler genus g , then there is a set A of O(g) vertices such
that G − A has an acyclic coloring with 7 colors.

Theorem (Kawarabayashi, Thomassen 2012)

acyclic col. with 7 colors O(g) vertices

K K

=

∩
box ≤ 42 box = O(

√
g log g) ?
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Boxicity of graphs on surfaces

O(g) vertices

S

+ We may assume that all orange
vertices have distinct blue neighborhoods

+ stable set instead of clique

⇒ the graph has O(g 4) vertices and is O(
√
g)-degenerate

If a graph G with n vertices is k-degenerate, then box(G ) = O(k log n).

Theorem (Adiga, Chandran, Mathew 2014)
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Consider the following
random bipartite graph Gn:

n vertices n vertices

each edge
with

1
log n

with high probability,

Gn has at most 2n2

log n edges

and then genus at most 2n2

log n + 2

probability

box(Gn) = Ω(n) (consequence of Erdős, Kierstead, Trotter, 1991)

Theorem (Adiga, Bhowmick, Chandran, 2011)

It follows that box(Gn) = Ω(
√
g log g).
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C

N

R

C

N

R C

N

R

=

∩ ∩ C

N

R
Boxicity 3 Boxicity 3 Boxicity 1
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the neighbors of C
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Graphs with large girth

For any proper minor-closed class F , there is an integer g = g(F) such that
any graph of F of girth at least g has boxicity at most 3.

Theorem (E. 2015)

There is a constant c such that any graph of Euler genus g and girth at least
c log g has boxicity at most 3.

Theorem (E. 2015)



Open problems

What is the boxicity of Kt-minor-free graphs? (somewhere between
Ω(t
√

log t) and O(t2))

What is the boxicity of toroidal graphs? (somewhere between 4 and 6)

Is it true that locally planar graphs have boxicity at most 3?

Is it true that if G has Euler genus g , then few vertices can be removed from
G so that the resulting graph has boxicity at most 3? (it is true with 5
instead of 3)
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