Box representations of embedded graphs

Louis Esperet

CNRS, Laboratoire G-SCOP, Grenoble, France

Séminaire de Géométrie Algorithmique et Combinatoire, Paris March 2017

d-box: the cartesian product of *d* intervals $[x_1, y_1]$ × . . . × $[x_d, y_d]$ of ℝ

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times ... \times [x_d, y_d]$ of ℝ

Definition (Roberts 1969)

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times ... \times [x_d, y_d]$ of ℝ

Definition (Roberts 1969)

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times ... \times [x_d, y_d]$ of ℝ

Definition (Roberts 1969)

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times ... \times [x_d, y_d]$ of ℝ

Definition (Roberts 1969)

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times ... \times [x_d, y_d]$ of ℝ

Definition (Roberts 1969)

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times ... \times [x_d, y_d]$ of ℝ

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box(G), is the smallest d such that G is the intersection graph of some d-boxes.

The boxicity of a graph G = (V, E) is the smallest k for which there exist k interval graphs $G_i = (V, E_i)$, $1 \le i \le k$, such that $E = E_1 \cap ... \cap E_k$.

d-box: the cartesian product of *d* intervals $[x_1, y_1]$ × . . . × $[x_d, y_d]$ of ℝ

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box(G), is the smallest d such that G is the intersection graph of some d-boxes.

The boxicity of a graph G = (V, E) is the smallest k for which there exist k interval graphs $G_i = (V, E_i)$, $1 \le i \le k$, such that $E = E_1 \cap ... \cap E_k$.

Applications to

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times \ldots \times [x_d, y_d]$ of $\mathbb R$

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box(G), is the smallest d such that G is the intersection graph of some d-boxes.

The boxicity of a graph G = (V, E) is the smallest k for which there exist k interval graphs $G_i = (V, E_i)$, $1 \le i \le k$, such that $E = E_1 \cap ... \cap E_k$.

Applications to

Ecological/food chain networks

d-box: the cartesian product of *d* intervals $[x_1, y_1] \times \ldots \times [x_d, y_d]$ of $\mathbb R$

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box(G), is the smallest d such that G is the intersection graph of some d-boxes.

The boxicity of a graph G = (V, E) is the smallest k for which there exist k interval graphs $G_i = (V, E_i)$, $1 \le i \le k$, such that $E = E_1 \cap ... \cap E_k$.

Applications to

- Ecological/food chain networks
- Sociological/political networks

d-box: the cartesian product of *d* intervals $[x_1, y_1]$ × . . . × $[x_d, y_d]$ of ℝ

Definition (Roberts 1969)

The boxicity of a graph G, denoted by box(G), is the smallest d such that G is the intersection graph of some d-boxes.

The boxicity of a graph G = (V, E) is the smallest k for which there exist k interval graphs $G_i = (V, E_i)$, $1 \le i \le k$, such that $E = E_1 \cap ... \cap E_k$.

Applications to

- Ecological/food chain networks
- Sociological/political networks
- Fleet maintenance

 K_n minus a perfect matching

 K_n minus a perfect matching

 K_n minus a perfect matching

BOXICITY AND POSET DIMENSION

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that $x <_{\mathcal{P}} y$ if and only if x < y in all the total orders).

BOXICITY AND POSET DIMENSION

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that $x <_{\mathcal{P}} y$ if and only if x < y in all the total orders).

Theorem (Adiga, Bhowmick, Chandran 2011)

If \mathcal{P} is a poset of height 2 and G is its comparability graph, then $box(G) \leq dim(\mathcal{P}) \leq 2box(G)$.

BOXICITY AND POSET DIMENSION

The dimension of a poset \mathcal{P} is the minimum number of total orders realizing \mathcal{P} (i.e. such that $x <_{\mathcal{P}} y$ if and only if x < y in all the total orders).

Theorem (Adiga, Bhowmick, Chandran 2011)

If $\mathcal P$ is a poset of height 2 and G is its comparability graph, then $\mathsf{box}(G) \le \mathsf{dim}(\mathcal P) \le 2\,\mathsf{box}(G)$.

In particular if G is bipartite, it can be viewed as a poset \mathcal{P}_G and we have $box(G) \leq dim(\mathcal{P}_G) \leq 2box(G)$:

Dimension of the incidence poset

Incidence poset of G: the elements are the vertices and edges of G, with the inclusion relation.

(Observation)

If G is a graph and \mathcal{P} is its incidence poset, then $box(G^*) \leq dim(\mathcal{P}) \leq 2box(G^*)$, where G^* denotes the 1-subdivision of G.

Incidence poset of G: the elements are the vertices and edges of G, with the inclusion relation.

Observation

If G is a graph and \mathcal{P} is its incidence poset, then $box(G^*) \leq dim(\mathcal{P}) \leq 2box(G^*)$, where G^* denotes the 1-subdivision of G.

Subdivided K_n

boxicity $\Theta(\log \log n)$

GRAPHS WITH SMALL BOXICITY

• Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).

GRAPHS WITH SMALL BOXICITY

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).
- Graphs with treewidth k have boxicity at most k+1 (Chandran, Sivadasan 2007).

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).
- Graphs with treewidth k have boxicity at most k + 1 (Chandran, Sivadasan 2007).
- Graphs with maximum degree Δ have boxicity $O(\Delta \log^2 \Delta)$ and some have boxicity $\Omega(\Delta \log \Delta)$ (Adiga, Bhowmick, Chandran 2011).

Graphs with small boxicity

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).
- Graphs with treewidth k have boxicity at most k+1 (Chandran, Sivadasan 2007).
- Graphs with maximum degree Δ have boxicity $O(\Delta \log^2 \Delta)$ and some have boxicity $\Omega(\Delta \log \Delta)$ (Adiga, Bhowmick, Chandran 2011).

Theorem (E. 2015)

Graphs with Euler genus g have boxicity $O(\sqrt{g} \log g)$, and some have boxicity $\Omega(\sqrt{g} \log g)$.

Graphs with small boxicity

- Outerplanar graphs have boxicity at most 2 (Scheinerman 1984).
- Planar graphs have boxicity at most 3 (Thomassen 1986).
- Graphs of Euler genus g have boxicity at most 5g + 3 (E., Joret 2013).
- Graphs with treewidth k have boxicity at most k+1 (Chandran, Sivadasan 2007).
- Graphs with maximum degree Δ have boxicity $O(\Delta \log^2 \Delta)$ and some have boxicity $\Omega(\Delta \log \Delta)$ (Adiga, Bhowmick, Chandran 2011).

Theorem (E. 2015)

Graphs with Euler genus g have boxicity $O(\sqrt{g} \log g)$, and some have boxicity $\Omega(\sqrt{g} \log g)$.

Theorem (E. 2015)

Graphs with Euler genus g without non-contractible cycles of length at most $40 \cdot 2^g$ have boxicity at most 5.

A proper coloring is acyclic if any two color classes induce a forest.

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $box(G) \le k(k-1)$.

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $box(G) \le k(k-1)$.

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $box(G) \le k(k-1)$.

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $box(G) \le k(k-1)$.

 $\binom{k}{2}$ supergraphs of boxicity 2, containing every non-edge of G

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $box(G) \le k(k-1)$.

k(k-1) supergraphs of boxicity 1 (=interval graphs), containing every non-edge of G

A proper coloring is acyclic if any two color classes induce a forest.

Observation

If a graph G has an acyclic coloring with k colors, then $box(G) \le k(k-1)$.

k(k-1) supergraphs of boxicity 1 (=interval graphs), containing every non-edge of ${\it G}$

$$\Rightarrow \mathsf{box}(G) \leq k(k-1)$$

Theorem (Kawarabayashi, Thomassen 2012)

Theorem (Kawarabayashi, Thomassen 2012)

Theorem (Kawarabayashi, Thomassen 2012)

Theorem (Kawarabayashi, Thomassen 2012)

Theorem (Kawarabayashi, Thomassen 2012)

Theorem (Adiga, Chandran, Mathew 2014)

If a graph G with n vertices is k-degenerate, then $box(G) = O(k \log n)$.

Consider the following random bipartite graph G_n :

Consider the following random bipartite graph G_n :

with high probability,

 G_n has at most $\frac{2n^2}{\log n}$ edges

Consider the following random bipartite graph G_n :

with high probability,

 G_n has at most $\frac{2n^2}{\log n}$ edges and then genus at most $\frac{2n^2}{\log n} + 2$

Consider the following random bipartite graph G_n :

with high probability,

 G_n has at most $\frac{2n^2}{\log n}$ edges

and then genus at most $\frac{2n^2}{\log n} + 2$

Theorem (Adiga, Bhowmick, Chandran, 2011)

 $box(G_n) = \Omega(n)$ (consequence of Erdős, Kierstead, Trotter, 1991)

Consider the following random bipartite graph G_n :

with high probability,

 G_n has at most $\frac{2n^2}{\log n}$ edges

and then genus at most $\frac{2n^2}{\log n} + 2$

Theorem (Adiga, Bhowmick, Chandran, 2011)

 $box(G_n) = \Omega(n)$ (consequence of Erdős, Kierstead, Trotter, 1991)

It follows that box $(G_n) = \Omega(\sqrt{g \log g})$.

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 5.

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

G triangulation with edge-width at least $40 \cdot 2^g$.

 \boldsymbol{g} induced cycles, far apart, such that after cutting along them, the resulting graph is planar

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

G triangulation with edge-width at least $40 \cdot 2^g$.

g induced cycles, far apart, such that after cutting along them, the resulting graph is planar

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

G triangulation with edge-width at least $40 \cdot 2^g$.

g induced cycles, far apart, such that after cutting along them, the resulting graph is planar

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

G triangulation with edge-width at least $40 \cdot 2^g$.

g induced cycles, far apart, such that after cutting along them, the resulting graph is planar

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

Theorem (E. 2015)

Graphs with genus g, without non-contractible cycles of length at most $40 \cdot 2^g$, have boxicity at most 7.

GRAPHS WITH LARGE GIRTH

Theorem (E. 2015)

Theorem (E. 2015)

GRAPHS WITH LARGE GIRTH

Theorem (E. 2015)

Theorem (E. 2015)

Theorem (E. 2015)

Theorem (E. 2015)

For any proper minor-closed class \mathcal{F} , there is an integer $g=g(\mathcal{F})$ such that any graph of \mathcal{F} of girth at least g has boxicity at most 3.

Theorem (E. 2015)

There is a constant c such that any graph of Euler genus g and girth at least $c \log g$ has boxicity at most 3.

• What is the boxicity of K_t -minor-free graphs? (somewhere between $\Omega(t\sqrt{\log t})$ and $O(t^2)$)

- What is the boxicity of K_t -minor-free graphs? (somewhere between $\Omega(t\sqrt{\log t})$ and $O(t^2)$)
- What is the boxicity of toroidal graphs? (somewhere between 4 and 6)

- What is the boxicity of K_t -minor-free graphs? (somewhere between $\Omega(t\sqrt{\log t})$ and $O(t^2)$)
- What is the boxicity of toroidal graphs? (somewhere between 4 and 6)
- Is it true that locally planar graphs have boxicity at most 3?

- What is the boxicity of K_t -minor-free graphs? (somewhere between $\Omega(t\sqrt{\log t})$ and $O(t^2)$)
- What is the boxicity of toroidal graphs? (somewhere between 4 and 6)
- Is it true that locally planar graphs have boxicity at most 3?
- Is it true that if G has Euler genus g, then few vertices can be removed from G so that the resulting graph has boxicity at most 3? (it is true with 5 instead of 3)