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Context: Algorithmic Fairness
Example: HR case in a company

A—%

Employee Al Should get promoted or not
performance data

Observation: certain groups are ”privileged” = more likely to be put in the positive class

Technical solution: design models that decrease bias, but preserve accuracy
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Context: Algorithmic Fairness
Enforcing Fairness in Practice

Choose a Apply bias .
. pp y . Select a Fair
Old model fairness mitigation
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objective algorithms
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Context: Algorithmic Fairness
Enforcing Fairness in Practice

Choose a
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Traceability in the bias mitigation process
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Traceability in the bias mitigation process
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Traceability in the bias mitigation process

Accuracy =100%
Bias (DI) =0.4
S
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Traceability in the bias mitigation process

Accuracy =100%

Bias (DI)=0.4
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Traceability in the bias mitigation process
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Promoting women more and men less
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Traceability in the bias mitigation process
Accyracy, fairness
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Promoting more women
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Traceability in the bias mitigation process
Accyracy, fairness

Accuracy =100%
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Promoting less men
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Multiplicity in Debiasing
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Multiplicity in Debiasing

Why it’s bad
If we are not looking, algorithmic fairness methods then fail to achieve
their goal of true fairness

* Blind « Levelling down » effect [1]
* Blind discrimination on other factors [2]
* Arbitrariness in general

[1] The Unfairness of Fair Machine Learning: Levelling down and strict egalitarianism by default, Mittelstadt et al. 2021
[2] On the Fairness Road: Robust Optimization for Adversarial Debiasing, Grari et al. 2023
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Multiplicity in Debiasing
Empirical Study

We measure a very small overlap in people
“treated” between Fairness approaches

= How are these strategies different?
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Making the debiasing process more transparent

How: characterizing the debiasing processes to understand their differences

Proposed “audit” questions:
- Q1) How many individuals are affected by the debiasing?
- Q2) How are the sensitive groups affected?
- Q3) What consequences for the decision model?
- Q4) Who are the populations affected?
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Q1: How many people are affected by debiasing?

Methods optimizing Demographic Parity

40

- mm LFR
3 oy Adversarial What?
3 30 (Demographic Parity) Impact size of the bias mitigation
T o5 mmm ROC

Why is it important?
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Q2: Who are the targeted people ?

What?

Levelling up vs Levelling down
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Why is it important?

Degradation of the service
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LFR Adversarial (DP) ROC
Female Male Female Male Female Male
Positive Difference 39.25% 0.16% 24.83% 4.18% 0.0% 0.0%
Negative Difference 5.47% 55.1% 10.22% 60.75% 0.0% | 100%




Q3: What consequences for the decision model?

Subgroup and difference direction
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What?
Final acceptance rate of the model

Why is it important?

Broader impact on the general task:
budget, resources, rights, etc.



Q4) Who are the populations affected?
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What?
XAl to identify affected populations

Why is it important?
Better understanding of the bias
Highlighting possible new biases



Recap

Impact Size | Up vs down | Final model | Population
(Q1) (Q2) state (Q3) | stargeted
Balanced 0.17 Married &
educated

+ Balanced 0.14 single
- Male down 0.8 all
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Conclusion
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