Differential Privacy Surprises: Utility is not (always) monotonic on epsilon

Based on CCS '23 paper by: Mario Alvim¹, <u>Natasha Fernandes²</u>, Annabelle McIver², Carroll Morgan³ and Gabriel Nunes¹

¹ UFMG, Brazil ² Macquarie University, Australia ³ UNSW, Australia

Differential Privacy

* Add statistical noise to prevent inferences about individuals' data. $\overline{P(y|x)} \leq e^{\epsilon} P(y|x')$ * Noise tuning:

where x, x' are datasets differing in one individual.

Designed to protect against membership inference attacks.

* Also want to preserve useful information (inferences about z given y)

Statistics

Local Differential Privacy

Inputs x, x'

Output y

* Add statistical noise to prevent inferences about individuals' data. $P(y \mid x) \le e^{\epsilon} P(y \mid x')$ * Noise tuning:

- where x, x' are different data values of an individual.
- Designed to protect against attribute inference attacks.

* Also want to preserve useful information (observation z vs true statistic.)

(Noisy) Statistic z

General Privacy Workflows

Inputs

Preprocessing (Or not)

Example: DP-SGD

<u>Assumption</u>: Increasing epsilon (decreasing privacy) causes utility to increase — monotonicity

(Or not)

How to tune the noise to optimise the privacy-utility trade-off?

Our result: Utility is not always monotonic on epsilon in general privacy workflows

Quantitative Information Flow

Differential privacy: $C_{x,y} \leq e^{\epsilon} C_{x',y}$

<u>Refinement</u>: $A \sqsubseteq B$

means channel A is more useful than channel B to a Bayesian analyst equipped with **any** prior and **any** loss function

<-

Theorem (Coriaceous): $A \sqsubseteq B$ iff there exists a channel W s.t. $A \cdot W = B$ where \cdot is matrix multiplication (post-processing)

$$= \frac{2/3 \ 1/6 \ 1/6}{1/3 \ 1/3 \ 1/3 \ 1/3}$$
$$= \frac{1/3 \ 1/3 \ 1/6 \ 2/3}{1/6 \ 1/6 \ 2/3}$$

log4-differentially private

Information flow channel

General Privacy Workflows

Inputs

OR: If I change epsilon, how does utility change? OR: What is the relationship between epsilon and refinement? i.e. if $\epsilon \geq \epsilon'$ then is it true that $P \cdot C_{\epsilon} \cdot P' \sqsubseteq P \cdot C_{\epsilon'} \cdot P'$?

Output

How to tune the noise to optimise the privacy-utility trade-off?

Properties of Refinement

<u>Theorem</u>*: Given channels C, C' it holds that $C \sqsubset C'$

(i.e. Epsilon is always monotonic on utility)

<u>Theorem</u>*: If channels C, C' belong to the same "family" it holds that $\epsilon(C) \ge \epsilon(C') \implies C \sqsubseteq C'$

(i.e. Utility is monotonic on epsilon). <u>Note</u>: This was proven for KRR and Geometric "families" only.

* Chatzikokolakis et al: Comparing mechanisms: max-case refinement orders and application to differential privacy, CSF 2019.

$C \sqsubseteq C' \implies \epsilon(C) \ge \epsilon(C')$

Properties of Refinement

- <u>Theorem*</u>: Given channels C, C' and a <u>pre-processing step P it holds that</u>
- <u>Corollary</u>: If C, C' are both KRR or both Geometric then $\epsilon(C) \ge \epsilon(C') \implies P \cdot C \sqsubseteq P \cdot C'$
- i.e. Increasing epsilon also increases utility (monotonicity holds).

* Alvim et al: The Science of Quantitative Information Flow, published by Springer 2020.

 $C \sqsubseteq C' \implies P \cdot C \sqsubseteq P \cdot C'$

Output

Properties of Refinement

- <u>Theorem*</u>: Given channels C, C' and a <u>post-processing step P then</u>
- <u>Corollary</u>: If C, C' are both KRR or both Geometric then

BUT: Can't apply this result directly to our local DP workflow...

* Alvim et al: The Science of Quantitative Information Flow, published by Springer 2020.

 $C \sqsubseteq C' \not \Longrightarrow C \cdot P \sqsubseteq C' \cdot P$

 $\epsilon(C) \ge \epsilon(C') \implies C \cdot P \sqsubseteq C' \cdot P$

Inputs x, x'

Not $C_{\epsilon} \cdot P$ but n-fold composition of C_{ϵ} followed by P

Privacy Workflows

(Noisy) Statistic z

Analyst

Issue: Noise is added to each individual but post-processing is done on the combination of individuals

10

+ Noise

	(0,0)	(0,1)	(1,0)	(1,1)
),0)	9/16	3/16	3/16	1/16
),1)	3/16	9/16	1/16	3/16
,0)	3/16	1/16	9/16	3/16
,1)	1/16	3/16	3/16	9/16

Kronecker Composition

1/4 3/4

"Kronecker product"

Properties of Kronecker product:

Associativity: $(A \otimes B) \otimes C = A \otimes (B \otimes C)$ But \otimes is not commutative in general.

Kronecker Composition

- Bilinearity: $A \otimes (B + C) = A \otimes B + A \otimes C$ and $(B + C) \otimes A = B \otimes A + C \otimes A$ Product respecting: $(A \otimes B) \cdot (C \otimes D) = (A \cdot C) \otimes (B \cdot D)$ if $A \cdot C$ and $B \cdot D$ are defined.
- Invertibility: If A, B are invertible, then so is $A \otimes B$. The inverse is $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$

Theorem: Given channels C, C' then

Corollary: Given channels C, C' then

 $\epsilon(C) \ge \epsilon(C') \implies$

<u>Corollary</u>: Given channels C, C' both KRR or both Geometric then

 $\epsilon(C) \ge \epsilon(C')$

Kronecker Composition

$C \sqsubseteq C' \implies C^{\otimes N} \sqsubseteq C^{' \otimes N}$

$$\Rightarrow \ \epsilon(C^{\otimes N}) \geq \epsilon(C^{'\otimes N})$$

$$') \implies C^{\otimes N} \sqsubseteq C^{' \otimes N}$$

Non-Monotonicity in Theory

Inputs x, x'

<u>Theorem</u>: Given noise-adding channels C, C' in the same family,

i.e. There exist cases where we can get more privacy and more utility.

(Noisy) Statistic z

 $\epsilon(C) \ge \epsilon(C') \implies C \sqsubseteq C' \implies C^{\otimes N} \sqsubseteq C'^{\otimes N} \iff C^{\otimes N} \cdot P \sqsubseteq C'^{\otimes N} \cdot P$

Non-Monotonicity in Practice

But... is this a problem for utility measures that are meaningful?

Data source: <u>https://github.com/propublica/compas-analysis</u>

Yes!

Utility measured using mean absolute error

Loss(x, y) = |y - x|

Conditions for Monotonicity

Under what conditions does the following hold?

$$C^{\otimes N} \sqsubseteq C^{' \otimes N} \Longrightarrow$$

<u>Theorem</u>: Given channels C, C' s.t. $C \sqsubseteq C'$ with witness W, and a post-processor P, the following are sufficient conditions for monotonicity of utility on epsilon:

- 1. P has a left inverse ⁻¹P
- 2. $P \cdot {}^{-1}P \cdot W \cdot P = W \cdot P$

 $C^{\otimes N} \cdot P \sqsubset C^{' \otimes N} \cdot P$

Monotonicity Results

<u>Theorem</u>: If R, R' are KRR mechanisms then

whenever P is a "counting" query.

<u>Corollary</u>: If R, R' are KRR mechanisms then

whenever P is a "counting" query.

 $R^{\otimes N} \sqsubseteq R^{' \otimes N} \implies R^{\otimes N} \cdot P \sqsubseteq R^{' \otimes N} \cdot P$

 $\epsilon(R) \ge \epsilon(R') \implies R^{\otimes N} \cdot P \sqsubseteq R'^{\otimes N} \cdot P$

Non-Monotonicity Results

Many negative results:

Theorem: If R, R' are "KRR" channels then

whenever P is a "sum" query.

Also does not hold in general for Geometric channels for counting or sum P.

$R^{\otimes N} \sqsubseteq R^{' \otimes N} \iff R^{\otimes N} \cdot P \sqsubseteq R^{' \otimes N} \cdot P$

Statistical Postprocessors

1. "Counting" query - deterministic channel T

$R^{\otimes 2}$	$({\tt yes}, {\tt yes})$	$({\tt yes}, {\tt no})$	(nc
$({\tt yes}, {\tt yes})$	3/4 imes 3/4	3/4 imes 1/4	1/4
$({\tt yes}, {\tt no})$	3/4 imes 1/4	3/4 imes 3/4	1/4
(no, yes)	1/4 imes 3/4	$1/4 \times 1/4$	3/4
(no, no)	$1/4 \times 1/4$	$1/4 \times 3/4$	3/4

$$p, yes)$$
 (no, no)
 $x 3/4$ $1/4 \times 1/4$
 $x 1/4$ $1/4 \times 3/4$
 $x 3/4$ $3/4 \times 1/4$
 $x 1/4$ $3/4 \times 1/4$
 $x 1/4$ $3/4 \times 3/4$

T	0	1	2
$({\tt yes}, {\tt yes})$	0	0	1
$({\tt yes}, {\tt no})$	0	1	0
$({\tt no}, {\tt yes})$	0	1	0
(no,no)	1	0	0

1	2
$4 \times 1/4 + 1/4 \times 3/4$	3/4 imes 3/4
$4 \times 3/4 + 1/4 \times 1/4$	3/4 imes 1/4
$4 \times 1/4 + 3/4 \times 3/4$	1/4 imes 3/4
$4 \times 3/4 + 3/4 \times 1/4$	$1/4 \times 1/4$

Statistical Postprocessors

2. "Sum" query - deterministic channel S

 $\mathbf{2}$ 1 1/41/41/41/21/21/4

S	0	1	2	3	4
00	1	0	0	0	0
01	0	1	0	0	0
02	0	0	1	0	0
10	0	1	0	0	0
11	0	0	1	0	0
12	0	0	0	1	0
20	0	0	1	0	0
21	0	0	0	1	0
22	0	0	0	0	1

Conclusion/Future Work

Main Takeaways:

- Refinement is a useful tool for reasoning about utility in differential privacy
- Kronecker products allow reasoning about utility in local differential privacy contexts
- Utility is not always monotonic on epsilon!

Future work:

• Study of monotonicity in machine learning contexts eg. DP-SGD.