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always) monotonic on epsilon
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Properties of Refinement

Theorem™: Given channels C, C’ it holds that

¢ elC) 2= el )

..e. Epsilon is always monotonic on utility

Theorem™: If channels C, C’ belong to the same “family” it holds that




Properties of Refinement

Theorem™: Given channels C, C" and a pre-processing step P it holds that

cEC — JECEJE (T

Corollary: If C, C’ are both KRR or both Geometric then

e(C)ze(C) = P-CCP-C

i.e. Increasing epsilon also

olds).

increases utility (monotonicity h




Properties of Refinement

Theorem*: Given channels C, C" and a post-processing step P then

(L = (PL (.

Corollary: If C, C’ are both KRR or both Geometric then

e(C)ze(C)~ C-PL C -
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Kronecker Composition
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Kronecker Composition

Properties of Kronecker product:
Associativity: AQB)QC = AR (B R C(C)
Bilinearity: AQ (B+C) = AQB+ARKRC and (B+C)Q®A = BRA+CRA

Product respecting: AQ®B)- (CRD) = A-CO)QB-D) if A-C and B - D are defined.




Kronecker Composition

Theorem: Given channels C, C’ then

: Cl C®N e ,®N

Corollary: Given channels C, C’ then

«(€) 2 &(C) => e(C®) 2 e(C®)




Non-IVlonotonicity in [heory
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Non-Monotonicity In Practice

But... is this a problem for utility measures that are meaningful®?

Truncated Geometric Mechanism Yes!
k-Ary Random Response Mechanism

Utility measured using mean
absolute error

Loss(X, y) = |y - X

Data source: https://github.com/propublica/compas-analysis
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onditions for Monotonicity

Under what conditions does the following hold?

RAEL Y = CRL P CBY.P

Theorem: Given channels C, C’ s.t. C E C’ with witness W, and a post-processor P, the following




\Vionotonicity Results

heorem: If R, R’ are KRR mechanisms then

[ REY > RON D DOY

whenever P is a “counting” query.




Non-Vlonotonicity Results

Many negative results:

heorem: If R, R’ are “KRR” channels then

®NER’®N L, R®N,PER’®N.P
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Statistical Postprocessors

2. “'Sum” query - deterministic channel S
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onclusion/Future Work

Main Takeaways:
* Refinement Is a useful tool for reasoning about utility in differential privacy

» Kronecker products allow reasoning about utility in local differential privacy contexts

« Ultility Is not always monotonic on epsilon!




