
Differential Privacy Surprises: Utility is not 
(always) monotonic on epsilon

Based on CCS ’23 paper by: 
Mario Alvim1, Natasha Fernandes2, Annabelle McIver2, 

Carroll Morgan3 and Gabriel Nunes1

1

1 UFMG, Brazil   2 Macquarie University, Australia     3 UNSW, Australia



Differential Privacy

* Add statistical noise to prevent inferences about individuals’ data. 
* Noise tuning:               
        where x, x’ are datasets differing in one individual. 
* Designed to protect against membership inference attacks. 

* Also want to preserve useful information (inferences about z given y)

P(y |x) ≤ eϵP(y |x′ )
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Local Differential Privacy

* Add statistical noise to prevent inferences about individuals’ data. 
* Noise tuning:               
        where x, x’ are different data values of an individual. 
* Designed to protect against attribute inference attacks. 

* Also want to preserve useful information (observation z vs true statistic.)

P(y |x) ≤ eϵP(y |x′ )
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General Privacy Workflows

How to tune the noise to optimise the privacy-utility trade-off?

Assumption: Increasing epsilon (decreasing privacy) causes utility to increase — monotonicity
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Our result: Utility is not always monotonic on epsilon in general privacy workflows

Example: DP-SGD
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Quantitative Information Flow

Information flow channel

C =Differential privacy: Cx,y ≤ eϵCx′ ,y <-    log4-differentially private

A ⊑ B means channel A is more useful than channel B 
to a Bayesian analyst equipped with any prior and any loss function Refinement:

Theorem (Coriaceous):
A ⊑ B iff there exists a channel W s.t.   A ⋅ W = B

where  is matrix multiplication (post-processing) ⋅
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General Privacy Workflows

        How to tune the noise to optimise the privacy-utility trade-off?

6

Preprocessing 
(Or not)

+ Noise
Postprocessing

Inputs
Output

        OR: If I change epsilon, how does utility change?
        OR: What is the relationship between epsilon and refinement? 

        i.e. if    then is it true that     ?ϵ ≥ ϵ′ P ⋅ Cϵ ⋅ P′ ⊑ P ⋅ Cϵ′ 
⋅ P′ 



Properties of Refinement
Theorem*: Given channels C, C’ it holds that   

 

(i.e. Epsilon is always monotonic on utility)

C ⊑ C′ ⟹ ϵ(C) ≥ ϵ(C′ )

* Chatzikokolakis et al: Comparing mechanisms: max-case refinement orders and application to differential privacy, CSF 2019.

Theorem*: If channels C, C’ belong to the same “family” it holds that   

 

(i.e. Utility is monotonic on epsilon). 
Note: This was proven for KRR and Geometric “families” only.

ϵ(C) ≥ ϵ(C′ ) ⟹ C ⊑ C′ 
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Properties of Refinement
Theorem*: Given channels C, C’ and a pre-processing step P it holds that   

C ⊑ C′ ⟹ P ⋅ C ⊑ P ⋅ C′ 

8

* Alvim et al: The Science of Quantitative Information Flow, published by Springer 2020.

Corollary: If C, C’ are both KRR or both Geometric then   

 

i.e. Increasing epsilon also increases utility (monotonicity holds).

ϵ(C) ≥ ϵ(C′ ) ⟹ P ⋅ C ⊑ P ⋅ C′ 
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Properties of Refinement
Theorem*: Given channels C, C’ and a post-processing step P then   

C ⊑ C′ /⟹ C ⋅ P ⊑ C′ ⋅ P
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* Alvim et al: The Science of Quantitative Information Flow, published by Springer 2020.

Corollary: If C, C’ are both KRR or both Geometric then   

 ϵ(C) ≥ ϵ(C′ ) /⟹ C ⋅ P ⊑ C′ ⋅ P

BUT: Can’t apply this result directly to our local DP workflow… 



 Privacy Workflows
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Issue: Noise is added to each individual but post-processing is done on the combination of individuals
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Not    but n-fold composition of  followed by Cϵ ⋅ P Cϵ P



Kronecker Composition
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Kronecker Composition
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Properties of Kronecker product:

Associativity:    (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)

Bilinearity:       and    A ⊗ (B + C) = A ⊗ B + A ⊗ C (B + C) ⊗ A = B ⊗ A + C ⊗ A

Product respecting:      if     and    are defined.(A ⊗ B) ⋅ (C ⊗ D) = (A ⋅ C) ⊗ (B ⋅ D) A ⋅ C B ⋅ D

Invertibility:  If   are invertible, then so is  .  The inverse is  A, B A ⊗ B (A ⊗ B)−1 = A−1 ⊗ B−1

But  is not commutative in general.⊗



Kronecker Composition

Corollary: Given channels C, C’ then  

ϵ(C) ≥ ϵ(C′ ) ⟹ ϵ(C⊗N) ≥ ϵ(C′ ⊗N)

Corollary: Given channels C, C’ both KRR or both Geometric then  

ϵ(C) ≥ ϵ(C′ ) ⟹ C⊗N ⊑ C′ ⊗N
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Theorem: Given channels C, C’ then    

C ⊑ C′ ⟹ C⊗N ⊑ C′ ⊗N



Non-Monotonicity in Theory

Theorem: Given noise-adding channels C, C’ in the same family, 

ϵ(C) ≥ ϵ(C′ ) ⟹ C ⊑ C′ ⟹ C⊗N ⊑ C′ ⊗N /⟹ C⊗N ⋅ P ⊑ C′ ⊗N ⋅ P

i.e. There exist cases where we can get more privacy and more utility.
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Non-Monotonicity in Practice
But… is this a problem for utility measures that are meaningful?

Yes! 

Utility measured using mean 
absolute error 

Loss(x, y) = |y - x|

Data source: https://github.com/propublica/compas-analysis
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Conditions for Monotonicity
Under what conditions does the following hold?

                C⊗N ⊑ C′ ⊗N ⟹ C⊗N ⋅ P ⊑ C′ ⊗N ⋅ P

Theorem: Given channels C, C’ s.t.  with witness W, and a post-processor P, the following 
are sufficient conditions for monotonicity of utility on epsilon: 

1. P has a left inverse -1P 

2. P  -1P  W  P = W  P

C ⊑ C′ 

⋅ ⋅ ⋅ ⋅
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Monotonicity Results
Theorem: If R, R’ are KRR mechanisms then  

  

whenever P is a “counting” query.

R⊗N ⊑ R′ ⊗N ⟹ R⊗N ⋅ P ⊑ R′ ⊗N ⋅ P

Corollary: If R, R’ are KRR mechanisms then  

  

whenever P is a “counting” query.

ϵ(R) ≥ ϵ(R′ ) ⟹ R⊗N ⋅ P ⊑ R′ ⊗N ⋅ P



Non-Monotonicity Results

Theorem: If R, R’ are “KRR” channels then  

                                                   

whenever P is a “sum” query.

R⊗N ⊑ R′ ⊗N /⟹ R⊗N ⋅ P ⊑ R′ ⊗N ⋅ P

Also does not hold in general for Geometric channels for counting or sum P.

Many negative results:



Statistical Postprocessors
1. “Counting” query - deterministic channel T



Statistical Postprocessors
2. “Sum” query - deterministic channel S

⊗



Conclusion/Future Work
Main Takeaways: 

• Refinement is a useful tool for reasoning about utility in differential privacy 

• Kronecker products allow reasoning about utility in local differential privacy contexts 

• Utility is not always monotonic on epsilon!

Future work: 

• Study of monotonicity in machine learning contexts eg. DP-SGD.


