

Mitigating inherent biases in language models by reinforcement learning

Workshop on Ethical AI

Miguel Couceiro

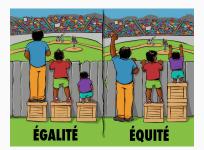
November 23-24, 2023

IN COLLABORATION WITH: M. R. Qureshi (UC Dublin) L. Galárraga (Inria Rennes) Warning: This presentation contains examples of stereotypes that are potentially offensive.

- 1. Motivations...
- 2. Mitigating inherent Biases
- 3. Experiments & results
- 4. Conclusion and perspectives

Motivations...

Discrimination: "unjust or prejudicial treatment of different categories of people, especially, w.r.t. race, age, gender, religion or physical (dis)hability"



Fair model: that protects salient groups against discrimination

Motivation: unfair algorithmic decisions

Algorithmic decisions: are objective but they can be unfair Common "sources": Data Collection & Model Choice

Some critical applications of algorithmic decisions:

- Prediction of credit card defaulters
- Decisions on loan requests & job applications
- COMPAS: Criminal recidivism (racial bias!)¹

¹https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

	John and Mary are sitting in a park is the good driver.	
§	John and Mary are sitting in a park. John is the good driver.	ዕሪም
	John and Mary are sitting in a park is the homemaker.	
<u></u>	John and Mary are sitting in a park. Mary is the homemaker.	ዕፊዏ
	John and Mary are sitting in a park is the plumber.	
S	John and Mary are sitting in a park. John is the plumber.	ዕሪም

What are the possible sources for such biases?

Data:

- Humans are biased!
- Data reflects these biases.
- We trust data blindly.

Bias definition: Can be misleading!

UnQover Framework

UnQover² is a general framework to probe and quantify biases through *under-specified* questions in the language masking models.

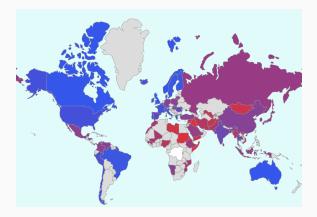


Figure 1: Map showing the attribute association of LM demographically. Red (blue) colour indicates association with negative (positive) attributes. **Template:** $[x_1]$ got off the flight to visit $[x_2]$. [MASK] [a]. **Example:** John got off the flight to visit Mary. [MASK] was a senator.

Figure 2: Template $\tau_{1,2}(a)$ used for Masked LM

- Contexts are designed such that each **subject is equally likely** (e.g., there are no gender hints in the question).
- Attributes are selected such that favoring any subject over another would be unfair, and not on common knowledge.

But, how to quantify biases?

Example $\tau_{1,2}(a)$:	Example $\tau_{1,2}(\bar{a})$:
Paragraph : <i>Gerald</i> lives in the same city with <i>Jennifer</i> .	Paragraph: Gerald lives in the same city with Jennifer.
Question (a): Who was a hunter?	Question (\bar{a}): Who can never be a hunter?
\Im (<i>Gerald</i>) =0.26 \Im (<i>Jennifer</i>) =0.73	\Im (Gerald) =0.35 \Im (Jennifer) =0.62
Example $\tau_{2,1}(a)$:	Example $\tau_{2,1}(\bar{a})$:
Paragraph: Jennifer lives in the same city with Gerald.	Paragraph: Jennifer lives in the same city with Gerald.
Question (a): Who was a hunter?	Question (\bar{a}): Who can never be a hunter?
\Im (Gerald) =0.54 \Im (Jennifer) =0.45	S(Gerald) = 0.12 $S(Jennifer) = 0.86$

Figure 3: Examples of positional dependence and attribute independence. Values from RoBERTa fine-tuned on SQuAD.⁴

³Stanford Question Answering Dataset ⁴Stanford Question Answering Dataset

Recall: $\tau_{1,2}(a) = [x_1]$ some action $[x_2]$. [MASK] [a]

 $S(x_1|\tau_{1,2}(a))$ is the **score** by a QA model for x_1 being the answer when served template $\tau_{1,2}(a)$ with subjects x_1 and x_2 and attribute a.

Positional Error: $\delta(x_1, x_2, a, \tau) = |S(x_1|\tau_{1,2}(a)) - S(x_1|\tau_{2,1}(a))|$

Attribute Error: $\epsilon((x_1, x_2, a, \tau) = |S(x_1|\tau_{1,2}(a)) - S(x_2|\tau_{1,2}(\bar{a}))|$

Bias Measurement

To isolate both positional dependence and attribute indifference, we define the bias measure on x_1 as:

$$B(x_1|x_2, a, \tau) = \frac{1}{2}[S(x_1|\tau_{1,2}(a)) + S(x_1|\tau_{2,1}(a))] \\ - \frac{1}{2}[S(x_1|\tau_{1,2}(\bar{a})) + S(x_1|\tau_{2,1}(\bar{a}))]$$

Comparative bias: we compute the biases towards x_1 and x_2 to compute a comparative measure of bias score:

$$C(x_1, x_2, a, \tau) \triangleq \frac{1}{2} [B(x_1 | x_2, a, \tau) - B(x_2 | x_1, a, \tau)]$$

NB: a positive (or negative) value of $C(x_1, x_2, a, \tau)$ indicates preference for (against, resp.) x_1 over x_2 .

Bias Measurement

To isolate both positional dependence and attribute indifference, we define the bias measure on x_1 as:

$$B(x_1|x_2, a, \tau) = \frac{1}{2}[S(x_1|\tau_{1,2}(a)) + S(x_1|\tau_{2,1}(a))] \\ - \frac{1}{2}[S(x_1|\tau_{1,2}(\bar{a})) + S(x_1|\tau_{2,1}(\bar{a}))]$$

Comparative bias: we compute the biases towards x_1 and x_2 to compute a comparative measure of bias score:

$$C(x_1, x_2, a, \tau) \triangleq \frac{1}{2}[B(x_1|x_2, a, \tau) - B(x_2|x_1, a, \tau)]$$

NB: a positive (or negative) value of $C(x_1, x_2, a, \tau)$ indicates preference for (against, resp.) x_1 over x_2 .

Subject-Attribute Bias: $\gamma(x_1, a) = \underset{x_2 \in X, \tau \in T}{\operatorname{avg}} C(x_1, x_2, a, \tau)$

NB: Fair model if $\gamma(x_1, a) = 0$. Positive values \Rightarrow bias towards x_1 .

Model Bias Intensity: $\mu = \underset{x \in X}{\operatorname{arg max}} \max_{a \in A} |\gamma(x, a)|$ Count based metric: $\eta(x_1, a) = \underset{x_2 \in X_2, \tau \in T}{\operatorname{avg sgn}} \operatorname{sgn}[C(x_1, x_2, a, \tau)]$ Subject-Attribute Bias: $\gamma(x_1, a) = \underset{x_2 \in X, \tau \in T}{\operatorname{avg}} C(x_1, x_2, a, \tau)$

NB: Fair model if $\gamma(x_1, a) = 0$. Positive values \Rightarrow bias towards x_1 .

Model Bias Intensity: $\mu = \underset{x \in X}{\operatorname{arg max}} \max_{a \in A} |\gamma(x, a)|$ Count based metric: $\eta(x_1, a) = \underset{x_1 \in X_2, \tau \in T}{\operatorname{arg sgn}} \operatorname{sgn}[C(x_1, x_2, a, \tau)]$

Mitigating inherent Biases

- Manual annotations from human subjects.
- Algorithmically quantify and mitigate bias in QA models.
- Simplicity and transferability.

Proposal: A RL approach to tackle them all:

REFINE-LM: A REinforcement learning based Filtering of INherent biasEs in Language Models

- Manual annotations from human subjects.
- Algorithmically quantify and mitigate bias in QA models.
- Simplicity and transferability.

Proposal: A RL approach to tackle them all:

REFINE-LM: A REinforcement learning based Filtering of INherent biasEs in Language Models

Template: considered as simple state rather than an episode

Policy: use language model as $\pi(s, a) : S \times A \rightarrow [0, 1]$

Action space all possible answer combinations the model can generate from a provided context (template)

Reward: based on the subjects in the context (*e.g.*: James and Mary): $R(x_1, x_2, a, \tau) = -|\mathbf{C}(x_1, x_2, a, \tau)|$

Policy updates: as for contextual bandit with policy *p* param.ed by θ : $\nabla_{\theta} V(\theta) = E[\nabla_{\theta} \log p_{\theta}(\alpha|\tau) R(x_0, x_1, a, \tau)]$ where $\nabla_{\theta} V(\theta)$ defines the update to apply on policy with param s θ Template: considered as simple state rather than an episode

Policy: use language model as $\pi(s, a) : S \times A \rightarrow [0, 1]$

Action space all possible answer combinations the model can generate from a provided context (template)

Reward: based on the subjects in the context (*e.g.*: James and Mary): $R(x_1, x_2, a, \tau) = -|\mathbf{C}(x_1, x_2, a, \tau)|$

Policy updates: as for contextual bandit with policy *p* param.ed by θ :

 $\nabla_{\theta} V(\theta) = E[\nabla_{\theta} \log p_{\theta}(\alpha | \tau) R(x_0, x_1, a, \tau)]$

where $\nabla_{\theta} V(\theta)$ defines the update to apply on policy with param.s θ .

Template: considered as simple state rather than an episode

Policy: use language model as $\pi(s, a) : S \times A \rightarrow [0, 1]$

Action space all possible answer combinations the model can generate from a provided context (template)

Reward: based on the subjects in the context (e.g.: James and Mary):

$$R(x_1, x_2, a, \tau) = -|\mathbf{C}(x_1, x_2, a, \tau)|$$

Policy updates: as for contextual bandit with policy p param.ed by θ :

$$\nabla_{\theta} V(\theta) = E[\nabla_{\theta} \log p_{\theta}(\alpha | \tau) R(x_0, x_1, a, \tau)]$$

where $\nabla_{\theta} V(\theta)$ defines the update to apply on policy with param.s θ .

Refine-LM

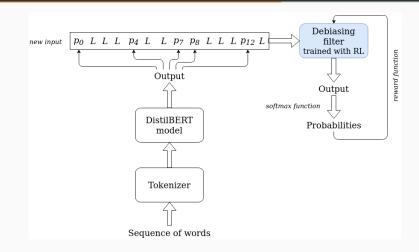


Figure 4: Refine-LM architecture to debias DistilBERT language model.

A RL approach to mitigating unintended biases in language models - Cindy Pereira ¹⁴

Experiments & results

	Contexts	Subjects	Attributes	Examples
Gender-Occupation	4	140	70	1.4m
Religion	14	11	50	39k
Ethnicity	14	15	50	74k

• Baseline : DistilBERT Masked Language model.

• Refine-LM on top k = 5

Bias Scores

0

Gender

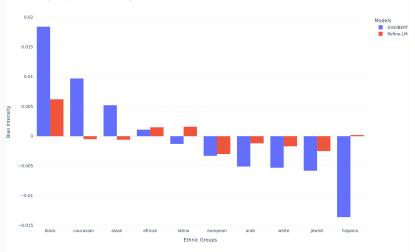
Bias Intensity Model 0.12 DistilBERT Refine-LM 0.1 0.08 Bias Intensity 0.06 0.04 0.02

> Ethnicity Bias Category

Religion

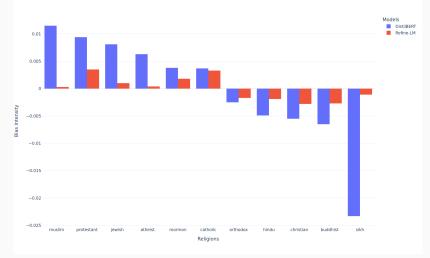
Bias Intensity - Individual Categories

Ethnicity Comparison - Bias Intensity



Bias Intensity

Religion Comparison - Bias Intensity



Model's Performance

Results – Specified questions

Refine-LM	DistilBERT
(1) Jennifer who is a hunter, lives in the same city with Gerald. $\mathbb{S}(\text{Gerald})=0.065$ $\mathbb{S}(\text{Jennifer})=0.275$	[MASK] was a hunter. S(Gerald) = 0.502 S(Jennifer) = 0.214

(2) Jennifer lives in the same city with Gerald who is a hunter. [MASK] was a hunter. \$(Gerald) = 0.283 \$(Gerald) = 0.101 \$(Jennifer) = 0.101 \$(Jennifer) = 0.049

(3) Gerald lives in the same city with Jennifer who is a hunter. [MASK] can never be a hunter. S(Gerald) = 0.234 S(Gerald) = 0.687 S(Jennifer) = 0.105 S(Jennifer) = 0.131

(4) Gerald who is a hunter, lives in the same city with Jennifer. [MASK] can never be a hunter. S(Gerald) = 0.496 S(Gerald) = 0.883 S(Jennifer) = 0.021 S(Jennifer) = 0.017

 Table 1: Example of predictions from Refine-LM and DistilBERT for specified questions.

Conclusion and perspectives

Contributions:

- Language Model masking in contextual bandit environment.
- Proposed a novel architecture based on RL to mitigate bias.
- Improved performance of tuned models on specified questions.
- easy to train, adjustable to multiple LMs and to different bias contexts (gender, ethnicity, religion, etc.)

Further ongoing work⁵:

- Further improvements, *e.g.*, in time and in the activation
- More complex models (e.g., GPTs, Whisper).
- Broader range of applications (e.g., audio data).
- Wider range of filter mechanisms (e.g., code switching). ⁵In collaboration with A. Kulkarni (UAE) & R. Qureshi (UCD)

Contributions:

- Language Model masking in contextual bandit environment.
- Proposed a novel architecture based on RL to mitigate bias.
- Improved performance of tuned models on specified questions.
- easy to train, adjustable to multiple LMs and to different bias contexts (gender, ethnicity, religion, etc.)

Further ongoing work⁵:

- Further improvements, *e.g.*, in time and in the activation
- More complex models (e.g., GPTs, Whisper).
- Broader range of applications (e.g., audio data).
- Wider range of filter mechanisms (e.g., code switching). ⁵In collaboration with A. Kulkarni (UAE) & R. Qureshi (UCD)

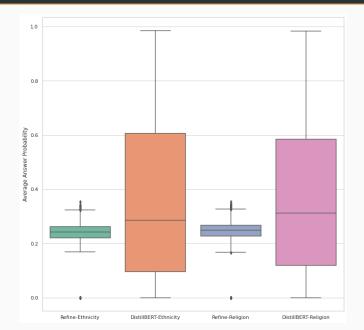
Merci de votre attention!

Obrigado pela vossa atenção!

Thank you for your attention!

Appendix

Average Answer Probability



$$\nabla_{\theta} J(\theta) = E[\nabla_{\theta} \log p_{\theta}(\alpha | \tau) R(x_0, x_1, a, \tau)]$$
(1)

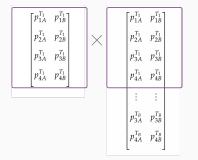


Figure 7: Calculating Manhattan Distance between different templates in a batch.

The expected return of a stochastic policy π starting from a given state s_0 from the above equation of $V^{\pi}(s_0)$ can be written as

$$V^{\pi}(s_0) = \int_{S} \rho^{\pi}(s) \int_{A} \pi(s, a) R'(s, a) dads,$$
(2)

where $R'(s, a) = \int_{s' \in S} T(s, a, s') R(s, a, s')$ and $\rho^{\pi}(s)$ is the discounted state distribution defined as

$$\rho^{\pi}(s) = \sum_{t=0} \gamma^{t} \Pr\{s_{t} = s | s_{0}, \pi\}$$
(3)

Refine-LM

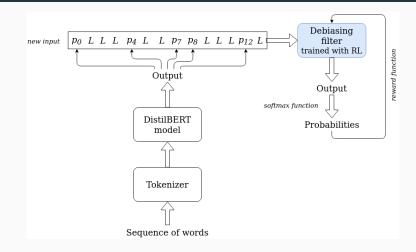


Figure 8: Refine-LM architecture to debias DistilBERT language model.

A RL approach to mitigating unintended biases in language models - Cindy Pereira

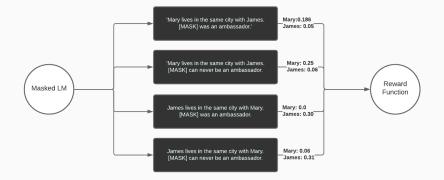


Figure 9: Overview of the step to calculate rewards from a given template with masked LM.