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Notations

® Features space X, labels space )V = {—1,1}, and sensitive attributes space

® Features: images, tabular data, graphs, ...
® Labels: hired/not hired, profession, disease, ...
® Sensitive attributes: gender, race, age, ...

® Decision function h: X — R taken in a set H.

1 if h(x) >0,

® Binary decision function H(x) = {1 otherwise.

® Aset D = {(xj,5,yi)}r; of n examples drawn i.i.d. a distribution D over
Z=Xx5x).

Goal: Measure the fairness of the model H.
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Accuracy Parity [Zafar et al., 2017]

Forall s € S, Fo(h,D) = P(H(X) = Y|5 —5) =P (H(X)=Y)
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Accuracy Parity [Zafar et al., 2017]
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Differential Privacy [Dwork, 2006]

A randomized algorithm AP : (X x S x V)" — H is (e, 0)-private if for all neighboring
datasets D, D’ € (X x § x Y)" and all subsets of hypotheses H' C H

P(APY(D) € H') < exp(e) P(AP™Y(D') € H') + &

M. Perrot November 23, 2023 6/16



Gaussian Mechanism

Compute the {>-sensitivity of the algorithm A:
A(A) =

sup [[A(D) = A(DY)]l,,

A(D A(D'
(D)e A e A(D")
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Add noise to A(D), calibrated to its sensitivity and the
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Gaussian Mechanism

Compute the {>-sensitivity of the algorithm A:
A(A) =

sup [[A(D) = A(DY)]l,,

desired level of privacy:

Add noise to A(D), calibrated to its sensitivity and the
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What is the impact of differential privacy on fairness?




Pointwise Lipschitzness of Accuracy Parity

Forall s € S, Fs(h, D)
Let h, i’ € H be two models

P(H(X) =
‘Fs(h D
® xs(h,D)

Accuracy of h on the group s

Y[S —5) —P(H(X)=Y)

Accur;& of h

W,D)| < xs(h, D)||h— K
(Ih(X)\> tE <|h(x ] ‘ 5= 5)

D) [[a=H]l,,
® Lx is a lipschitz constant of the model: [A(X) — h'(X)| < Lx [[h — H'[|4
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Pointwise Lipschitzness of Accuracy Parity

Forall s € S, Fs(h, D)
Let h, i’ € H be two models

P(H(X) =
‘Fs(h D
® xs(h,D)

Accuracy of h on the group s

Y|S <) —P(H(X)

Y)
Accur;& of h
H D)| < xs(h,D Hh n
E () +E (o | S~ <)
® [ is a lipschitz constant of the model:

D) [[a=H]l,,
X)) = H(X)] < Lx [lh= Kl
Key quantity: Ratio between Lx (/) and the margin |h(X)| (7).
[m] = - = NG




Pointwise Lipschitzness of Accuracy Parity
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Output Perturbation

A(D) is the following optimization problem

h* = arg min = C(h; x50,y
hen N Z )
with £ : H x X x & x )V — R is A-lipschitz, and jp-strongly-convex

A(A) =

2A
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Output Perturbation
A(D) is the following optimization problem

h* = arg min = C(h; x50,y
l%e?-t ”Z )

with £ : H x X x & x )V — R is A-lipschitz, and jp-strongly-convex

2A
wun
Using the Gaussian Mechanism, we can then release

2
hpriv — h* +N (8/\ |Og(1 25/5) p)

M2n2 2

A(A) =

Key result: With probability at least 1 — ¢, ||AP™ — h*||, < A/32plog(1.25/0) log(2/€)
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T ———



Bounded Distance

With probability at least 1 — ¢, ||/ — h*||, < O (ﬁ)
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Main result

® |Fs(h,D) — Fs(h,D)| < xs(h, D) ||h — K|y

e With probability 1 — ¢, [|[A"™ — h*||, < O (f_f’)

With probability 1 — ¢, |Fs(WP™, D) — Fo(h*, D)| < xs(hP"™¥, D)O ( ne)
=] [ = = A
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Main result

® |Fs(h,D) — Fs(K', D)| < xs(h, D) [|h = K|l

ne

With probability 1 — ¢, |Fs(WP™, D) — Fo(h*, D)| < xs(hP"™¥, D)O (f—ﬁ)
Auditing: The right hand side only depends on the private model!
=] (=) = £ A

* With probability 1 ¢, [|hP™ — ||, < O (¥2)




Conclusion

The story so far...
® Accuracy Parity is pointwise lipschitz and margins are key quantities.

® Using output perturbation the private and non-private models are close.

Differential privacy has bounded impact on fairness.

The squirrels are safe if they learned their model on sufficiently many examples.
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Conclusion

The story so far...

® Accuracy Parity is pointwise lipschitz and margins are key quantities.

® Using output perturbation the private and non-private models are close.

e Differential privacy has bounded impact on fairness.

® The squirrels are safe if they learned their model on sufficiently many examples.
but also...

e Similar results for other fairness measures (e.g. Demographic Parity (with binary labels)
[Calders et al., 2009], Equality of Opportunity [Hardt et al., 2016], Equalized Odds [Hardt
et al., 2016]) and for Accuracy.

e Multi-class, multi-groups problems, DP-SGD, tighter but harder to parse bounds.
e A few experiments to check the tightness of our bounds.

* A finite sample analysis showing that our results also hold in generalization.
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You can fetch the paper on arXiv!
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Experiments

Folktables [Ding et al., 2021], ¢>-regularized logistic regression, (¢€,6) = (1, %
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Experiments

Folktables [Ding et al., 2021], ¢>-regularized logistic regression, ¢ = % n = 1,498,050
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