November 24th 2023, Ethical Al Workshop

CALIME

Causality-Aware Local Interpretable Model-Agnostic Explanations

Martina Cinquini

martina.cinquini@phd.unipi.it

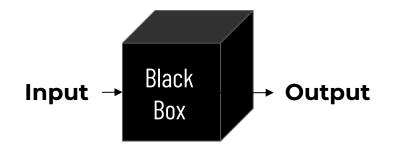
Riccardo Guidotti riccardo.guidotti@phd.unipi.it

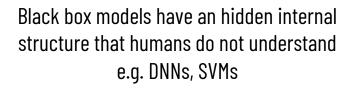
Problem

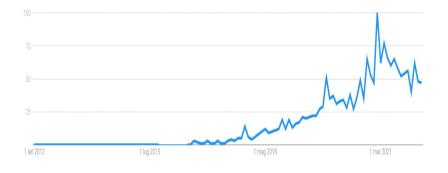
XAI approaches **do not** take into account causal relations among input features

What is eXplainable AI (XAI)?

XAI provides explanations for the decisions of Machine Learning models.







Source: Google Trends for "Explainable Al"

Why does XAI matter in Machine Learning?

Benefits

1. Al systems are increasingly used in sensitive areas

2. ML models can perpetuate existing bias

3. Automated decision making requires reliability and trust

Self-driving cars

Racial Bias

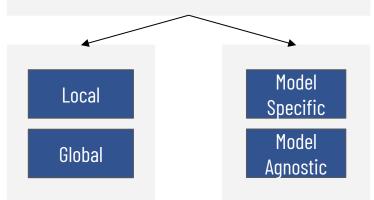
Financial Services

Explainable by Design

Build **interpretable** ML models

Black box Explanation

Derive explanations for **complex** ML models

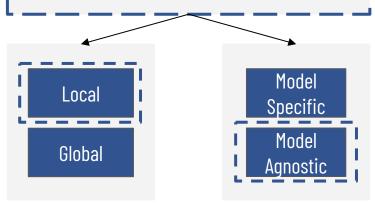


[1] A Survey of Methods for Explaining Black Box Models, Guidotti et al., 2018

Explainable by Design

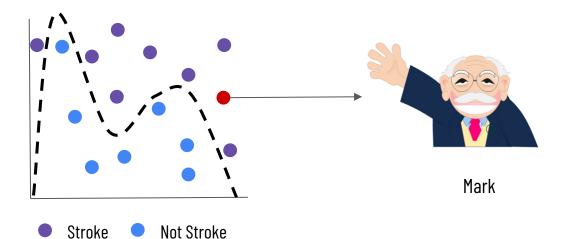
Build **interpretable** ML models

Derive explanations for **complex** ML models



[1] A Survey of Methods for Explaining Black Box Models, Guidotti et al., 2018

Local Interpretable Model-Agnostic Explanations²

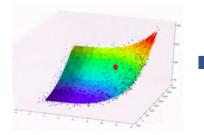


GOAL

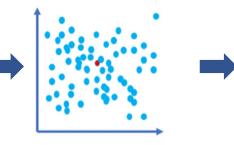
Understand why the ML model made a certain prediction

[2] "Why should I trust you?": Explaining the Predictions of Any Classifier, Ribeiro et al., 2016 Slide example from: https://www.youtube.com/watch?v=d6j6bofhj2M

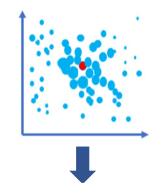
Train a black box model



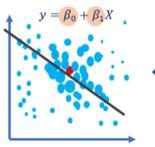
Generate random points



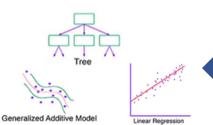
Weight based on distance



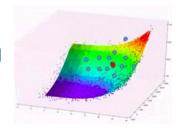
Train the model and use for explanations



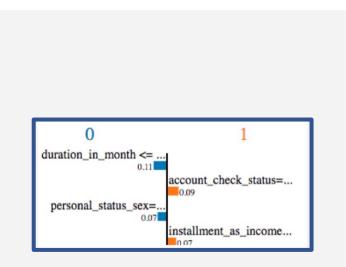
Choose an interpretable model

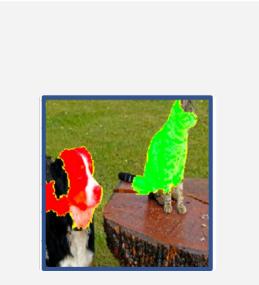


Predict the new points



Explanations





Pros & Cons

It is Model Agnostic

It works on text, images and tabular data

Instability of Explanations

Low Fidelity

It does not consider the causal relationships among input features

Pros & Cons

It is Model Agnostic

It works on text, images and tabular data

Instability of Explanations

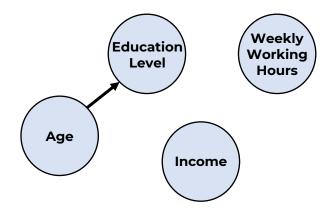
Low Fidelity

It does not consider the causal relationships among input features

Goal: Can the customer get the loan?

Dataset

Age	Income	Education Level	Weekly working hours
24	800	High School	20
28	1300	Bachelor Degree	35



Goal: Can the customer get the loan?

	Age	Income	Education Level	Weekly working hours
BANK	24	800	High School	20
	28	1300	Bachelor Degree	35

Goal: Can the customer get the loan?

	Age	Income	Education Level	Weekly working hours
BANK DET OF	24	800	High School	20
	28	1300	Bachelor Degree	35

Black Box Prediction: No

Goal: Can the customer get the loan?

	Age	Income	Education Level	Weekly working hours
BANK DE CENTRAL	24	800	High School	20
	28	1300	Bachelor Degree	35

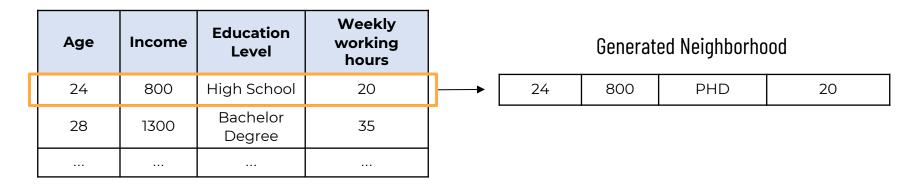
Black Box Prediction: No

Lime Explanation: Low education level is mainly responsible for the denied loan

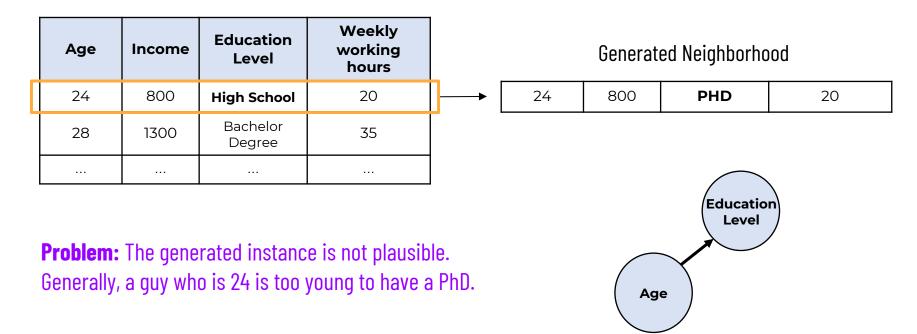
We inspect the neighborhood generated by LIME of the instance to explain

Age	Income	Education Level	Weekly working hours
24	800	High School	20
28	1300	Bachelor Degree	35

We inspect the neighborhood generated by LIME of the instance to explain

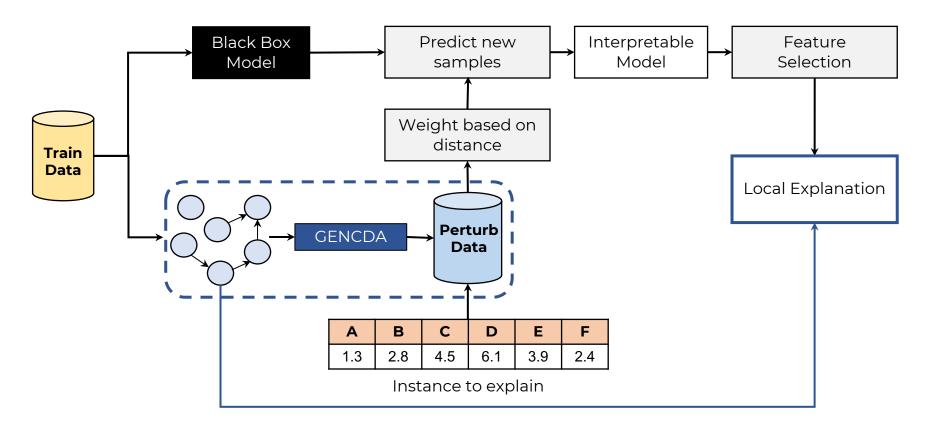


We inspect the neighborhood generated by LIME of the instance to explain

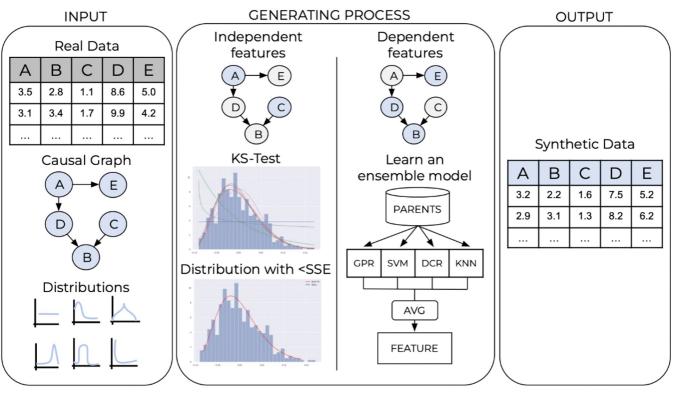


CALIME Causality-Aware LIME

CALIME workflow

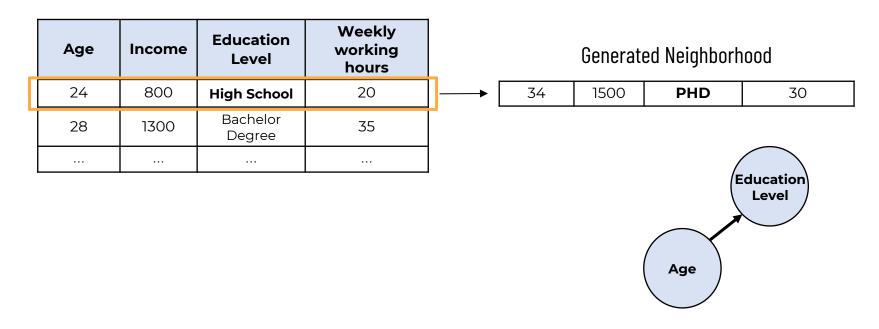


GEnerative Nonlinear Causal Discovery with Apriori³

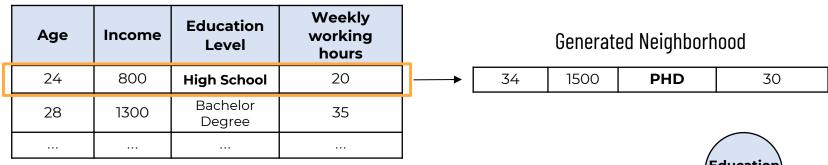


[4] Boosting Synthetic Data Generation with Effective Nonlinear Causal Discovery, Cinquini et al., 2021

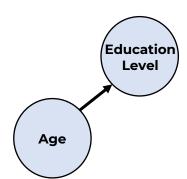
We inspect the neighborhood generated by CALIME of the instance to explain



We inspect the neighborhood generated by CALIME of the instance to explain



- Education level cannot be changed if age is not changed
- When age is changed also education level must be changed according to the regression model

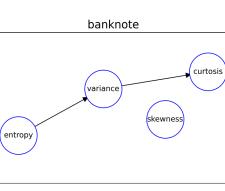


Experiments

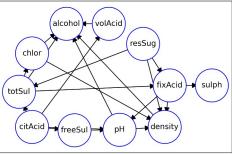
Statistics and classifiers accuracy

	n	m	RF	NN
banknote	1372	4	0.99	1.0
magic	19020	11	0.92	0.85
wdbc	569	30	0.95	0.92
wine-red	1159	11	0.82	0.70

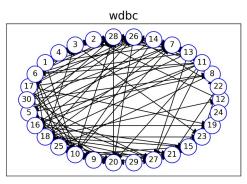
n: # samples



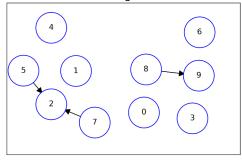
wine quality



DAGs discovered by CALIME



magic



[4] Source: UCI Repository

Evaluation Measures

Fidelity How well does the explanation

approximate the prediction of the black box model?

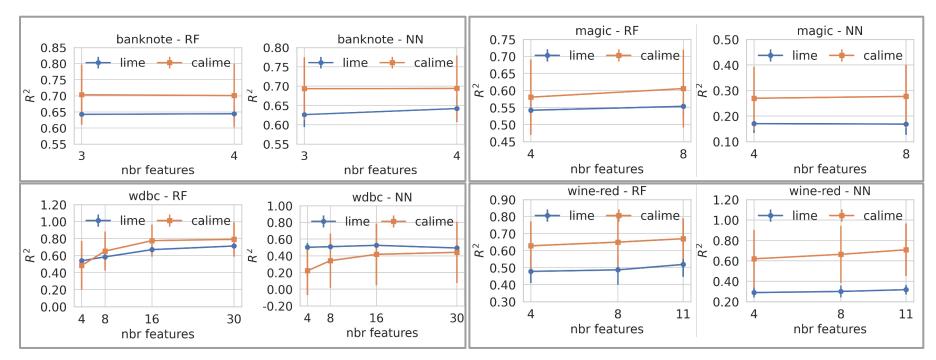
Plausibility

How convincing the explanations are to humans?

Stability

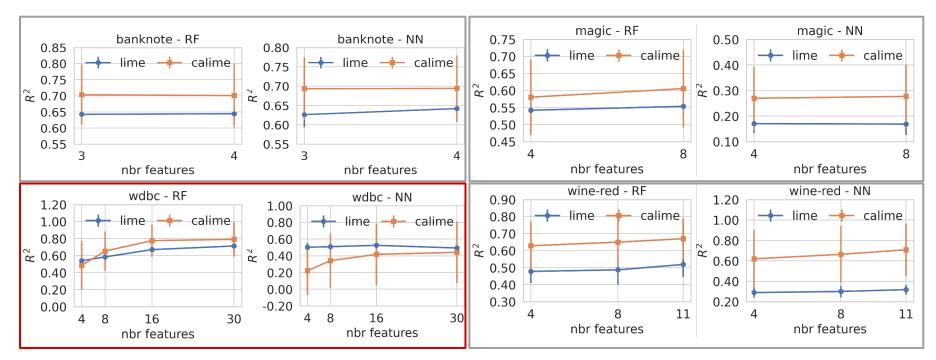
How similar are the explanations for similar instances?

How well does the explanation approximate the prediction of the black box model?



A higher score indicates better fidelity values

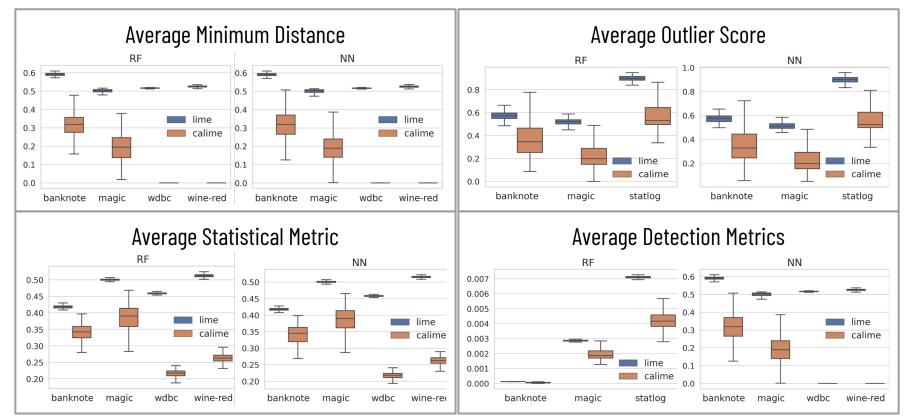
How well does the explanation approximate the prediction of the black box model?



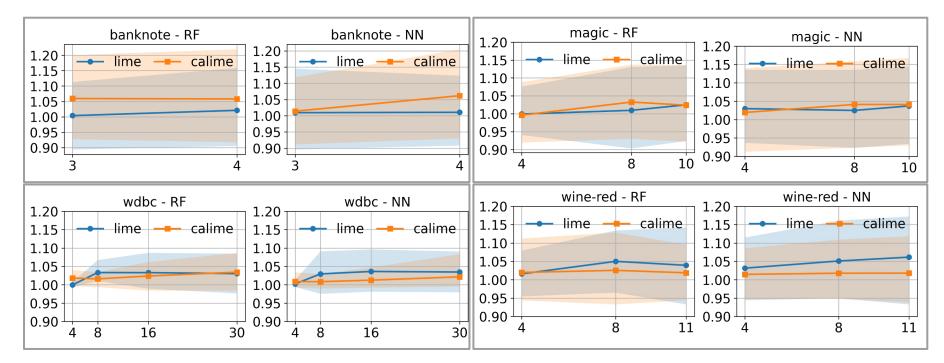
A higher score indicates better fidelity values

Plausibility

How convincing the explanations are to humans?



How similar are the explanations for similar instances?



The lower the LLE, the higher the stability.

CALIME is the first black-box explanation methods returning features importance as explanations that directly discover and incorporate causal relationships in the explanation extraction process.

CALIME is the first black-box explanation methods returning features importance as explanations that directly discover and incorporate causal relationships in the explanation extraction process.

Experiments results show that CALIME overcomes the weaknesses of LIME concerning both the fidelity in mimicking the black-box and the stability of the explanations.

CALIME is the first black-box explanation methods returning features importance as explanations that directly discover and incorporate causal relationships in the explanation extraction process.

Experiments results show that CALIME overcomes the weaknesses of LIME concerning both the fidelity in mimicking the black-box and the stability of the explanations.

CALIME could strengthen user trust in the AI system. It will be especially useful for high-impact domains such as financial services or healthcare (e.g., therapy planning or patient monitoring).

Ethical AI:

- Transparency through causal explanations helps mitigate concerns related to algorithmic bias and unfairness, contributing to a more trustworthy Al ecosystem.

Ethical AI:

- Transparency through causal explanations helps mitigate concerns related to algorithmic bias and unfairness, contributing to a more trustworthy Al ecosystem.

Future Directions:

- Develop causality aware explanation methods suitable for images and time series working in a similar manner of CALIME;
- Employ the knowledge about causal relationships in the explanation extraction process of other model-agnostic explainers like LORE, SHAP or ANCHORS.

Thank you for your attention!

http://pages.di.unipi.it/cinquini/