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Outline

• Our problem: Given (restricted) access to a black box model h, we aim to
estimate its properties: robustness and its discrimination toward sensitive
subgroups and individuals.

• Our approach: In order to estimate those properties, we choose deterministic
or random influence functions:
— Random influence function for robustness and individual fairness
— Deterministic influence function for group fairness
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Problem definition

Property auditing from ZKP



Our problem setting
Property auditing: General setting

Estimating black-box model’s properties in ZKP setting
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What’s solutions are out there ?

• Reconstruct then audit. [Tom Y. 2022]
• Sequential testing [Ben.C et al.2023]
• Ours: Estimation by embedding the property of interest in the space of Fourier

expandable models.
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Zero-Knowledge Proof (ZKF) properties estimation:
Unrealistic

Estimating black-box model’s properties in ZKP setting
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Friendly Zero-Knowledge Proof (Friendly-ZKF)
properties estimation: Our setting

Estimating black-box model’s properties in friendly ZKP setting
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Estimating model’s properties from FZKP
Can we reduce the amount of information communicated to A?
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Boolean functions &
Fourier expansion in the
context of learning theory

Motivation



What do we know from Boolean function theory?

Theorem
Any bounded function h : {−1, 1}n → Y can be uniquely written as:

∀(X1, . . . ,Xn) ∈ {−1, 1}n : h(X1, . . . ,Xn) =
∑
S⊆[n]

ĥ(s)
∏
i∈S

Xi

• Assumption 1: We assume that h is bounded. 4

• Assumption 2: The distribution over binary values is uniform. %

• Assumption 3: The feature space is a matrix of binary values. %
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Distribution free setting
Assumption 2:Generalizing to Agnostic Fourier expansion to the distribution

• Method 1: Instead of expanding the model on the basis of parity functions, we
can use Gram-Schmidt-type process.

• Method 2: Instead of expanding the model h in the basis of parity functions,
we expand the new model h(x)

DX (x)
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Summary
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Computing target model
properties

Target model’s properties in
terms of Fourier coefficients



Influence functions
Perturbation protocol

x ∼ DX , ρ ∈ [−1, 1], l ∈ [n]

• x′ ∼ Nρ(x) ⇐⇒ ∀i ∈ [n] : x′i =

{
xi with probability 1+ρ

2

−xi with probability 1−ρ
2

• x′ ∼ Nρ,l(x) ⇐⇒ ∀i ∈ [n]l : x′i =

{
xi with probability 1+ρ

2

−xi with probability 1−ρ
2
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Influence functions
Deterministic & random influence functions

Random influence functions
• Infρ(h) ≜ P

x∼DX
x′∼Nρ

[h(x) ̸= h(x′)] measures stability.

• Infρ,l(h) ≜ P
x∼DX
x′∼Nρ,l

[h(x) ̸= h(x′)] measure individual fairness.

Deterministic influence functions
Let A be a sensitive attribute

InfA(h) ≜ P
x∼DX

[h(x) ̸= h(x∼A)]

µGFA(h) = P
x∼D

[h(x) = y|x ∈ A+]− P
x∼D

[h(x) = y|x ∈ A−]
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Model’s properties in terms of its Fourier coefficients
Robustness, Individual fairness, Group fairness

Robustness

µRB(h∗) =
∑

S⊆[n]
ĥ∗(S)2ρ|S|

Individual Fairness

µIF(h∗) =
∑

S⊆[n]
ĥ∗(S)2ρ|Sl|

Group Fairness (Informal)
Given the assumption that the marginal distribution is invariant under the flip
membership action, InfA(h∗) is polynomial in µGF(h∗).
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Summary
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Hardness of computing
target model properties &
Universal lower bounds



Computing target model’s properties can be NP-Hard
Finding significant Fourier coefficients is Hard

Theorem
Given a threshold τ ∈ R, the problem of testing significant Fourier coefficients with
respect to the threshold τ is NP-complete.
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Low degree model
Low degree models

The degree of a boolean function is the degree of the polynomial of its Fourier
representation.

Example
we can split every function h : {−1, 1}n → {−1, 1} to its different spectral levels,
h =

∑n
i=1 h(i) where h(i) =

∑
S⊆[n]
|S|=i

ĥ(S)ψS
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Lower bounds

Theorem
Let d ∈ N, h ∈ Hd, where Hd is the concept class of Boolean functions of degree at
most d. In other words, h is ϵ-concentrated in some subset of size at most d.
Algorithm Aµ outputs an (ϵ, δ)-PAC estimate of µ(h) with

Ω

(
(1− ϵ)2d−2 log2 n− (d + 1)2d−2 log2(1− δ)

)

queries.
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Upper bounds

PAC Fourier Auditor
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Algorithm
Estimating all properties at once

Algorithm Property estimation in the Boolean domain
Input: Confidence parameter δ, target error ϵ, Sensitive attribute A, perturbation
parameters: ρ, l, q queries
{xk, h(xk)}k∈[q] ← MQ(h, q)
Lh ← CFS({xk, h(xk)}k∈[q],τ)
for S ∈ Lh do

ĥ(S)← 1
q
∑q

k=1h(xk)ψS(xk)
end for
Output: {µ̂Robρ , µ̂IF, µ̂GFA}
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Algorithm
Concentrated Fourier Spectral Estimator

Algorithm CFS

Input: τ, δ ∈ (0, 1)
ε← τ2/4
Instantiate set L
for k = 0, . . . , n do

for S ⊆ [k] do
W̃S,k ←WS,k (estimate sum up to accuracy ε w.p. ≥ 1− δ )
if W̃S,k ≤ τ2

2 then
Discard WS,k

end if
end for
Output: L (A list of single elements)
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Upper bounds
Robustness

Upper bounds for robustness estimation

O

(((C + 1)ρmín(SF ,SF )|F|
ϵ

)2
log

1

δ

)

|F| = O

(
n
τ2

)

SF = mín{|S| : S ∈ F}

SF = mín{|S| : S ̸∈ F}
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Upper bounds
Individual fairness

Upper bounds for Individual Fairness estimation

O

(((C + 1)ρmín(Sl,F ,Sl,F )|F|
ϵ

)2
log

1

δ

)
.

|F| = O

(
n
τ2

)
.

Sl,F = mín{|Sl| : Sl ∈ F}

Sl,F = mín{|Sl| : Sl ̸∈ F}
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Upper bounds
Group fairness

Upper bounds for group fairness

O

(((C + 1)|F|+ 1
4

ϵ2

)2
log

1

δ

)

|F| = O

(
n
τ2

)
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A comment on the adversarial reconstruction

Adversarial reconstruction
Our algorithm guarantees an adversarial reconstruction of the target model only on
2ϵ-concentrated region over the Fourier space.
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Extension to categorical &
continuous domains

Group characters & Lováz ex-
tension



Extension to general domain
Function extension

Categorical domain:
• h(x) =

∑
ζ ĥ(ζ)ωp(⟨ζ, x⟩)

Continuous domain:
• h(x) =

∑
S⊆[n]

ĥ(S)mín
i∈S

xi
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Extension to general domain
Computing properties

Categorical domain:
• Robustness:

(
1

1− p
)n
∑
ζ:ζj ̸=0

|̂f(ζ)|2 +
∑
ζ:ζj=0

|̂f(ζ)|2

• Individual fairness:

1

p

∑
ζ

|̂f(ζ)|2cos(
2π

p

∑
T ∈Fn

p

⟨ ζ, T ⟩)

Continuous domain:
• Robustness

1− ρ
2

∑
S⊆[n]

ĥ(S)2(1 + |S|ζ 1 + ρ

1− ρ
)

• Individual fairness

1− ρ
2

∑
S⊆[n]

ĥ(S)2(1 + |Sl|ζ
1 + ρ

1− ρ
)

33



Extension to general domain
Computing properties

Categorical domain:
• Robustness:

(
1

1− p
)n
∑
ζ:ζj ̸=0

|̂f(ζ)|2 +
∑
ζ:ζj=0

|̂f(ζ)|2

• Individual fairness:

1

p

∑
ζ

|̂f(ζ)|2cos(
2π

p

∑
T ∈Fn

p

⟨ ζ, T ⟩)

Continuous domain:
• Robustness

1− ρ
2

∑
S⊆[n]

ĥ(S)2(1 + |S|ζ 1 + ρ

1− ρ
)

• Individual fairness

1− ρ
2

∑
S⊆[n]

ĥ(S)2(1 + |Sl|ζ
1 + ρ

1− ρ
)
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Open Problem

PAC learning with zero in-
ductive bias



Can we learn with ”no inductive bias”?

36



No-free lunch
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Relaxation: Assumptions on the distribution
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PAC-Fourier Auditor
Estimating all properties at once
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Appendix

Ommited technical details



Gram-Schmidt orthogonalization
Assumption 2:Generalizing to Agnostic Fourier expansion to the distribution

For an unknown distribution D, the set of parity functions are not necessarily
orthogonal. Fix the following subsets of{1, . . . , n} in the following order:
{∅}, {1}, {2}{1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, . . . , {1, 2, . . . , n}

• Apply Gram-Schmidt process on the monomials of parity functions (to make
them orthogonal) with the above ordering.

• The first element of the basis is trivially: ψ∅ = 1
• The jth basis function corresponding to Sj is obtained from the following

operation.

ψ̃Sj = χSj −
j−1∑
l=1

⟨ ψSl , χSj⟩DψSl

ψSj =


ψ̃Sj

||ψ̃Sj ||2,D
if||ψ̃Sj ||2,D > 0,

0 Otherwise
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Fourier expansion of h(x)DX (x)
Assumption 2:Generalizing to Agnostic Fourier expansion to the distribution

• The new Fourier expansion is given by the formula :

h(x)
DX (x)

=
∑
S⊆[n]

f̂D(S)χS(x)

• The Fourier coefficients are given by:

∀S ⊆ [n] : f̂(S) = ⟨ f, χS⟩

• All the results obtained from uniform distribution remain the same considering
this approach. However, in practice we don’t have access to D, considering an
empirical distribution could lead to unsatisfying results.
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Extension to finite groups
Group character

Let G be a finite abelian group. We consider the general case: G =
∏k

i=1 Fpi

Group character
A map χ : G→ C− {0} is called a character of G if it is a group homomorphism,
that is:

χ(0) = 1

∀a, b ∈ G : χ(a + b) = χ(a) + χ(b)

The constant map 1 is always a character for any abelian group, and is called the
principal character of G.
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Extension to finite groups
Construction of Fourier basis

Let G be a finite abelian group. We consider the general case: G =
∏
i=1

kFpi

For every observation a = (a1, . . . , ak) ∈ G, define χa ∈ L2(G):

χa : x→
∏
j=1

k
e

i2π
pj

ajxj

Theorem
If G is a finite Abelian group, then the characters of G form an orthonormal basis
for L2(G). Furthermore, we have G ∼= G̃.
G̃ is called the Pontryagin dual of G and it is the group of characters of G together
with the usual point-wise product of complex-valued functions.
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Extension to finite groups
Fourier expansion in finite domain as cartesian product of different cardinals

Let G be a finite abelian group. We consider the general case: G =
∏
i=1

kFpi

For every observation a = (a1, . . . , ak) ∈ G, define χa ∈ L2(G):

χa : x→
∏
j=1

k
e

i2π
pj

ajxj

Theorem

The Fourier transform of a function f : G→ C is the unique function f̂ : Ĝ→ C
defined as f̂(a) =< f, χ >= E[f(x)χ̄(x)].
It follows from the fact that the characters from an orthonormal basis for L2(G)
that f =

∑
a∈G

f̂(a)χa
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Relaxation: Assumptions on the distribution
Partial answer

• Distribution dependent rates [Cohen, K., "Local Glivenko-Cantelli", COLT
2023].

• Bayes consistency, No rate [Steve Hanneke et al. Üniversal Bayes consistency
in metric spaces", AOS 2021.]
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Estimating all
properties at once!


