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“Have you cheated on the exam?”

—A random (angry) professor



Have you cheated on the exam?

Answers:
(using Differential Privacy)
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Bob’s answer does not (really) change the result!




Differential Privacy (g,9)

Same Different
Dataset X: |1, 15,2,3,50, ..., 5 Adjacent
Dataset X |1, 15,2, 3,50, ..., 90 Datasets

(Rare) cases where

P[M(X) € S] S eé’ ’ IP)[M()(,) € S] + 6 5= Piveey ees 5= € doesn’t hold
The probability to see the same outcome between

every possible set of adjacent datasets:

e Isatmostes
e Can be above e® in at most 8% of the cases (for 0<d<1)



Differential Privacy (g,9)

Same Different
Dataset X: |1, 15,2,3,50, ..., 5 Adjacent
Dataset X |1, 15,2, 3,50, ..., 90 Datasets

(Rare) cases where

P[M(X) € S] S eé’ ’ IP)[M()(,) € S] + 6 5= Piveey ees 5= € doesn’t hold

The probability to see the same outcome between
every possible set of adjacent datasets:

e Isatmostes
e Can be above e® in at most 8% of the cases (for 0<d<1)

Example:
€=0.2and 5 =0.01:
the mechanism offers 0.2 privacy, in 99% of cases



Randomised Response

Question: “Have you cheated on the exam?”

Answer:
Flip a coin
Q\@ob@ )6’6

Tell the Truth Flip a coin

7 \
\2\6

Say “Yes” Say “No”




Metric Privacy (€,d)

(aka d-privacy)

Different
Same by 85
Dataset X: [1,15,2,3,50, ..., 5 Datasets
with a distance
Dataset X~ |1, 15,2,3,50, ..., 90 d=85

vz € X, e X" E'd (x x’) / (Rare) cases where
P[M(x) € S] S € * ’ P[M(x ) € S] + 5 el = ey Lo 5= e-d doesn’t hold

The probability to see the same outcome between
every possible set of datasets that have a distance d:

e Is at most esd
e Can be above e®d in at most 8% of the cases (for 0<6<1)



Metric Privacy (€,d)

(aka d-privacy)
—— Different
Same by 85
Dataset X: [1,15,2,3,50, ..., 5 Datasets
with a distance
Dataset X+ |1, 15,2,3,50, ..., 90 d=85

vz € X, e X" E'd (x x’) / (Rare) cases where
P[M(x) € S] S € * ’ P[M(x ) € S] + 5 el = ey Lo 5= e-d doesn’t hold

The probability to see the same outcome between
every possible set of datasets that have a distance d:

e Is at most esd
e Can be above e®d in at most 8% of the cases (for 0<6<1)

Example:

ife=0.2and & = 0.01:
the mechanism offers 0.2-d metric privacy (for every dataset with a distance d), in 99% of cases






Protection
with
Metric Privacy
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- The closer two locations are, the more indistinguishable they should be
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Models of Privacy
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Models of Privacy
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The Shuffle Model
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+ Better utility than the Local Model
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Metric Privacy

in the

Shuffle Model

Problem: Private summation of integers
n users | each user i has a value x; € {0,1, ..., k} for keN



Metric Privacy

in the

Shuffle Model

Problem: Private summation of integers
n users | each user i has a value x; € {0,1, ..., k} for keN

Contributions:
° '-_I' "_.' - Shufﬂe

Randomised Response mechanism

e 860 - Shuffle

Geometric mechanism

e SGDL - Shuffle

Symmetric Generalised Discrete Laplace distribution



<1< - Shuffle

n users | each user i has a value x; € {0,1, ..., k}




<1< - Shuffle

n users | each user i has a value x; € {0,1, ..., k}

. Encode to b

» by, b1 b15.D1

X{ unary vector of size k

() Encode to b

a8 > b2,1’ bz,z' b2,3 bz,k

X, unary vector of size k

. Encode to b
a >bn’1, bn,Z' bn’3 bn’k

X,  unary vector of size k

Zbl-zxi




=< - Shuffle

n users | each user i has a value x; € {0,1, ..., k}

Run
. Encode to b 4m) am)
’ bl,l’ b1,2’ b1,3 bl,k —’ .- .‘
X{ unary vector of size k
v b
Run
() Encode to b ..'- ..'-
a » 0210220y 5 Dy p =0 TS IS
X, unary vector of size k
v b,
Run
. Encode to b am) am)
. : ’bl’l,l’ bn,z, bn’:), bl’l,k —> = =
X,  unary vector of size k
v b
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Zbl-zxi



=< - Shuffle

n users | each user i has a value x; € {0,1, ..., k}

Run
. Encode to b Jm) am)
’ bl,l’ b1,2’ b1,3 bl,k —’ .- ._
X| unary vector of size k
v b
Run =

Encode to b -.'- -.'- -,
3 » 01,030, Dy5.. 0y —B TSR — ./«:

X, unary vector of size k

v b, Trusted
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=< - Shuffle

n users | each user i has a value x; € {0,1, ..., k}

Run
. Encode to b 4m) am)
» Dy, by by 5. by = IS8
X| unary vector of size k
v b
°]| ——p
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=< - Shuffle

n users | each user i has a value x; € {0,1, ..., k}

Run
. Encode to b -.'- [ - q
[ = D). 012015302 IS IS \Z,
X{ unary vector of size k 4
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Shuffle Model Property
Shuffling unary bits

is privacy-wise equivalent to
Summing unary bits
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Shuffle Model Property

Shuffling unary bits
is privacy-wise equivalent to
Summing unary bits

; )
Vector sumis 3

1,1,0,1,0 =

there are 3 ones and 2 zeros

inicash sum is 86

Vector

5, 8, 30, 42, 1 < %
thereisa 5,an 8,a 30, a42and a 1
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Shuffle Model Property

Shuffling unary bits
is privacy-wise equivalent to
Summing unary bits

E

Binomial Distribution

The sum of all the
random bits follows the
Binomial Distribution.

RR-Shuffle needs a
minimum number of users!
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Shuffle Model Property

Shuffling unary bits
is privacy-wise equivalent to
Summing unary bits

E

Binomial Distribution

The sum of all the
random bits follows the
Binomial Distribution.

RR-Shuffle needs a
minimum number of users!

S

Rare cases

e The number of random bits
is unexpectedly “small/large”

e The result of random bits
is unexpectedly “small/large”



Other Mechanisms

geo - Shuffle

Users sample noise from:

Geometric Mechanism

Applied with a parameter « to a user's value x
Produces y with exponentially decreasing probability wrt d(x, y)

500000 R
P[GEO(x,a) =y] = cemal-yl
[GEO(.a) = 4] = 1o

400000

300000

200000

100000 | ‘ | |

|||I||| | | |||II||
%5 40 45 50 55 60 65
Histogram:

Reported values of the Geometric Mechanism with
parameter a = 0.2 and input value x = 50



Other Mechanisms

500000
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200000

100000

geo - Shuffle
Users sample noise from:

Geometric Mechanism

Applied with a parameter « to a user's value x
Produces y with exponentially decreasing probability wrt d(x, y)

1-e ¢
1+e @

Lemalx-yl

P[GEO(x,a) =y] =

W
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Histogram:

Reported values of the Geometric Mechanism with
parameter a = 0.2 and input value x = 50

SGDL - Shuffle

Users sample noise from:

Symmetric Generalised Discrete Laplace distribution (5, p)

= difference between two Negative Binomial distributions (8,1 — p)
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PMF of SGDL:
Probability to report y for § = 50,p = 0.5



Other Mechanisms

geo - Shuffle

Users sample noise from:

Geometric Mechanism

-4

Unary Encode

+

Shuffle

SGDL - Shuffle

Users sample noise from:

Symmetric Generalised Discrete Laplace distribution (5, p)

-4

Unary Encode

+

Shuffle



Comparison of Mechanisms

» “Not great, not terrible” utility

the protocol retains some privacy even if the
shuffler has been compromised

1< - Shuffle * Simple e Needs a minimum number of users
« Excellent utility
geo - Shuffle | ° Medium trust on the shuffler: « Not optimal utility

SGDL - Shuffle

e Optimal utility

e Heavy trust on the shuffler:
the protocol provides almost no privacy if the
shuffler has been compromised




Utility Experiment

Find the centroid of addresses in Austin, Texas
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Utility Experiment: Results
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Questions?

Andreas Athanasiou
andreas athanasiou@inria.fr
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