ENHANCING METRIC PRIVACY WITH A SHUFFLER

Andreas Athanasiou Catuscia Palamidessi, Kostas Chatzikokolakis

"Have you cheated on the exam?"

-A random (angry) professor

Have you cheated on the exam?

Answers: (using Differential Privacy)

Bob's answer does not (really) change the result!

Differential Privacy (ε, δ)

The probability to see the <u>same</u> outcome between

every possible set of adjacent datasets:

- Is at most **e**^ε
- Can be above e^{ϵ} in at most δ % of the cases (for $0 \le \delta \le 1$)

Differential Privacy (ε, δ)

ε doesn't hold

The probability to see the <u>same</u> outcome between

every possible set of adjacent datasets:

- Is at most e^ε
- Can be above e^{ϵ} in at most δ % of the cases (for $0 \le \delta \le 1$)

Example: ε = 0.2 and δ = 0.01: the mechanism offers 0.2 privacy, in 99% of cases

Randomised Response

Question: "Have you cheated on the exam?"

Answer:

Metric Privacy (ε, δ)

(aka d-privacy)

Same by 85 Dataset X: 1, 15, 2, 3, 50, ..., 5 Dataset X: 1, 15, 2, 3, 50, ..., 90 Dataset X': 1, 15, 2, 3, 50, ..., 90 $\forall x \in X, x' \in X':$ $\mathbb{P}[M(x) \in S] \leq e^{\varepsilon \cdot d_x}(x, x') \mathbb{P}[M(x') \in S] + \delta$ $\varepsilon \cdot d = \text{Privacy Loss}$ $\delta = 0$

Different

(Rare) cases where

ε·d doesn't hold

The probability to see the <u>same</u> outcome between every possible set of datasets **that have a distance d**:

- Is at most e^{ε·d}
- Can be above $e^{\epsilon \cdot d}$ in at most δ % of the cases (for $0 \le \delta \le 1$)

Metric Privacy (ε, δ)

(aka d-privacy)

Dataset X: 1, 15, 2, 3, 50, ..., 5 Dataset X: 1, 15, 2, 3, 50, ..., 90 Dataset X': 1, 15, 2, 3, 50, ..., 90 d = 85

 $\forall x \in X, x' \in X': \\ \mathbb{P}[M(x) \in S] \le e^{\varepsilon \cdot d_x(x, x')} \mathbb{P}[M(x') \in S] + \delta \quad \text{ε-d = Privacy Loss} \quad \delta = C \quad \text{δ-d = Privacy Loss} \quad \delta = C \quad \\delta = C$

The probability to see the <u>same</u> outcome between every possible set of datasets **that have a distance d**:

- Is at most **e^{ε·d}**
- Can be above $e^{\epsilon \cdot d}$ in at most δ % of the cases (for $0 \le \delta \le 1$)

Example:

if $\varepsilon = 0.2$ and $\delta = 0.01$: the mechanism offers 0.2-d metric privacy (for every dataset with a distance d), in 99% of cases

(Rare) cases where

ε·d doesn't hold

The **closer** two locations are, the **more indistinguishable** they should be

Models of Privacy

Central Model

Models of Privacy

Central Model

Local Model

Models of Privacy

Central Model

- + Better utility
- Must trust the data collector

Local Model

- + No need to trust a central entity
- Worse utility

The Shuffle Model

Shuffle Model

- + Better utility than the Local Model
- + Less trust than the Central Model

Metric Privacy in the Shuffle Model

 $\label{eq:problem:pr$

Metric Privacy in the Shuffle Model

 $\begin{array}{l} \underline{Problem:} \ Private \ summation \ of \ integers \\ n \ users \ | \ each \ user \ i \ has \ a \ value \ x_i \in \{0,1, \, ..., \, k\} \ for \ k \in \mathbb{N} \end{array}$

Contributions:

• Randomised Response mechanism

• geo - Shuffle Geometric mechanism

• *SGDL* - Shuffle Symmetric Generalised Discrete Laplace distribution

 \boldsymbol{n} users | each user i has a value $\boldsymbol{x}_i \in \{0, 1, ..., \, k\}$

 \boldsymbol{n} users | each user i has a value $\boldsymbol{x}_i \in \{0, 1, ..., k\}$

 \boldsymbol{n} users | each user i has a value $\boldsymbol{x}_i \in \{0, 1, ..., k\}$

n users | each user i has a value $x_i \in \{0,1,\,...,\,k\}$

n users | each user i has a value $x_i \in \{0,1,...,\,k\}$

n users | each user i has a value $x_i \in \{0,1,...,\,k\}$

Shuffle Model Property

Shuffling unary bits is privacy-wise equivalent to Summing unary bits

Shuffle Model Property

Shuffling unary bits is privacy-wise equivalent to Summing unary bits

Shuffle Model Property

Shuffling unary bits is privacy-wise equivalent to Summing unary bits

E Binomial Distribution

The sum of all the random bits follows the Binomial Distribution.

RR-Shuffle needs a minimum number of users!

74

Shuffle Model Property

Shuffling unary bits is privacy-wise equivalent to Summing unary bits

E Binomial Distribution

The sum of all the random bits follows the Binomial Distribution.

RR-Shuffle needs a minimum number of users!

- The number of random bits is unexpectedly "small/large"
- The **result** of **random bits** is unexpectedly "small/large"

Other Mechanisms

geo - Shuffle

Users sample noise from:

Geometric Mechanism

Applied with a parameter α to a user's value x

Produces y with exponentially decreasing probability wrt d(x, y)

Other Mechanisms

geo - Shuffle

Users sample noise from:

Geometric Mechanism

Applied with a parameter α to a user's value xProduces y with exponentially decreasing probability wrt d(x, y)

Histogram:Reported values of the Geometric Mechanism with
parameter $\alpha = 0.2$ and input value x = 50

${\it SGDL}$ - Shuffle

Users sample noise from:

Symmetric Generalised Discrete Laplace distribution (β , p)

:= difference between two **Negative Binomial** distributions $(\beta, 1 - p)$

Other Mechanisms

$\ensuremath{\textit{SGDL}}$ - Shuffle

Users sample noise from:

Symmetric Generalised Discrete Laplace distribution (β , p)

Comparison of Mechanisms

<u>ह</u> - Shuffle	• Simple	 "Not great, not terrible" utility Needs a minimum number of users
geo - Shuffle	 Excellent utility Medium trust on the shuffler: the protocol retains some privacy even if the shuffler has been compromised 	• Not optimal utility
SGDL - Shuffle	• Optimal utility	• Heavy trust on the shuffler : the protocol provides almost no privacy if the shuffler has been compromised

Utility Experiment

Find the centroid of addresses in Austin, Texas

Utility Experiment: Results

Thank you :) Questions?

Andreas Athanasiou andreas.athanasiou@inria.fr

