ENHANCING METRIC PRIVACY WITH A SHUFFLER

Andreas Athanasiou
Catuscia Palamidessi, Kostas Chatzikokolakis
\otimes insirut POLTITUT
POLYTECHNIQUE
DEARIS

"Have you cheated on the exam?"

-A random (angry) professor

Have you cheated on the exam?

Bob's answer does not (really) change the result!

Differential Privacy ($\boldsymbol{\varepsilon}, \boldsymbol{\delta}$)

Same Different
Dataset $\left.X: \begin{array}{l}1,15,2,3,50, \ldots, 5 \\ \\ \text { Dataset } X^{\prime}: 1,15,2,3,50, \ldots, 90\end{array}\right\}$ Adjacent
$\mathbb{P}[M(X) \in S] \leq e^{\varepsilon} \cdot \mathbb{P}\left[M\left(X^{\prime}\right) \in S\right]+\delta \quad \varepsilon=$ Privacy Loss
$\delta=$(Rare) Cases where ε doesn't hold

The probability to see the same outcome between every possible set of adjacent datasets:

- Is at most ${ }^{\varepsilon}$
- Can be above \mathbf{e}^{ε} in at most $\delta \%$ of the cases (for $0 \leq \delta \leq 1$)

Differential Privacy ($\boldsymbol{\varepsilon}, \boldsymbol{\delta}$)

\qquad Same
Different

$\mathbb{P}[M(X) \in S] \leq e^{\varepsilon} \cdot \mathbb{P}\left[M\left(X^{\prime}\right) \in S\right]+\delta \quad \varepsilon=$ Privacy Loss
The probability to see the same outcome between every possible set of adjacent datasets:

- Is at most ${ }^{\varepsilon}$
- Can be above \mathbf{e}^{ε} in at most $\delta \%$ of the cases (for $0 \leq \delta \leq 1$)

Example:

$\varepsilon=0.2$ and $\delta=0.01$:
the mechanism offers 0.2 privacy, in 99% of cases

RR

Randomised Response

Question: "Have you cheated on the exam?"

Answer:

Metric Privacy ($\boldsymbol{\varepsilon}, \boldsymbol{\delta}$)

(aka d-privacy)

$\forall x \in X, x^{\prime} \in X^{\prime}:$
$\forall x \in X, x^{\prime} \in X^{\prime}$
$\mathbb{P}[M(x) \in S] \leq e^{\varepsilon \cdot d_{x}\left(x, x^{\prime}\right)} \mathbb{P}\left[M\left(x^{\prime}\right) \in S\right]+\delta$
$\boldsymbol{\varepsilon} \cdot \mathbf{d}=$ Privacy Loss
$\boldsymbol{\delta}=\begin{gathered}\text { (Rare) cases where } \\ \boldsymbol{\varepsilon} \cdot \mathrm{d} \text { doesn't hold }\end{gathered}$
The probability to see the same outcome between every possible set of datasets that have a distance d:

- Is at most $\mathbf{e}^{\varepsilon \cdot d}$
- Can be above $\mathbf{e}^{\varepsilon \cdot d}$ in at most $\boldsymbol{\delta} \%$ of the cases (for $0 \leq \delta \leq 1$)

Metric Privacy ($\boldsymbol{\varepsilon}, \boldsymbol{\delta}$)

(aka d-privacy)

$\forall x \in X, x^{\prime} \in X^{\prime}:$
$\left.\forall x \in X, x^{\prime} \in X^{\prime}: S\right] \leq e^{\varepsilon \cdot d_{x}\left(x, x^{\prime}\right)} \mathbb{P}\left[M\left(x^{\prime}\right) \in S\right]+\delta \quad \varepsilon \cdot d=$ Privacy Loss
The probability to see the same outcome between every possible set of datasets that have a distance d:

- Is at most eed
- Can be above $\mathbf{e}^{\varepsilon \cdot d}$ in at most $\boldsymbol{\delta} \%$ of the cases (for $0 \leq \delta \leq 1$)

Example:

if $\boldsymbol{\varepsilon}=0.2$ and $\boldsymbol{\delta}=0.01$:
the mechanism offers $0.2 \cdot d$ metric privacy (for every dataset with a distance d), in 99% of cases

The closer two locations are, the more indistinguishable they should be

Models of Privacy

Central Model

Models of Privacy

Central Model
Local Model

Models of Privacy

Central Model

+ Better utility
- Must trust the data collector

Local Model

+ No need to trust a central entity
- Worse utility

The Shuffle Model

Shuffle Model

+ Better utility than the Local Model
+ Less trust than the Central Model

Metric Privacy
 in the Shuffle Model

Problem: Private summation of integers \mathbf{n} users | each user \mathbf{i} has a value $\mathbf{x}_{\mathbf{i}} \in\{0,1, \ldots, \mathbf{k}\}$ for $\mathbf{k} \in \mathbb{N}$

Metric Privacy Shuffle Model

Problem: Private summation of integers \mathbf{n} users | each user \mathbf{i} has a value $\mathbf{x}_{\mathbf{i}} \in\{0,1, \ldots, \mathbf{k}\}$ for $\mathbf{k} \in \mathbb{N}$

Contributions:

-RR - Shuffle
Randomised Response mechanism

- geo - Shuffle

Geometric mechanism

- SGDL - Shuffle

R

\mathbf{n} users | each user \mathbf{i} has a value $\mathbf{x}_{\mathbf{i}} \in\{0,1, \ldots, \mathbf{k}\}$
\boldsymbol{E}_{x}

8

R2R-Shuffle

\mathbf{n} users | each user \mathbf{i} has a value $\mathbf{x}_{\mathbf{i}} \in\{0,1, \ldots, k\}$
$\underbrace{}_{x_{1}} \xrightarrow[\text { unary vector of size } k]{\text { Encode to } b} b_{1,1}, b_{1,2}, b_{1,3} \ldots b_{1, k}$
$\underbrace{}_{x_{2}} \xrightarrow[\text { unary vector of size } k]{\text { Encode to } b} b_{2,1}, b_{2,2}, b_{2,3} \ldots b_{2, k}$
$\bigodot_{x_{n}} \xrightarrow[\text { unary vector of size } k]{\text { Encode to } b} b_{n, 1}, b_{n, 2}, b_{n, 3} \ldots b_{n, k}$

$$
\sum_{i} b_{i}=x_{i}
$$

踶 - Shuffle

\mathbf{n} users | each user \mathbf{i} has a value $\mathbf{x}_{\mathbf{i}} \in\{0,1, \ldots, \mathbf{k}\}$
$\Theta_{x_{1}} \xrightarrow[\text { Unary vector of size } \mathrm{k}]{\text { Encode to }} b_{1,1}, b_{1,2}, b_{1,3} \ldots, b_{1, k} \rightarrow \underset{\forall}{\quad \text { Run }}$
$\underbrace{\text { Encode to } b}_{x_{2} \text { unary vector of size } \mathrm{k}} b_{2,1}, b_{2,2}, b_{2,3} \ldots b_{2, k} \rightarrow \quad \forall b_{i}$
$\underbrace{\text { Encode to } b}_{x_{n}} b_{n, 1}, b_{n, 2}, b_{n, 3} \ldots b_{n, k} \rightarrow \quad \begin{gathered}\text { unary vector of size } k\end{gathered}$

$$
\sum_{i} b_{i}=x_{i}
$$

RR - Shuffle

\mathbf{n} users | each user \mathbf{i} has a value $\mathbf{x}_{\mathbf{i}} \in\{0,1, \ldots, \mathbf{k}\}$

- $_{x_{1}} \xrightarrow[\text { unary vector of size } k]{\text { Encode to } b} b_{1,1}, b_{1,2}, b_{1,3} \ldots b_{1, k} \rightarrow \underset{\quad}{\quad \text { Run }}$
$\mathrm{C}_{x_{2}}^{\text {Encode to } b} b_{2,1}, b_{2,2}, b_{2,3} \ldots b_{2, k} \longrightarrow \underset{\sim}{\forall b_{i}}$

Trusted
Shuffler
$\underbrace{}_{x_{n}}$ $\xrightarrow[\text { unary vector of size } k]{\text { Encode to } b} b_{n, 1}, b_{n, 2}, b_{n, 3} \ldots b_{n, k} \longrightarrow \xrightarrow{\text { Run }} \begin{gathered}\text { R }\end{gathered}$

$$
\sum_{i} b_{i}=x_{i}
$$

R2R - Shuffle

\mathbf{n} users | each user \mathbf{i} has a value $\mathbf{x}_{\mathbf{i}} \in\{0,1, \ldots, \mathbf{k}\}$

$$
\underbrace{}_{x_{n}} \xrightarrow[\substack{\text { unary vector of size } k}]{\text { Encode to } b} b_{n, 1}, b_{n, 2}, b_{n, 3} \ldots b_{n, k} \longrightarrow \quad \forall b_{i}
$$

RR - Shuffle

\mathbf{n} users | each user \mathbf{i} has a value $\mathbf{x}_{\mathbf{i}} \in\{0,1, \ldots, \mathbf{k}\}$

解 - Shuffle: Privacy

Shuffle Model Property
Shuffling unary bits
is privacy-wise equivalent to
Summing unary bits

R - Shuffle: Privacy

Shuffle Model Property

Shuffling unary bits
is privacy-wise equivalent to
Summing unary bits

R \mathbb{R}^{2} - Shuffle: Privacy

Shuffle Model Property
Shuffling unary bits
is privacy-wise equivalent to Summing unary bits

Binomial Distribution
The sum of all the random bits follows the Binomial Distribution.
RR-Shuffle needs a minimum number of users!

飛 - Shuffle: Privacy

Shuffle Model Property
Shuffling unary bits
is privacy-wise equivalent to Summing unary bits

ε

Binomial Distribution

The sum of all the random bits follows the Binomial Distribution. RR-Shuffle needs a minimum number of users!

δ

Rare cases

- The number of random bits is unexpectedly "small/large"
- The result of random bits is unexpectedly "small/large"

Other Mechanisms

geo - Shuffle

Users sample noise from:

Geometric Mechanism

Applied with a parameter α to a user's value x

Histogram:
Reported values of the Geometric Mechanism with parameter $\alpha=0.2$ and input value $x=50$

Other Mechanisms

geo - Shuffle

Users sample noise from:

Geometric Mechanism

Applied with a parameter α to a user's value x

Histogram:
Reported values of the Geometric Mechanism with parameter $\alpha=0.2$ and input value $x=50$

SGDL - Shuffle

Users sample noise from:

PMF of SGDL:
Probability to report y for $\beta=50, p=0.5$

Other Mechanisms

geo - Shuffle

Users sample noise from:

Geometric Mechanism

Unary Encode

Shuffle

SGDL-Shuffle

Users sample noise from:
Symmetric Generalised Discrete Laplace distribution (β, p)

-
 Unary Encode

Shuffle

Comparison of Mechanisms

Ren - Shuffle	• Simple	• "Not great, not terrible" utility •Needs a minimum number of users
geo - Shuffle	- Excellent utility - Medium trust on the shuffler: the protocol retains some privacy even if the shuffler has been compromised	• Not optimal utility
SGDL - Shuffle	- Optimal utility	- Heavy trust on the shuffler: the protocol provides almost no privacy if the shuffler has been compromised

Utility Experiment

Find the centroid of addresses in Austin, Texas

Utility Experiment: Results

Thank Questions?

Andreas Athanasiou andreas.athanasiou@inria.fr

