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“Have you cheated on the exam?”

—A random (angry) professor



Bob’s answer does not (really) change the result!

Class A Class A without Bob

Have you cheated on the exam?

~20%20%
Yes Yes

Answers: 
(using Differential Privacy)



Differential Privacy (ε,δ)

The probability to see the same outcome between  
every possible set of adjacent datasets: 

● Is at most eε   
● Can be above eε in at most δ% of the cases (for 0≤δ≤1)
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Differential Privacy (ε,δ)

The probability to see the same outcome between  
every possible set of adjacent datasets: 

● Is at most eε   
● Can be above eε in at most δ% of the cases (for 0≤δ≤1)
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Example:  
ε = 0.2 and δ = 0.01: 
the mechanism offers 0.2 privacy, in 99% of cases

ε = Privacy Loss (Rare) cases where 
ε doesn’t hold δ = 



Randomised Response

Question: “Have you cheated on the exam?”

Answer: 

Flip a coin

Hea
ds Tails

Tell the Truth Flip a coin
Hea

ds Tails

Say “Yes” Say “No”



Metric Privacy (ε,δ) 
(aka d-privacy)

The probability to see the same outcome between  
every possible set of datasets that have a distance d:   

● Is at most eε·d  
● Can be above eε·d in at most δ% of the cases (for 0≤δ≤1)
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Metric Privacy (ε,δ) 
(aka d-privacy)

The probability to see the same outcome between  
every possible set of datasets that have a distance d:   

● Is at most eε·d  
● Can be above eε·d in at most δ% of the cases (for 0≤δ≤1)

1, 15, 2, 3 , 50 , … ,  5
1, 15, 2, 3 , 50 , … , 90

Example:  
if ε = 0.2 and δ = 0.01: 
the mechanism offers 0.2·d metric privacy (for every dataset with a distance d), in 99% of cases

Same
Different  

by 85

}Datasets 
with a distance 

d = 85

ε·d = Privacy Loss 
:

(Rare) cases where 
ε·d  doesn’t hold δ = 

Dataset :X
Dataset :X′￼





The closer two locations are, the more indistinguishable they should be

Protection 
with 

Metric Privacy 
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Models of Privacy

+ No need to trust a central entity   
- Worse utility

+ Better utility   
- Must trust the data collector
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The Shuffle Model

Central 
Untrusted 

Data Collector 

Analyst

Shuffle Model

Trusted 
Shuffler 

+ Better utility than the Local Model 
+ Less trust than the Central Model
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Metric Privacy

Problem: Private summation of integers  
n users | each user i has a value xi ∈ {0,1, …, k} for k∈ℕ

Shuffle Model
in the 



Metric Privacy

Problem: Private summation of integers  
n users | each user i has a value xi ∈ {0,1, …, k} for k∈ℕ

Shuffle Model
in the 

Contributions: 

•         - Shuffle  
Randomised Response mechanism 

• geo - Shuffle 
Geometric mechanism 

• SGDL - Shuffle 
Symmetric Generalised Discrete Laplace distribution 



n users | each user i has a value xi ∈ {0,1, …, k}
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Shuffling unary bits

Shuffle Model Property

- Shuffle: Privacy

Summing unary bits
is privacy-wise equivalent to 



Shuffling unary bits

Shuffle Model Property

- Shuffle: Privacy

1, 1, 0, 1, 0 
sum is 3 

there are 3 ones and 2 zeros 

5, 8, 30, 42, 1 
sum is 86 

there is a 5, an 8, a 30, a 42 and a 1 

= 

Summing unary bits
is privacy-wise equivalent to 

≠ 
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Βinomial Distribution

Shuffling unary bits The sum of all the 
random bits follows the 
Binomial Distribution.

Shuffle Model Property

- Shuffle: Privacy

1, 1, 0, 1, 0 
sum is 3 

there are 3 ones and 2 zeros 

5, 8, 30, 42, 1 
sum is 86 

there is a 5, an 8, a 30, a 42 and a 1 

= 

Summing unary bits
is privacy-wise equivalent to 

≠ 

RR-Shuffle needs a 
minimum number of users!
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Βinomial Distribution

Shuffling unary bits The sum of all the 
random bits follows the 
Binomial Distribution.

• The number of random bits 
is unexpectedly “small/large” 

• The result of random bits     
is unexpectedly “small/large” 

Shuffle Model Property Rare cases

- Shuffle: Privacy

1, 1, 0, 1, 0 
sum is 3 

there are 3 ones and 2 zeros 

5, 8, 30, 42, 1 
sum is 86 

there is a 5, an 8, a 30, a 42 and a 1 

= 

Summing unary bits
is privacy-wise equivalent to 

≠ 

RR-Shuffle needs a 
minimum number of users!
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Users sample noise from: 

Geometric Mechanism

geo - Shuffle

Other Mechanisms 

Applied with a parameter  to a user’s value  
Produces  with exponentially decreasing probability wrt  

α x
y d (x , y)

Histogram: 
Reported values of the Geometric Mechanism with  

parameter  and input value α = 0.2 x = 50



Users sample noise from: 

Geometric Mechanism

geo - Shuffle SGDL - Shuffle
Users sample noise from:

:= difference between two Negative Binomial distributions ( )β,1 − p

PMF of SGDL:  
Probability to report  for , y β = 50 p = 0.5

Symmetric Generalised Discrete Laplace distribution ( )β, p

Other Mechanisms 

Applied with a parameter  to a user’s value  
Produces  with exponentially decreasing probability wrt  

α x
y d (x , y)

Histogram: 
Reported values of the Geometric Mechanism with  

parameter  and input value α = 0.2 x = 50



Users sample noise from: 

Geometric Mechanism

Other Mechanisms 

Unary Encode

Shuffle

Users sample noise from:

Unary Encode

Shuffle

geo - Shuffle SGDL - Shuffle

Symmetric Generalised Discrete Laplace distribution ( )β, p



Comparison of Mechanisms

        - Shuffle • Simple
• “Not great, not terrible” utility 
• Needs a minimum number of users

geo - Shuffle
• Excellent utility  
• Medium trust on the shuffler:              

the protocol retains some privacy even if the 
shuffler has been compromised

• Not optimal utility

SGDL - Shuffle • Optimal utility
• Heavy trust on the shuffler: 
the protocol provides almost no privacy if the 
shuffler has been compromised



Utility Experiment

Find the centroid of addresses in Austin, Texas

 | ε = 0.15 δ = 10−4



Utility Experiment: Results

          -Shuffle

  geo  -Shuffle

 SGDL  -Shuffle



Thank you :)

Andreas Athanasiou 
andreas.athanasiou@inria.fr

Questions?


