On the Complexity of Differentially Private

Best-Arm Identification with Fixed Confidence

Achraf Azize, Marc Jourdan, Aymen AI Marjani and Debabrota Basu

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Outline

1. A short tour of the Best-Arm Identification (BAI) setting
2. Defining Privacy for BAI
3. Quantifying the Hardness of DP-BAI
4. Near-Optimal Algorithm for DP-BAI
5. Conclusion and Future Work

A short tour of BAI

Sequential Decision Making

 under Uncertainty: Multi-armed Bandits [Thompson, 1933]

Medicine 1
p_{1}

Medicine 2
p_{2}

Medicine 3
p_{3}

Medicine K
p_{K}

Sequential Decision Making

 under Uncertainty: Multi-armed Bandits [Thompson, 1933]
Medicine 1
p_{1}

Medicine 2
p_{2}

Medicine 3
p_{3}

Medicine K
p_{K}

For the t-th patient in the study:

1. The doctor π chooses a Medicine $a_{t} \in\{1, \ldots, K\}$
2. The doctor observes a reward $r_{t} \in\{0,1\}$ such that $r_{t} \sim \operatorname{Bernouli}\left(p_{a_{t}}\right)$

Sequential Decision Making

 under Uncertainty: Multi-armed Bandits [Thompson, 1933]
Medicine 1
p_{1}

Medicine 2
p_{2}

Medicine 3
p_{3}

Medicine K
p_{K}

For the t-th patient in the study:

1. The doctor π chooses a Medicine $a_{t} \in\{1, \ldots, K\}$
2. The doctor observes a reward $r_{t} \in\{0,1\}$ such that $r_{t} \sim \operatorname{Bernouli}\left(p_{a_{t}}\right)$

Objective: Identify the medicine with the highest mean $a^{\star} \triangleq \operatorname{argmax}_{a \in[K]} p_{a}$

Performance Measure for BAI

δ-correctness and Stopping Time

Goal: (a) Stop the interaction at time τ
(b) Recommend an arm $\hat{a} \in[K]$

Performance Measure for BAI

δ-correctness and Stopping Time

Goal: (a) Stop the interaction at time τ
(b) Recommend an arm $\hat{a} \in[K]$

Definition: A BAI strategy π is δ-correct for a class of instances \mathcal{M}, if

$$
\mathbb{P}_{\boldsymbol{\nu}, \pi}\left(\tau<\infty, \widehat{a}=a^{\star}(\boldsymbol{\nu})\right) \geq 1-\delta
$$

for every environment $\boldsymbol{\nu}=\left\{p_{1}, \ldots, p_{K}\right\} \in \mathcal{M}$.

Hardness of BAI

Theorem: [Garivier and Kaufmann, 2016] For any δ-correct BAI strategy, we have that

$$
\mathbb{E}_{\boldsymbol{\nu}, \pi}[\tau] \geq T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu}) \log (1 / 3 \delta),
$$

and $T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu}) \triangleq\left(\sup _{\omega \in \Sigma_{K}} \inf _{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\nu})} \sum_{a=1}^{K} \omega_{a} \operatorname{KL}\left(\nu_{a}, \lambda_{a}\right)\right)^{-1}$

Hardness of BAI

Theorem: [Garivier and Kaufmann, 2016] For any δ-correct BAI strategy, we have that

$$
\mathbb{E}_{\boldsymbol{\nu}, \pi}[\tau] \geq T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu}) \log (1 / 3 \delta),
$$

and $T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu}) \triangleq\left(\sup _{\omega \in \Sigma_{K}} \inf _{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\nu})} \sum_{a=1}^{K} \omega_{a} \operatorname{KL}\left(\nu_{a}, \lambda_{a}\right)\right)^{-1} \approx \sum_{a} \frac{1}{\left(\mu_{a^{\star}}-\mu_{a}\right)^{2}}$

Hardness of BAI

Theorem: [Garivier and Kaufmann, 2016] For any δ-correct BAI strategy, we have that

$$
\mathbb{E}_{\boldsymbol{\nu}, \pi}[\tau] \geq T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu}) \log (1 / 3 \delta)
$$

and $T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu}) \triangleq\left(\sup _{\omega \in \Sigma_{K}} \inf _{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\nu})} \sum_{a=1}^{K} \omega_{a} \operatorname{KL}\left(\nu_{a}, \lambda_{a}\right)\right)^{-1} \approx \sum_{a} \frac{1}{\left(\mu_{a^{\star}}-\mu_{a}\right)^{2}}$

Theorem: There exists an algorithm π such that

$$
\lim _{\delta \rightarrow 0} \frac{\mathbb{E}_{\nu, \pi}[\tau]}{\log (1 / \delta)}=T_{\mathrm{KL}}^{\star}(\nu)
$$

Example of such algorithms: Track And Stop [Garivier and Kaufmann, 2016], DKM [Degenne et al., 2019], Top Two Algorithm [Jourdan et al., 2022].

Defining Privacy for BAI

Differential Privacy

Intuition: Indistinguishability from the mass

Dataset

Differential Privacy

Intuition: Indistinguishability from the mass

Definition: [Dwork and Roth, 2014] A randomised algorithm \mathcal{A} satisfies ϵ-DP if for any two neighbouring datasets d and d^{\prime} that differ only in one row, i.e $d \sim d^{\prime}$, and for all sets of output $\mathcal{O} \subseteq \operatorname{Range}(\mathcal{A})$,

$$
\operatorname{Pr}[\mathcal{A}(d) \in \mathcal{O}] \leq e^{\epsilon} \operatorname{Pr}\left[\mathcal{A}\left(d^{\prime}\right) \in \mathcal{O}\right]
$$

Differential Privacy

Intuition: Indistinguishability from the mass

Definition: [Dwork and Roth, 2014] A randomised algorithm \mathcal{A} satisfies ϵ-DP if for any two neighbouring datasets d and d^{\prime} that differ only in one row, i.e $d \sim d^{\prime}$, and for all sets of output $\mathcal{O} \subseteq \operatorname{Range}(\mathcal{A})$,

$$
\operatorname{Pr}[\mathcal{A}(d) \in \mathcal{O}] \leq e^{\epsilon} \operatorname{Pr}\left[\mathcal{A}\left(d^{\prime}\right) \in \mathcal{O}\right]
$$

Privacy in BAI: Rewards may contain sensitive information about individuals. A patient's reaction to a medicine can reveal sensitive information about their health conditions.

BAI with DP

Ingredients to specify:

- The randomized algorithm
- The private input dataset
- The output

BAI with DP

A BAI strategy π consists of:

- A pair of sampling and stopping rules $\left(\mathrm{S}_{t}\right)_{t \geq 1}$:
- For $a \in[K], S_{t}\left(a \mid \mathcal{H}_{t-1}\right)$ is the probability of playing action a given the history \mathcal{H}_{t-1}
- $\mathrm{S}_{t}\left(\mathrm{~T} \mid \mathcal{H}_{t-1}\right)$ is the probability of the algorithm halting given \mathcal{H}_{t-1}
- A recommendation rule $\left(\operatorname{Rec}_{t}\right)_{t>1}$:
- For $a \in[K], \operatorname{Rec}_{t}\left(a \mid \mathcal{H}_{t-1}\right)$ is the probability of returning action a as a guess for the best action given \mathcal{H}_{t-1}.

BAI with DP

The private dataset $\underline{\mathbf{d}}^{T}$ is

$\text { 오 }_{1}$					$+^{+}$
	$x_{1,1}$	$x_{1,2}$	\ldots	\ldots	$x_{1, K}$
$\dot{\lambda}_{2}$	$x_{2,1}$	$x_{2,2}$	\cdots	\ldots	$x_{2, K}$
${\underset{\mathrm{A}}{\mathrm{~T}}}^{\text {아 }}$	$x_{T, 1}$	$x_{T, 2}$	\cdots	\cdots	$x_{T, K}$

BAI with DP

The private dataset $\underline{\mathbf{d}}^{T}$ is

When a_{t} is recommended to Patient p_{t}, only $r_{t} \triangleq x_{t, a_{t}}$ is observed

BAI with DP

The private dataset $\underline{\mathbf{d}}^{T}$ is

When a_{t} is recommended to Patient p_{t}, only $r_{t} \triangleq x_{t, a_{t}}$ is observed
Finally, the mechanism induced by the interaction is

$$
\pi\left(\underline{\underline{a}}^{T}, \widehat{\mathrm{a}}, T \mid \underline{\mathbf{d}}^{T}\right) \triangleq \operatorname{Rec}_{T+1}\left(\hat{\mathrm{a}} \mid \mathcal{H}_{T}\right) \mathrm{S}_{T+1}\left(T \mid \mathcal{H}_{T}\right) \prod_{t=1}^{T} \mathrm{~S}_{t}\left(a_{t} \mid \mathcal{H}_{t-1}\right)
$$

ϵ-global DP BAI

Definition: π satisfies ϵ-global DP, if $\forall T \geq 1, \forall \underline{\mathbf{d}}^{T} \sim \underline{\mathbf{d}}^{T}, \forall \underline{a}^{T}$ and \widehat{a},

$$
\pi\left(\underline{a}^{T}, \hat{a}, T \mid \underline{\mathbf{d}}^{T}\right) \leq e^{\epsilon} \pi\left(\underline{a}^{T}, \hat{a}, T \mid \underline{\mathbf{d}}^{\prime T}\right) .
$$

Main Question and Contributions

Main Question: What is the cost of ϵ-global DP in BAI?

Contributions:
■ We provide a lower bound on the sample complexity of any δ-correct ϵ-global DP BAI strategy

- We design a near-optimal algorithm matching the sample complexity lower bound, up to multiplicative constants

Quantifying the Hardness of DP-BAI

Lower Bound

Our Results

Theorem: For any δ-correct ϵ-global DP BAI strategy, we have that

$$
\mathbb{E}_{\boldsymbol{\nu}, \pi}[\tau] \geq \max \left(T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu}), \frac{1}{6 \epsilon} T_{\mathrm{TV}}^{\star}(\boldsymbol{\nu})\right) \log (1 / 3 \delta),
$$

$\left(T_{\mathrm{d}}^{\star}(\boldsymbol{\nu})\right)^{-1} \triangleq \sup _{\omega \in \Sigma_{K}} \inf _{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\nu})} \sum_{a=1}^{K} \omega_{a} \mathrm{~d}\left(\nu_{a}, \lambda_{a}\right), \mathrm{d}$ is either KL or TV.

Lower Bound

Our Results

Theorem: For any δ-correct ϵ-global DP BAI strategy, we have that

$$
\mathbb{E}_{\boldsymbol{\nu}, \pi}[\tau] \geq \max \left(T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu}), \frac{1}{6 \epsilon} T_{\mathrm{TV}}^{\star}(\boldsymbol{\nu})\right) \log (1 / 3 \delta),
$$

$\left(T_{\mathrm{d}}^{\star}(\boldsymbol{\nu})\right)^{-1} \triangleq \sup _{\omega \in \Sigma_{K}} \inf _{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\nu})} \sum_{a=1}^{K} \omega_{a} \mathrm{~d}\left(\nu_{a}, \lambda_{a}\right), \mathrm{d}$ is either KL or TV.

$$
\begin{gathered}
T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu}) \approx \sum_{a} \frac{1}{\left(\mu_{\mathrm{a}^{\star}}-\mu_{\mathrm{a}}\right)^{2}} \quad \text { and } \quad T_{\mathrm{TV}}^{\star}(\boldsymbol{\nu}) \approx \sum_{a} \frac{1}{\mu_{\mathrm{a}^{\star}}-\mu_{\mathrm{a}}} \\
T_{\mathrm{TV}}^{\star}(\boldsymbol{\nu}) \geq \sqrt{2 T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu})}
\end{gathered}
$$

DP and Total Variation

Intuition: Stochastic Group Privacy

- d and d^{\prime} differ in 1 sample $\rightarrow \exp (\epsilon)$

DP and Total Variation

Intuition: Stochastic Group Privacy

- d and d^{\prime} differ in 1 sample $\rightarrow \exp (\epsilon)$
- d and d^{\prime} differ in k samples $\rightarrow \exp (k \epsilon)$

DP and Total Variation

Intuition: Stochastic Group Privacy

- d and d^{\prime} differ in 1 sample $\rightarrow \exp (\epsilon)$

■ d and d^{\prime} differ in k samples $\rightarrow \exp (k \epsilon)$

■ Sample $d \sim \otimes^{n} P$ and $d^{\prime} \sim \otimes^{n} Q \rightarrow \exp (n T V(P, Q) \epsilon)$

DP and Total Variation

Intuition: Stochastic Group Privacy

- d and d^{\prime} differ in 1 sample $\rightarrow \exp (\epsilon)$
- d and d^{\prime} differ in k samples $\rightarrow \exp (k \epsilon)$

■ Sample $d \sim \otimes^{n} P$ and $d^{\prime} \sim \otimes^{n} Q \rightarrow \exp (n T V(P, Q) \epsilon)$

■ Sample $d \sim \otimes_{i=1}^{n} P_{i}$ and $d^{\prime} \sim \otimes_{i=1}^{n} Q_{i} \rightarrow \exp \left(\sum_{i=1}^{n} T V\left(P_{i}, Q_{i}\right) \epsilon\right)$

Lower Bound

Discussion

$$
\mathbb{E}_{\boldsymbol{\nu}, \pi}[\tau] \geq \max \left(T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu}), \frac{1}{6 \epsilon} T_{\mathrm{TV}}^{\star}(\boldsymbol{\nu})\right) \log (1 / 3 \delta)
$$

Two hardness regimes depending on ϵ and the environment $\boldsymbol{\nu}$:

- Low-privacy regime: When $\epsilon>\frac{T_{\mathrm{TV}}^{*}(\nu)}{6 T_{\mathrm{KL}}(\boldsymbol{\nu})}$, the lower bound retrieves the non-private $T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu})$ lower bound and privacy can be achieved for free.
- High-privacy regime: When $\epsilon<\frac{T_{T V}^{\star}(\nu)}{6 T_{\mathrm{KL}}^{\star}(\boldsymbol{\nu})}$, the lower bound becomes $\frac{1}{6 \epsilon} T_{\mathrm{TV}}^{\star}(\nu)$ and ϵ-global DP δ-BAI requires more samples than non-private ones.

Near-Optimal Algorithm for DP-BAI

Algorithm Design

Top Two Algorithm

Algorithm Design

Top Two Algorithm

The Top Two sampling rule:

- Choosing a leader $B_{n} \in[K]$
- Choosing a challenger $C_{n} \in[K] \backslash\left\{B_{n}\right\}$
- Sampling B_{n} with probability $\frac{1}{2}$, else sampling C_{n}

Algorithm Design

Top Two Algorithm

The Top Two sampling rule:

- Choosing a leader $B_{n} \in[K]$
- Choosing a challenger $C_{n} \in[K] \backslash\left\{B_{n}\right\}$
- Sampling B_{n} with probability $\frac{1}{2}$, else sampling C_{n}

Leader: Empirical Best; $B_{n}=\operatorname{argmax}_{a \in[K]} \widehat{\mu}_{n, a}$.

Algorithm Design

Top Two Algorithm

The Top Two sampling rule:

- Choosing a leader $B_{n} \in[K]$
- Choosing a challenger $C_{n} \in[K] \backslash\left\{B_{n}\right\}$
- Sampling B_{n} with probability $\frac{1}{2}$, else sampling C_{n}

Leader: Empirical Best; $B_{n}=\operatorname{argmax}_{a \in[K]} \widehat{\mu}_{n, a}$.
Challenger: Transportation Cost;

$$
C_{n}=\underset{j \neq B_{n}}{\operatorname{argmin}} W_{n}\left(B_{n}, j\right) .
$$

Algorithm Design

Top Two Algorithm

The Top Two sampling rule:

- Choosing a leader $B_{n} \in[K]$
- Choosing a challenger $C_{n} \in[K] \backslash\left\{B_{n}\right\}$
- Sampling B_{n} with probability $\frac{1}{2}$, else sampling C_{n}

The recommendation rule:

$$
\widehat{a}_{n}=\underset{a \in[K]}{\operatorname{argmax}} \widehat{\mu}_{n, a}
$$

Algorithm Design

Top Two Algorithm

The Top Two sampling rule:

- Choosing a leader $B_{n} \in[K]$
- Choosing a challenger $C_{n} \in[K] \backslash\left\{B_{n}\right\}$
- Sampling B_{n} with probability $\frac{1}{2}$, else sampling C_{n}

The recommendation rule:

$$
\widehat{a}_{n}=\underset{a \in[K]}{\operatorname{argmax}} \widehat{\mu}_{n, a}
$$

The stopping rule is a GLR test

$$
\tau_{\delta}=\inf \left\{n \mid \min _{j \neq \hat{a}_{n}} W_{n}\left(\widehat{a}_{n}, j\right)>c(n, \delta)\right\},
$$

Algorithm Design

Private Top Two

To make the Top Two algorithm satisfy ϵ-global DP, we

Algorithm Design

Private Top Two

To make the Top Two algorithm satisfy ϵ-global DP, we

- Estimate the sequence of empirical means ($\widehat{\mu}_{a, n}$) privately, i.e. $\left(\tilde{\mu}_{a, n}\right)=\left(\widehat{\mu}_{a, n}\right)+\frac{1}{\epsilon} L a p$, using
- Per-arm doubling
- Forgetting
- Adding calibrated Laplace noise

Algorithm Design

Private Top Two

To make the Top Two algorithm satisfy ϵ-global DP, we

- Estimate the sequence of empirical means ($\widehat{\mu}_{a, n}$) privately, i.e. $\left(\tilde{\mu}_{a, n}\right)=\left(\widehat{\mu}_{a, n}\right)+\frac{1}{\epsilon} L a p$, using
- Per-arm doubling
- Forgetting
- Adding calibrated Laplace noise
- Calibrate for the noise in the components:
- The sampling rule: leader and challenger based on the private ($\tilde{\mu}_{a, n}$)
- The recommendation rule: Recommend $\widehat{a}_{n}=\operatorname{argmax}_{a \in[K]} \tilde{\mu}_{n, a}$
- The stopping rule: re-calibrate the GLR threshold

$$
\tilde{c}(n, \delta)=c(n, \delta)+\frac{1}{\epsilon} c_{2}(n, \delta)
$$

Algorithm Design

Privacy and sample complexity

Theorem: For Bernoulli instances verifying that $\exists C \geq 1$ such that $\Delta_{\text {max }} / \Delta_{\text {min }} \leq C$, AdaP-TT is ϵ-global DP, δ-correct and satisfies

$$
\limsup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\mu}\left[\tau_{\delta}\right]}{\log (1 / \delta)} \leq c \max \left\{T_{\mathrm{KL}}^{\star}(\boldsymbol{\mu}), C \frac{T_{\mathrm{TV}}^{\star}(\boldsymbol{\mu})}{\epsilon}\right\} .
$$

where c is a universal constant.

Matches the lower bound up to constants

Experimental Analysis

Figure: Evolution of the stopping time τ of AdaP-TT, DP-SE, and TTUCB with respect to the privacy budget ϵ for $\delta=10^{-2}$ on two Bernoulli instances. The shaded vertical line separates the two privacy regimes. AdaP-TT outperforms DP-SE.

Conclusion and Future Work

Conclusion and Future Work

Conclusion: We derive sample complexity lower bounds and matching upper bounds for BAI with ϵ-global DP.

Future Work:

- Close the multiplicative gap between the lower and upper bounds.

■ Extend the analysis to other DP settings, like (ϵ, δ)-DP and Rényi-DP.

■ Extend the analysis to other trust models, like local DP and shuffle DP.

Thank you for your time

Questions!

Bibliography I

O
Degenne, R., Koolen, W. M., and Ménard, P. (2019). Non-asymptotic pure exploration by solving games.
Advances in Neural Information Processing Systems, 32.

Dwork, C. and Roth, A. (2014).
The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3-4):211-407.
Garivier, A. and Kaufmann, E. (2016).
Optimal best arm identification with fixed confidence.
In Conference on Learning Theory, pages 998-1027. PMLR.

Jourdan, M., Degenne, R., Baudry, D., de Heide, R., and Kaufmann, E. (2022).
Top two algorithms revisited.
Advances in Neural Information Processing Systems, 35:26791-26803.

Thompson, W. R. (1933).
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples.
Biometrika, 25(3-4):285-294.

