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A short tour of BAI



Sequential Decision Making
under Uncertainty: Multi-armed Bandits [Thompson, 1933]

Medicine 1 Medicine 2 Medicine 3 Medicine K

For the t-th patient in the study:
1. The doctor π chooses a Medicine at ∈ {1, . . . ,K}
2. The doctor observes a reward rt ∈ {0, 1} such that rt ∼ Bernouli(pat )

Objective: Identify the medicine with the highest mean a⋆ ≜ argmaxa∈[K ] pa
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Performance Measure for BAI
δ-correctness and Stopping Time

Goal: (a) Stop the interaction at time τ
(b) Recommend an arm â ∈ [K ]

Definition: A BAI strategy π is δ-correct for a class of instances M, if

Pν,π(τ < ∞, â = a⋆(ν)) ≥ 1 − δ

for every environment ν = {p1, . . . , pK} ∈ M.
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Hardness of BAI

Theorem: [Garivier and Kaufmann, 2016] For any δ-correct BAI strategy, we
have that

Eν,π[τ ] ≥ T ⋆
KL(ν) log(1/3δ),

and T ⋆
KL(ν) ≜

(
supω∈ΣK

infλ∈Alt(ν)

∑K
a=1 ωaKL(νa, λa)

)−1

≈
∑

a
1

(µa⋆−µa)2

Theorem: There exists an algorithm π such that

lim
δ→0

Eν,π[τ ]

log(1/δ) = T ⋆
KL(ν)

Example of such algorithms: Track And Stop [Garivier and Kaufmann, 2016],
DKM [Degenne et al., 2019], Top Two Algorithm [Jourdan et al., 2022].
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Defining Privacy for BAI



Differential Privacy

Intuition: Indistinguishability from the mass

Dataset
Randomized
Algorithm

Output

Dataset
Randomized
Algorithm

Output
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Differential Privacy

Intuition: Indistinguishability from the mass

Definition: [Dwork and Roth, 2014] A randomised algorithm A satisfies ϵ-DP
if for any two neighbouring datasets d and d ′ that differ only in one row, i.e
d ∼ d ′, and for all sets of output O ⊆ Range(A),

Pr[A(d) ∈ O] ≤ eϵ Pr [A (d ′) ∈ O]

Privacy in BAI: Rewards may contain sensitive information about individuals.
A patient’s reaction to a medicine can reveal sensitive information about their
health conditions.
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BAI with DP

Dataset
Randomized
Algorithm

Output

Ingredients to specify:
The randomized algorithm
The private input dataset
The output
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BAI with DP

A BAI strategy π consists of:

A pair of sampling and stopping rules (St)t≥1:
▶ For a ∈ [K ], St (a | Ht−1) is the probability of playing action a given the

history Ht−1
▶ St (⊤ | Ht−1) is the probability of the algorithm halting given Ht−1

A recommendation rule (Rect)t>1:
▶ For a ∈ [K ], Rect (a | Ht−1) is the probability of returning action a as a

guess for the best action given Ht−1.

The complexity of DP-BAI 7



BAI with DP
The private dataset dT is

Actor

Actor

1

2

T

1 2 K

Actor

When at is recommended to Patient pt , only rt ≜ xt,at is observed
Finally, the mechanism induced by the interaction is

π(aT , â,T | dT ) ≜ RecT+1 (â | HT )ST+1 (⊤ | HT )
T∏

t=1
St (at | Ht−1)
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ϵ-global DP BAI
Definition: π satisfies ϵ-global DP, if ∀T ≥ 1, ∀dT ∼ d′T ,∀aT and â,

π(aT , â,T | dT ) ≤ eϵπ(aT , â,T | d′T ).

Actor

Actor

1

2

T

1 2 K

Actor

Actor

1

2

1 2 K

T

ActorActor
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Main Question and Contributions

Main Question: What is the cost of ϵ-global DP in BAI?

Contributions:
We provide a lower bound on the sample complexity of any δ-correct
ϵ-global DP BAI strategy

We design a near-optimal algorithm matching the sample complexity
lower bound, up to multiplicative constants

The complexity of DP-BAI 10



Quantifying the Hardness of DP-BAI



Lower Bound
Our Results

Theorem: For any δ-correct ϵ-global DP BAI strategy, we have that

Eν,π[τ ] ≥ max

(
T ⋆
KL(ν),

1
6ϵT ⋆

TV(ν)

)
log(1/3δ),

(T ⋆
d (ν))

−1 ≜ supω∈ΣK
infλ∈Alt(ν)

∑K
a=1 ωad(νa, λa), d is either KL or TV.

T ⋆
KL(ν) ≈

∑
a

1
(µa⋆ − µa)2 and T ⋆

TV(ν) ≈
∑

a

1
µa⋆ − µa

T ⋆
TV(ν) ≥

√
2T ⋆

KL(ν)
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DP and Total Variation
Intuition: Stochastic Group Privacy

d and d ′ differ in 1 sample → exp (ϵ)

d and d ′ differ in k samples → exp (kϵ)

Sample d ∼ ⊗nP and d ′ ∼ ⊗nQ → exp (nTV (P,Q)ϵ)

Sample d ∼ ⊗n
i=1Pi and d ′ ∼ ⊗n

i=1Qi → exp (
∑n

i=1 TV (Pi ,Qi)ϵ)

The complexity of DP-BAI 12



DP and Total Variation
Intuition: Stochastic Group Privacy

d and d ′ differ in 1 sample → exp (ϵ)

d and d ′ differ in k samples → exp (kϵ)

Sample d ∼ ⊗nP and d ′ ∼ ⊗nQ → exp (nTV (P,Q)ϵ)

Sample d ∼ ⊗n
i=1Pi and d ′ ∼ ⊗n

i=1Qi → exp (
∑n

i=1 TV (Pi ,Qi)ϵ)

The complexity of DP-BAI 12



DP and Total Variation
Intuition: Stochastic Group Privacy

d and d ′ differ in 1 sample → exp (ϵ)

d and d ′ differ in k samples → exp (kϵ)

Sample d ∼ ⊗nP and d ′ ∼ ⊗nQ → exp (nTV (P,Q)ϵ)

Sample d ∼ ⊗n
i=1Pi and d ′ ∼ ⊗n

i=1Qi → exp (
∑n

i=1 TV (Pi ,Qi)ϵ)

The complexity of DP-BAI 12



DP and Total Variation
Intuition: Stochastic Group Privacy

d and d ′ differ in 1 sample → exp (ϵ)

d and d ′ differ in k samples → exp (kϵ)

Sample d ∼ ⊗nP and d ′ ∼ ⊗nQ → exp (nTV (P,Q)ϵ)

Sample d ∼ ⊗n
i=1Pi and d ′ ∼ ⊗n

i=1Qi → exp (
∑n

i=1 TV (Pi ,Qi)ϵ)

The complexity of DP-BAI 12



Lower Bound
Discussion

Eν,π[τ ] ≥ max

(
T ⋆
KL(ν),

1
6ϵT ⋆

TV(ν)

)
log(1/3δ)

Two hardness regimes depending on ϵ and the environment ν:
Low-privacy regime: When ϵ >

T⋆
TV(ν)

6T⋆
KL(ν)

, the lower bound retrieves the
non-private T ⋆

KL(ν) lower bound and privacy can be achieved for free.

High-privacy regime: When ϵ <
T⋆

TV(ν)
6T⋆

KL(ν)
, the lower bound becomes

1
6ϵT ⋆

TV(ν) and ϵ-global DP δ-BAI requires more samples than
non-private ones.
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Near-Optimal Algorithm for DP-BAI



Algorithm Design
Top Two Algorithm

The Top Two sampling rule:
Choosing a leader Bn ∈ [K ]

Choosing a challenger Cn ∈ [K ] \ {Bn}
Sampling Bn with probability 1

2 , else sampling Cn

Leader: Empirical Best; Bn = argmaxa∈[K ] µ̂n,a.

Challenger: Transportation Cost;

Cn = argmin
j ̸=Bn

Wn(Bn, j) .
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Algorithm Design
Top Two Algorithm

The Top Two sampling rule:
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2 , else sampling Cn

The recommendation rule:

ân = argmax
a∈[K ]

µ̂n,a

The stopping rule is a GLR test

τδ = inf{n | min
j ̸=ân

Wn(ân, j) > c(n, δ)} ,
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Algorithm Design
Private Top Two

To make the Top Two algorithm satisfy ϵ-global DP, we

Estimate the sequence of empirical means (µ̂a,n) privately, i.e.
(µ̃a,n) = (µ̂a,n) +

1
ϵLap, using

▶ Per-arm doubling
▶ Forgetting
▶ Adding calibrated Laplace noise

Calibrate for the noise in the components:
▶ The sampling rule: leader and challenger based on the private (µ̃a,n)
▶ The recommendation rule: Recommend ân = argmaxa∈[K ] µ̃n,a
▶ The stopping rule: re-calibrate the GLR threshold

c̃(n, δ) = c(n, δ) + 1
ϵ
c2(n, δ)
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Algorithm Design
Privacy and sample complexity

Theorem: For Bernoulli instances verifying that ∃C ≥ 1 such that
∆max/∆min ≤ C , AdaP-TT is ϵ-global DP, δ-correct and satisfies

lim sup
δ→0

Eµ[τδ]

log(1/δ) ≤ c max
{

T ⋆
KL(µ),C

T ⋆
TV(µ)

ϵ

}
.

where c is a universal constant.

☞ Matches the lower bound up to constants
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Experimental Analysis
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Figure: Evolution of the stopping time τ of AdaP-TT, DP-SE, and TTUCB with
respect to the privacy budget ϵ for δ = 10−2 on two Bernoulli instances. The shaded
vertical line separates the two privacy regimes. AdaP-TT outperforms DP-SE.

The complexity of DP-BAI 18



Conclusion and Future Work



Conclusion and Future Work

Conclusion: We derive sample complexity lower bounds and matching upper
bounds for BAI with ϵ-global DP.

Future Work:
Close the multiplicative gap between the lower and upper bounds.

Extend the analysis to other DP settings, like (ϵ, δ)-DP and Rényi-DP.

Extend the analysis to other trust models, like local DP and shuffle DP.
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Thank you for your time

Questions!
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