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Graphs Are Everywhere
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Mathematical aspects of 
computer-aided share trading. 
We consider problems of 
statistical analysis of share 
prices and propose 
probabilistic characteristics to 
describe the price series. We 
discuss three methods of 
mathematical modelling of 
price series with given 
probabilistic characteristics.

Why graphs?
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Machine Learning on Graphs

Machine learning tasks on graphs:

Node classification: given a graph with labels on some nodes, provide a high
quality labeling for the rest of the nodes

Graph clustering: given a graph, group its vertices into clusters taking into
account its edge structure in such a way that there are many edges within
each cluster and relatively few between the clusters

Link Prediction: given a pair of vertices, predict if they should be linked with
an edge

Graph classification: given a set of graphs with known class labels for
some of them, decide to which class the rest of the graphs belong
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Graph Classification

Input data x ∈ X

Output y ∈ {−1, 1}

Training set S = {(x1, y1), . . . , (xn, yn)}

Goal: estimate a function f : X → R to predict y from f(x)
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Motivation - Protein Function Prediction

For each protein, create a graph that contains information about its

structure

sequence

chemical properties

Perform graph classification to predict the function of proteins

Borgwardt et al. “Protein function prediction via graph kernels”. Bioinformatics 21
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Motivation - Malware Detection

Given a computer program, create its control flow graph

→

Perform graph classification to predict if there is malicious code inside the
program or not

Gascon et al. “Structural detection of android malware using embedded call graphs”. In AISec’13
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Graph Comparison

Graph classification very related to graph comparison

Example

f ( , )

+

−nnk

= graph
classification

Although graph comparison seems a tractable problem, it is very complex

We are interested in algorithms capable of measuring the similarity between two
graphs in polynomial time
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Graph Kernels

Definition (Graph Kernel)

A graph kernel k : G × G → R is a kernel function over a set of graphs G

- It is equivalent to an inner product of the embeddings φ : X → H of a pair
of graphs into a Hilbert space: k(G1,G2) = 〈φ(G1), φ(G2)〉

- Makes the whole family of kernel methods (e.g. SVMs) applicable to graphs
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Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are
computable in polynomial time:

walks

shortest path
lengths

cyclic patterns

rooted subtrees

graphlets

...
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Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are
computable in polynomial time:
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Walk: 4→ 3→ 1→ 2→ 3→ 4→ 5

Vishwanathan et al. “Graph Kernels”. JMLR 11, 2010
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Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are
computable in polynomial time:
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SP length between vertices 2 and 8 : 4

Borgwardt and Kriegel. “Shortest-path kernels on graphs”. In ICDM’05
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Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are
computable in polynomial time:
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shortest path
lengths
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Cycle: 4→ 7→ 6→ 5→ 4

Horváth et al. “Cyclic pattern kernels for predictive graph mining”. In KDD’04

9 / 24 Giannis Nikolentzos Using Graph Kernels to Address the Graph Similarity and Learning Problems



Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are
computable in polynomial time:

walks

shortest path
lengths

cyclic patterns

rooted subtrees

graphlets
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Subtree rooted at vertex 3

Shervashidze et al. “Weisfeiler-Lehman Graph Kernels”. JMLR 12, 2011
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Substructure-based Kernels

A large number of graph kernels compare substructures of graphs that are
computable in polynomial time:

walks

shortest path
lengths

cyclic patterns

rooted subtrees

graphlets

...
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Shervashidze et al. “Efficient graphlet kernels for large graph comparison.”. In AISTATS’09
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A Degeneracy Framework for Graph Comparison

a framework for increasing the expressive power of existing algorithms

can be applied to any algorithm that compares graphs

utilizes k-core decomposition to build a hierarchy of nested subgraphs
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k-core

Definition (k-core)

The k-core of a graph is defined as a maximal subgraph in which every vertex is
connected to at least k other vertices within that subgraph

A k-core decomposition of a graph consists of finding the set of all k-cores

3-core

2-core

1-core

0-core

The set of all k-cores forms a nested se-
quence of subgraphs

The degeneracy δ∗(G ) is defined as the maximum k for which graph G contains a
non-empty k-core subgraph
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Degeneracy Framework for Graph Comparison

Idea: use the nested sequence of subgraphs generated by k-core decomposition to
capture structure at multiple different scales

Definition (core kernel)

Let G = (V ,E ) and G ′ = (V ′,E ′) be two graphs. Let also k be any kernel for
graphs. Then, the core variant of the base kernel k is defined as

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1) + . . .+ k(Cδ∗min

,C ′δ∗min
)

where δ∗min is the minimum of the degeneracies of the two graphs, and
C0,C1, . . . ,Cδ∗min

and C ′0,C
′
1, . . . ,C

′
δ∗min

are the 0-core, 1-core,. . ., δ∗min-core

subgraphs of G and G ′ respectively

12 / 24 Giannis Nikolentzos Using Graph Kernels to Address the Graph Similarity and Learning Problems



Example

G G ′

kc(G ,G ′) = k(C0,C
′
0)
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Example

C0 C ′0

kc(G ,G ′) = k(C0,C
′
0)
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Example

C1 C ′1

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1)
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Example

C2 C ′2

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1) + k(C2,C

′
2)
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Example

C3 C ′3

kc(G ,G ′) = k(C0,C
′
0) + k(C1,C

′
1) + k(C2,C

′
2) + k(C3,C

′
3)
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Computational Complexity

Computational complexity depends on:

the properties of the base kernel

the degeneracy of the graphs under comparison

Given a pair of graphs and an algorithm A for comparing two graphs, computing
the core variant requires δ∗minOA time, where OA be the time complexity of
algorithm A

The degeneracy of a graph is upper bounded by the largest eigenvalue of its
adjacency matrix λ1

In most real-world graphs, λ1 � n, then δ∗min � n, hence time complexity not
prohibitive
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Dimensionality Reduction View

k-core decomposition can be seen as a method for performing dimensionality
reduction on graphs

each core can be considered as an approximation of the graph

features of low importance are removed

Problem: For very large graphs, the running time of algorithms with high
complexity (e.g. shortest path kernel) is prohibitive

Solution: Use high-order cores

→
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Datasets

Task: graph classification → standard datasets from chemoinformatics,
bioinformatics and social networks

Dataset MUTAG ENZYMES NCI1 PTC-MR D&D
IMDB IMDB REDDIT REDDIT REDDIT

BINARY MULTI BINARY MULTI-5K MULTI-12K

Max # vertices 28 126 111 109 5748 136 89 3782 3648 3782
Min # vertices 10 2 3 2 30 12 7 6 22 2
Average # vertices 17.93 32.63 29.87 25.56 284.32 19.77 13.00 429.61 508.50 391.40
Max # edges 33 149 119 108 14267 1249 1467 4071 4783 5171
Min # edges 10 1 2 1 63 26 12 4 21 1
Average # edges 19.79 62.14 32.30 25.96 715.66 96.53 65.93 497.75 594.87 456.89
# graphs 188 600 4110 344 1178 1000 1500 2000 4999 11929
# classes 2 6 2 2 2 2 3 2 5 11

Classification using:

SVM → precompute kernel matrix

Hyperparameters of SVM (i. e. C ) and kernels optimized on training set
using cross-validation

We compare an algorithm’s output with the expected outcome:

Accuracy : proportion of good predictions
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Base Kernels

We employed the following kernels:

1 Graphlet kernel (GR) [Shervashidze et al., 2009]: The graphlet kernel
counts identical pairs of graphlets (i.e. subgraphs with k nodes where
k ∈ 3, 4, 5) in two graphs

2 Shortest path kernel (SP) [Borgwardt and Kriegel, 2005]: The shortest
path kernel counts pairs of shortest paths in two graphs having the same
source and sink labels and identical length

3 Weisfeiler-Lehman subtree kernel (WL) [Shervashidze et al., 2011]: The
Weisfeiler-Lehman subtree kernel for a number of iterations counts pairs of
matching subtree patterns in two graphs, while at each iteration updates the
labels of the vertices of the two graphs

4 Pyramid match graph kernel (PM) [Nikolentzos et al., 2017]: The
pyramid match graph kernel first embedds the vertices of the graphs in a
vector space. It then partitions the feature space into regions of increasingly
larger size and takes a weighted sum of the matches that occur at each level
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Graph Classification

Method

Dataset
MUTAG ENZYMES NCI1 PTC-MR D&D

GR 69.97 (± 2.22) 33.08 (± 0.93) 65.47 (± 0.14) 56.63 (± 1.61) 77.77 (± 0.47)

Core GR 82.34 (± 1.29) 33.66 (± 0.65) 66.85 (± 0.20) 57.68 (± 1.26) 78.05 (± 0.56)

SP 84.03 (± 1.49) 40.75 (± 0.81) 72.85 (± 0.24) 60.14 (± 1.80) 77.14 (± 0.77)

Core SP 88.29 (± 1.55) 41.20 (± 1.21) 73.46 (± 0.32) 59.06 (± 0.93) 77.30 (± 0.80)

WL 83.63 (± 1.57) 51.56 (± 2.75) 84.42 (± 0.25) 61.93 (± 2.35) 79.19 (± 0.39)

Core WL 87.47 (± 1.08) 47.82 (± 4.62) 85.01 (± 0.19) 59.43 (± 1.20) 79.24 (± 0.34)

PM 80.66 (± 0.90) 42.17 (± 2.02) 72.27 (± 0.59) 56.41 (± 1.45) 77.34 (± 0.97)

Core PM 87.19 (± 1.47) 42.42 (± 1.06) 74.90 (± 0.45) 61.13 (± 1.44) 77.72 (± 0.71)

Method

Dataset IMDB IMDB REDDIT REDDIT REDDIT

BINARY MULTI BINARY MULTI-5K MULTI-12K

GR 59.85 (± 0.41) 35.28 (± 0.14) 76.82 (± 0.15) 35.32 (± 0.09) 22.68 (± 0.18)

Core GR 69.91 (± 0.19) 47.34 (± 0.84) 80.67 (± 0.16) 46.77 (± 0.09) 32.41 (± 0.08)

SP 60.65 (± 0.34) 40.10 (± 0.71) 83.10 (± 0.22) 49.48 (± 0.14) 35.79 (± 0.09)

Core SP 72.62 (± 0.59) 49.43 (± 0.42) 90.84 (± 0.14) 54.35 (± 0.11) 43.30 (± 0.04)

WL 72.44 (± 0.77) 51.19 (± 0.43) 74.99 (± 0.57) 49.69 (± 0.27) 33.44 (± 0.08)

Core WL 74.02 (± 0.42) 51.35 (± 0.48) 78.02 (± 0.23) 50.14 (± 0.21) 35.23 (± 0.17)

PM 68.53 (± 0.61) 45.75 (± 0.66) 82.70 (± 0.68) 42.91 (± 0.42) 38.16 (± 0.19)

Core PM 71.04 (± 0.64) 48.30 (± 1.01) 87.39 (± 0.55) 50.63 (± 0.50) 42.89 (± 0.14)
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Degree distribution of D&D (left) and REDDIT-BINARY (right) datasets. Both
axis of the right figure are logarithmic.
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Runtime Performance

Comparison of running times of base kernels vs their core variants (relative
increase in running time)

MUTAG ENZYMES NCI1 PTC-MR D&D
IMDB IMDB REDDIT REDDIT REDDIT

BINARY MULTI BINARY MULTI-5K MULTI-12K

SP 1.69x 2.52x 1.62x 1.65x 3.00x 12.42x 17.34x 1.04x 1.05x 1.18x

GR 1.85x 2.94x 1.75x 1.50x 3.44x 7.95x 8.20x 2.24x 2.37x 2.80x

WL 1.76x 2.77x 1.68x 1.62x 3.34x 7.13x 6.84x 1.52x 1.58x 1.54x

PM 1.87x 2.79x 1.68x 1.50x 3.67x 6.92x 6.33x 1.90x 1.98x 1.96x

δ∗ 2 4 3 2 7 29 37 6 8 8

In most cases, extra computational cost is negligible

Extra computational cost is very related to the maximum of the
degeneracies of the graphs of the dataset δ∗
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Conclusion

Graph kernels have shown good performance on several tasks

We defined a general framework for improving the performance of graph
comparison algorithms

The proposed framework allows existing algorithms to compare structure in
graphs at multiple different scales

The conducted experiments highlight the superiority in terms of accuracy of
the core variants over their base kernels at the expense of only a slight
increase in computational time
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Thank you!
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Horváth, T., Gärtner, T., and Wrobel, S. (2004).

Cyclic Pattern Kernels for Predictive Graph Mining.

In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 158–167.
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