Geo-indistinguishability: A Principled Approach to Location Privacy

Kostas Chatzikokolakis CNRS, INRIA, LIX Ecole Polytechnique

joint work with Miguel Andrés, Nicolás Bordenabe, Catuscia Palamidessi, Marco Stronati

PRINCESS QIF Day, Dec 16, 2014

Location-Based Systems

A **location-based system** is a system that uses geographical information in order to provide a service.

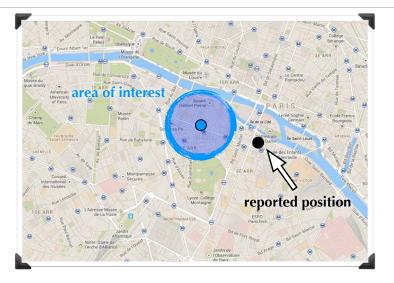
- Retrieval of Points of Interest (POIs).
- Mapping Applications.
- Deals and discounts applications.
- Location-Aware Social Networks.

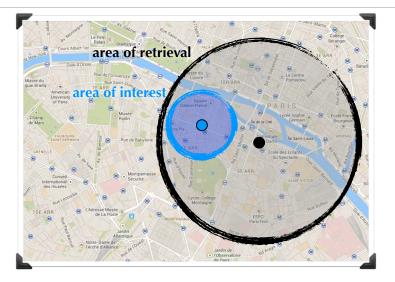
Location-Based Systems

- Location information is sensitive. (it can be linked to home, work, religion, political views, etc).
- Ideally: we want to **hide our true location**.
- Reality: we need to **disclose some information**.

Example

- Find restaurants within 300 meters.
- Hide location, not identity.
- Provide approximate location.



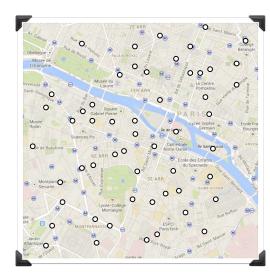




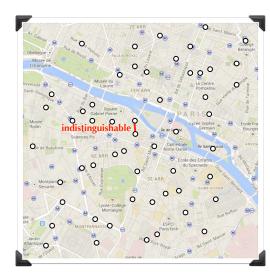
The Goals

- We want an **obfuscation mechanism**.
- Formal privacy definition, independent from prior information.
- Easy to compute, independently of the number of locations.
- No need of a trusted third-party.

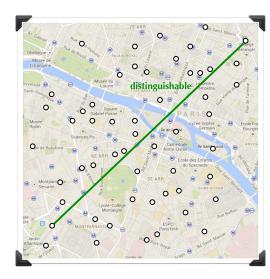
- Secrets are locations.
- Attacker's goal: **distinguish** location x from x'.
- The closer two locations are, the more indistinguishable they should be.



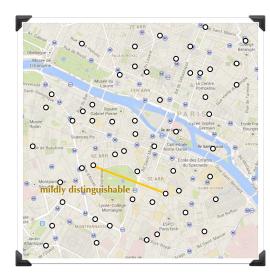
- Secrets are locations.
- Attacker's goal: **distinguish** location x from x'.
- The closer two locations are, the more indistinguishable they should be.



- Secrets are locations.
- Attacker's goal: **distinguish** location x from x'.
- The closer two locations are, the more indistinguishable they should be.

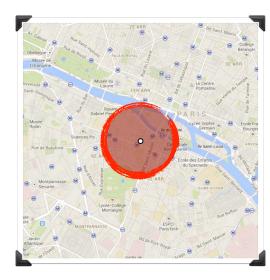


- Secrets are locations.
- Attacker's goal: **distinguish** location x from x'.
- The closer two locations are, the more indistinguishable they should be.



- Secrets are locations.
- Attacker's goal: **distinguish** location x from x'.
- The closer two locations are, the more indistinguishable they should be.

- Secrets are locations.
- Attacker's goal: **distinguish** location x from x'.
- The closer two locations are, the more indistinguishable they should be.



- Secrets are locations.
- Attacker's goal: **distinguish** location x from x'.
- The closer two locations are, the more indistinguishable they should be.

- Secrets are locations.
- Attacker's goal: **distinguish** location x from x'.
- The closer two locations are, the more indistinguishable they should be.

Geo-Indistinguishability

• We can consider the **set of possible locations** as the set of secrets, and the **Euclidian distance** as the metric.

A location obfuscation mechanism M provides $\varepsilon\mbox{-geo-indistinguishability}$ if:

$$\mathcal{D}_{\mathcal{P}}(\mathsf{M}(\mathbf{x}), \mathsf{M}(\mathbf{x}')) \leq \varepsilon \, \mathbf{d}(\mathbf{x}, \mathbf{x}') \qquad \forall \mathbf{x}, \mathbf{x}'$$

Where d(x,x') is the Euclidean distance between x and x'.

[Pierce et al., ICFP 2010] [Chatzikokolakis et al, PETS 2013]

Line of work

[PETS'13] privacy under general metrics

[CCS'13] application to location privacy, planar Laplace

[CCS'14] mechanisms of optimal utility

[PETS'14] protecting location traces

[ongoing] privacy metrics adapted to the semantics of the map

The Planar Laplace Mechanism

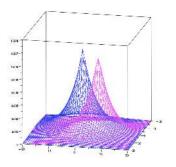
A way to achieve geo-indistinguishability is to add noise from a 2dimensional Laplace distribution.

Computationally efficient.

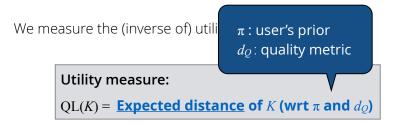
Scales very well.

Independent from the set of locations and the user.

Utility may not be optimal.



Utility of a mechanism



Utility depends on the user!

Goal

Guarantee geo-indistinguishability.

- $\cdot~$ Pre-fixed privacy level $\varepsilon.$
- Independent from the user and adversary's prior.

Optimize utility.

- For a given set of locations.
- Depends on the user's prior π .

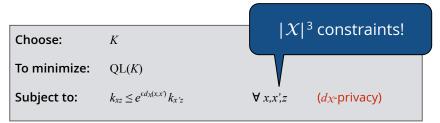
The d_{X} -optimal mechanism

K is OPTQL wrt ϵ , π , d_X and d_Q iff:

From all mechanisms that provide geo-indistinguishability with level at least ϵ , K is the one with the best utility.

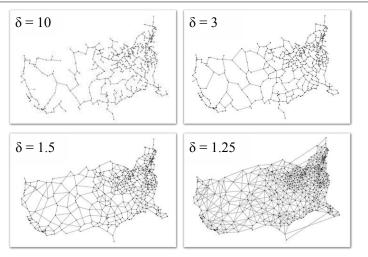
The d_X -optimal mechanism

We get *K* by solving a linear optimization problem:



Because we need to consider the privacy constraints for all x, x'.

Spanners



Images from "Geometric Spanner Networks", by G. Narasimhan and M. Smid

Protecting location traces

- Secrets are now tuples $\mathbf{x} = (x_1, \dots, x_n)$
- Distance between tuples:

$$d_{\infty}(\mathbf{x},\mathbf{x}') = \max_{i} d(x_{i},x_{i}')$$

• Use ϵd_{∞} -privacy

Independent Mechanism

apply noise to each point

 $n \epsilon_N d_\infty$ -private

- works on any trace (including random teleporting)
- budget is linear on n

- based on public info
- obtain point \tilde{z}_i
- is \tilde{z}_i close to x_i ?
 - ▶ yes: report \tilde{z}_i
 - no: add new noise to x_i

- based on public info
- obtain point *ž_i*
- is \tilde{z}_i close to x_i ?
 - ▶ yes: report \tilde{z}_i
 - no: add new noise to x_i

- based on public info
- obtain point *ž_i*
- is \tilde{z}_i close to x_i ?
 - yes: report \tilde{z}_i
 - no: add new noise to x_i

- based on public info
- obtain point *ž_i*
- is \tilde{z}_i close to x_i ?
 - yes: report \tilde{z}_i
 - no: add new noise to x_i

Deterministic test breaks privacy

Deterministic test breaks privacy

Deterministic test breaks privacy

D-Private test use a noisy border for the test

Deterministic test breaks privacy

D-Private test use a noisy border for the test

Budget used at each step ϵ_{θ} (successful prediction) or $\epsilon_{\theta} + \epsilon_N$ (new noise)

(In)Distinguishability Metric

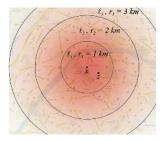
What is it that you want to be similar to?

(and how much?)

Euclidean Metric

space provides privacy

• scaled by ϵ



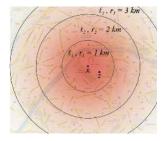
Euclidean Metric

space provides privacy

scaled by ε

but...

- space is not equally valuable everywhere
- POI/population/... also provide privacy
- we can achieve better privacy/utility by adapting the noise to the map



Building a custom metric

- divide the space in cells (eg grid 100m x 100m)
- privacy weight of each cell
 - from POI/population/... (eg by querying OSM)
 - from the cell's area
- build a metric d satisfying the requirement f:

weight $(B_r^d(x)) \ge f(r)$ x, r

Building a custom metric

divide the space in cells (eg grid 100m x 100m)

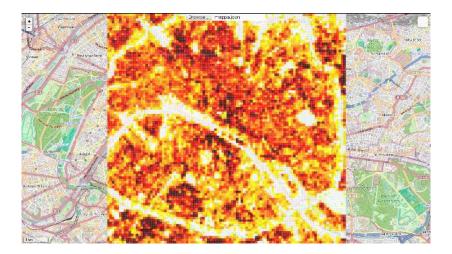
- privacy weight of each cell
 - from POI/population/... (eg by querying OSM)
 - from the cell's area
- build a metric d satisfying the requirement f:

weight
$$(B_r^d(x)) \ge f(r)$$
 x, r

Exponential Mechanism

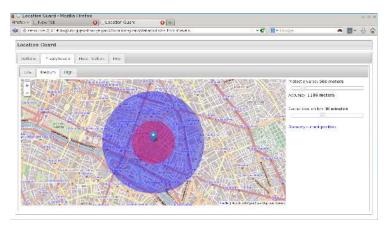
constructed from any metric d

Privacy weights



Obtained Mechanism

Location Guard for Chrome and Firefox



https://github.com/chatziko/location-guard 4700+ daily users

Future work

Privacy guarantees under (un)correlation conditions between the points in the trace.

Questions?