Connections between g-leakage and the Dalenius desideratum

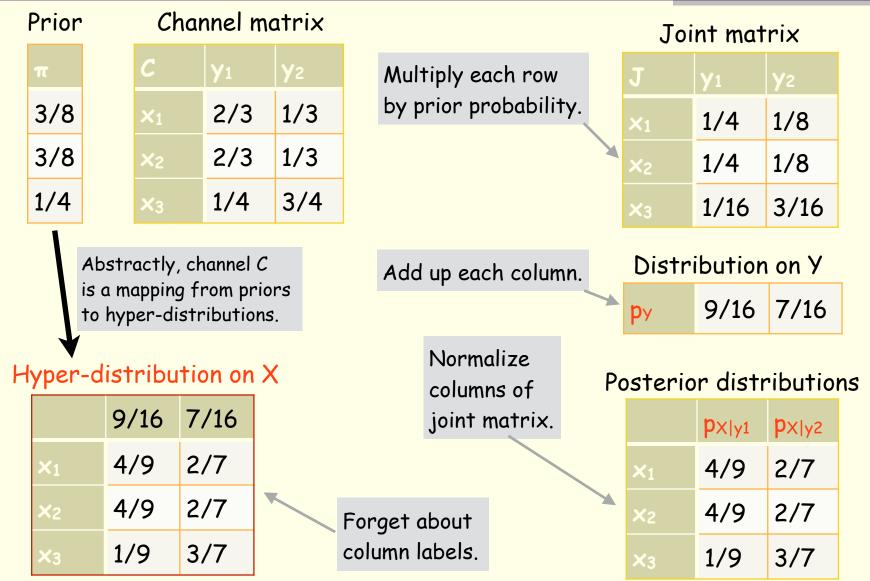
Geoffrey Smith Florida International University

QIF Day (PRINCESS workshop), 16 December 2014

I. Concepts of Quantitative Information Flow (QIF)

- We wish to quantify the leakage of a secret input X to an observable output Y caused by a probabilistic channel C.
 - Example: Y = X & Ox1ff leaks 9 bits of X, intuitively.
- The possible values of X and Y are given by finite sets X and Y.
- There is a prior distribution π on X.
- **Both** π and C are assumed known by the adversary A.
- Then the (information-theoretic) essence of C is a mapping from priors π to hyper-distributions [π ,C].

Example



Vulnerability and min-entropy leakage

- [Smith09] proposed to measure leakage based on X's vulnerability to be guessed by A in one try.
- Prior vulnerability: $V[\pi] = \max_{x} \pi_{x}$
- Posterior vulnerability: $V[\pi,C] = \sum_{y} p(y) V[p_{X|y}]$
 - V[π,C] is the average vulnerability in the hyperdistribution.
 - $V[\pi,C]$ is the complement of the Bayes risk.
- Min-entropy leakage: $\mathcal{L}(\pi, C) = \lg (V[\pi, C] / V[\pi])$

Operational significance of vulnerability

 V[π] is an optimal adversary A's probability of winning the following game:

$$x \stackrel{\$}{\leftarrow} \pi$$

 $w \stackrel{\$}{\leftarrow} \mathcal{A}(\pi)$
if $w = x$ then **win** else **lose**

• $V[\pi,C]$ is an optimal adversary \mathcal{A} 's probability of winning the following game:

$$\begin{array}{l} x \stackrel{\$}{\leftarrow} \pi \\ y \stackrel{\$}{\leftarrow} C_{x,-} \\ w \stackrel{\$}{\leftarrow} \mathcal{A}(\pi, C, \gamma) \\ \text{if } w = x \text{ then win else lose} \end{array}$$

Generalizing to g-vulnerability [ACPS12]

- Finite set W of guesses about X (or "actions").
- Gain (or "scoring") function $g : W \times X \rightarrow [0, 1]$
 - g(w,x) gives the value of w if the secret is x.
 - Can model scenarios where the adversary benefits by guessing X partially, approximately, in k tries, ...
- Note: (Ordinary) vulnerability implicitly uses $g_{id}(w,x) = \begin{cases} 1, & \text{if } w = x \\ 0, & \text{otherwise} \end{cases}$
- Prior g-vulnerability: $V_g[\pi] = \max_w \sum_x \pi_x g(w,x)$
- Posterior g-vulnerability: $V_g[\pi, C] = \sum_y p(y) V_g[p_{X|y}]$

g-leakage

- g-leakage is defined based on the prior and posterior g-vulnerability.
- But there are a number of plausible definitions:
 - "logged" multiplicative: lg (V_g[π ,C] / V_g[π])
 - additive: $V_g[\pi,C] V_g[\pi]$
 - multiplicative: $V_g[\pi,C] / V_g[\pi]$
- Fortunately, if we just want to compare the leakage of two channels, these all give the same result!

We always get

 $\mathcal{L}_g(\pi, A) \leq \mathcal{L}_g(\pi, B) \quad \text{iff} \quad \mathsf{V}_g[\pi, A] \leq \mathsf{V}_g[\pi, B] \,.$

II. "Dalenius's Desideratum"

- [Dwork11]: "In 1977...Tore Dalenius articulated an 'ad omnia' (as opposed to ad hoc) privacy goal for statistical databases: Anything that can be learned about a respondent from the statistical database should be learnable without access to the database."
- "...The last hopes for Dalenius's goal evaporate in light of the following parable..."
- Given the auxiliary information 'Turing is two inches taller than the average Lithuanian woman', access to the statistical database teaches Turing's height."
- (Actually, Dwork's account appears to be completely unfair to Dalenius...)

A "Dalenius" QIF scenario

- Imagine a secret X with prior π .
- Suppose adversary A is interested in learning X, measuring knowledge with a gain function g.
- Now imagine a channel C from Y to Z, apparently having nothing to do with X.
- But suppose there is an interesting joint matrix J on (X,Y), expressing a correlation between X and Y.
 - (J must give marginal distribution π to X.)
- Can we see C as leaking information about X?

The Dalenius scenario with g-leakage

- Given channel C from X to Y, we can construct C* from (X,Y) to Z:
 - $C^{\star}(x,y),z = C_{y,z}$
 - C* ignores X.
- Given gain function g from W to X, we can construct g* from W to (X,Y):
 - g*(w,(x,y)) = g(w,x)
 - g* ignores Y.
- Hence L_{g*}(J,C*) can be seen as the leakage about X caused by C, given the correlations in J.

A neater formulation

- The joint matrix J can of course be converted into the prior π on X and a channel matrix B from X to Y.
- We can cascade B and C to get a channel BC from X to Z.
- And it turns out (a bit mysteriously, to me) that $\mathcal{L}_g(\pi, BC) = \mathcal{L}_{g^*}(J, C^*)$.

One nice consequence (thanks to theorems about cascading) is that this "Dalenius" leakage of X cannot exceed the capacity of C, no matter what correlations J may ever be discovered to exist!

III. Another application of Dalenius scenarios

- Given channels A and B on input X, the question of which leaks more will ordinarily depend on π and g.
- Is there a robust ordering?

Yes!

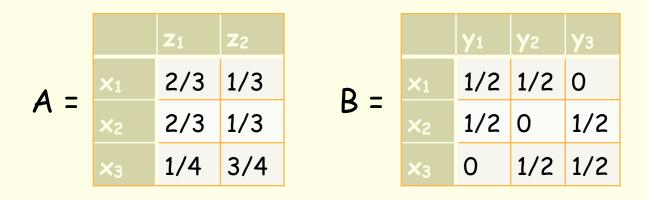
Coriaceous Theorem:

A never leaks more than B, regardless of π and g iff

A can be factored into BR, for some channel R.

Proved in [MMSEM14], but proved in the early 1950s by statistician David Blackwell.

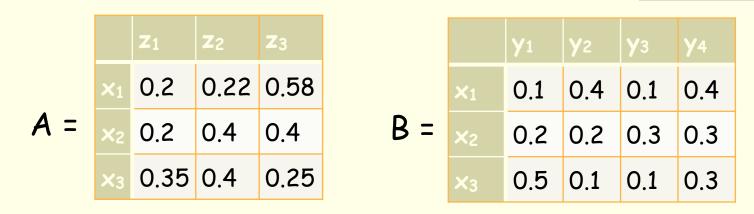
Example



A cannot be factored into BR, for any R.

- Yet under ordinary vulnerability (min-entropy leakage), A never leaks more than B, regardless of π.
- But suppose that x₁ and x₂ are male and x₃ is female, and the adversary uses a gain function that cares only about the gender of the secret.
- In that case A leaks more than B.

A less convincing example



- Again, A cannot be factored into BR, for any R.
- Here's a gain function that makes A leak more than B:

g	X 1	X 2	X 3		
W 1	153/296	0	1/2		
W2	0	289/296	63/296		
W3	21/148	1	0		

Why should we care about such weird gain functions?

The trace formulation of g-vulnerability

- Recall that we can express g-vulnerability as a trace.
- The trace of a square matrix is the sum of its diagonal entries.
- $V_g[\pi,C]$ = max₅ tr(D_{π}CSG)
 - D_{π} (indexed by X,X) is a diagonal matrix of the prior
 - C (indexed by X,Y) is the channel matrix
 - S (indexed by Y,W) is the strategy for choosing guess w from output y
 - G (indexed by W,X) is the gain function

Gain functions as Dalenius scenarios

- Amazingly, trace satisfies a cyclic property: tr(ABC) = tr(BCA) = tr(CAB)
- Hence we have
 - $V_g[\pi,C] = \max_S tr(D_{\pi}CSG)$
 - = max₅ tr($GD_{\pi}CS$)
 - = max₅ tr((GD_{π})CSI)
- I (identity matrix) gives ordinary vulnerability.
- And note that GD_π can always be normalized to a joint matrix J between W and X!
- Hence we can see the g-leakage of X caused by C as the min-entropy leakage of W caused by C when W and X are correlated according to GD_π.

Example, revisited

A	z 1	Z 2	Z 3	В	y 1	y 2	Уз	Y 4	9	X 1	X 2	X 3
×1	0.2	0.22	0.58	×1	0.1	0.4	0.1	0.4	W 1	153/296	0	1/2
X 2	0.2	0.4	0.4	X 2	0.2	0.2	0.3	0.3	W2	0	289/296	63/296
X 3	0.35	0.4	0.25	X 3	0.5	0.1	0.1	0.3	W3	21/148	1	0

- With a uniform prior, A's g-leakage of X exceeds B's.
- And if W is regarded as a secret, and it is correlated with X according to g, then A's min-entropy leakage of W exceeds B's.
- So if we care about min-entropy leakage under arbitrary correlations then we also need to care about g-leakage for all g, no matter how weird!

IV. [Dalenius77]

The apparent source of Dwork's characterization of the "Dalenius Desideratum":

"If the release of statistics S makes it possible to determine the value D_K more accurately than is possible without access to S, a disclosure has taken place."

- But Dalenius does not make this a desideratum!
- On the contrary:

"A reasonable starting point is to discard the notion of **elimination** of disclosure."

"It may be argued that elimination of disclosure is possible only by elimination of statistics."

"[This] is the reason for our use of the term 'statistical disclosure **control**' rather than 'prevention' or 'avoidance'."

"More specifically, we need two measures: M = the amount of disclosure associated with the release of some statistics; and B = the benefit associated with the statistics."

Questions?

