
Probabilistic Extension to the Concurrent
Constraint Factor Oracle model for Music

Improvisation

MAURICIO TORO BERMUDEZ

PONTIFICIA UNIVERSIDAD JAVERIANA

FACULTAD DE INGENIERIA

INGENIERIA DE SISTEMAS Y COMPUTACION

SANTIAGO DE CALI

2009



Probabilistic Extension to the Concurrent
Constraint Factor Oracle model for Music

Improvisation

MAURICIO TORO BERMUDEZ

Tesis de grado para optar al t́ıtulo de

Ingeniero de Sistemas y Computación

Director

CAMILO RUEDA CALDERON

Ingeniero de Sistemas y Computación

Director

GERARDO M. SARRIA M.

Ingeniero de Sistemas y Computación

PONTIFICIA UNIVERSIDAD JAVERIANA

FACULTAD DE INGENIERIA

INGENIERIA DE SISTEMAS Y COMPUTACION

SANTIAGO DE CALI

2009



ARTICULO 23 de la Resolución No. 13 del 6 de Julio de 1946

del Reglamento de la Pontificia Universidad Javeriana.

“La Universidad no se hace responsable por los conceptos emitidos

por sus alumnos en sus trabajos de Tesis. Sólo velará porque no se
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Abstract

We can program a Real-Time (RT) music improvisation system in C++ without a

formal semantic or we can model it with process calculi such as the Non-deterministic

Timed Concurrent Constraint (ntcc) calculus. “A Concurrent Constraints Factor

Oracle (FO) model for Music Improvisation” (Ccfomi) is an improvisation model

specified on ntcc. Since Ccfomi improvises non-deterministically, there is no control

on choices and therefore little control over the sequence variation during the improvi-

sation. To avoid this, we extended Ccfomi using the Probabilistic Non-deterministic

Timed Concurrent Constraint calculus. Our extension to Ccfomi does not change

the time and space complexity of building the FO, thus making our extension com-

patible with RT. However, there was not a ntcc interpreter capable of RT to execute

Ccfomi. We developed Ntccrt –a RT capable interpreter for ntcc– and we executed

Ccfomi on Ntccrt. In the future, we plan to extend Ntccrt to execute our extension

to Ccfomi.

Keywords: Factor oracle, concurrent constraints programming, ccp, machine learn-

ing, machine improvisation, Ccfomi, Gecode, ntcc, pntcc, real-time.



Resumen

Podemos modelar un sistema de improvisación musical de tiempo real (RT) en

C++ sin una semántica formal o podemos modelarlo con un cálculo de procesos co-

mo el cálculo de procesos temporal, no determińıstico, con restricciones (ntcc). “Un

modelo de improvisación musical concurrente por restricciones basado en el Orácu-

lo de Factores (FO)” (Ccfomi) es un modelo de improvisación especificado en ntcc.

Como Ccfomi improvisa de una manera no determińıstica, no hay control sobre las

escogencias que hace y por consiguiente, hay poco control sobre la variación en las

secuancias durante la improvisación. Para evitar esto, proponemos extender Ccfomi

usando el cálculo de procesos temporal, no determińıstico, probabiĺıstico con restric-

ciones. Nuestra extensión a Ccfomi no cambia la complejidad en tiempo y espacio

del algoritmo de construcción del FO, haciendo nuestra extensión compatible con

RT. Sin embargo, no hay un intérprete para ntcc que sea capáz de ejecutar Ccfomi

en RT. Nosotros desarrollamos Ntccrt –nuestro intérprete para ntcc capaz de RT– y

ejecutamos Ccfomi en Ntccrt. En el futuro, planeamos extender Ntccrt para ejecutar

nuestra extensión a Ccfomi.

Palabras clave: Oráclulo de factores, programación concurrente por restricciones,

ccp, aprendizaje por computador, improvisación musical por computador, Ccfomi,

Gecode, ntcc, pntcc, tiempo real.
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Introduction

“I believe that the right ideas to explain concurrency only come from a dialect

between models from logic and mathematics and a proper distillation of a practical

experience.” – Robin Milner.

There are two different approaches to develop multimedia interaction systems

(e.g., machine improvisation).

One may think that in order to implement real-time capable systems, those sys-

tems should be written directly in C++ for efficiency. In contrast, one may argue

that multimedia interaction systems –inherently concurrent– should not be written

directly in C or C++ because there is not a formalism to reason about concurrency

in C++. We argue that those systems should be modeled using a process calculus

with formal semantics and verification procedures, and execute those models on a

real-time capable interpreter. That will be our definition for real-time in the rest of

this document.

Garavel explains in [11] that models based on process calculi are not widespread

because there are many calculi and many variants for each calculus, being difficult to

choose the most appropriate. In addition, it is difficult to express an explicit notion

of time and real-time requirements in process calculi. Finally, he argues that existing

tools for process calculi are not user-friendly.

Motivation

Defending the calculi approach, Rueda et al. [33],[35] explain that using the

semantics and logic underlying the Non-deterministic Timed Concurrent Constraint

(ntcc) [22] calculus, it is possible to prove properties of the ntcc models before

executing them and execute the models on a ntcc interpreter. We define soft real-

time multimedia interaction means that the system reacts fast enough to interact

with human players without letting them notice delays.

x



One may disagree with Rueda et al., arguing that although there are several

interpreters for ntcc such as Lman [20] and Rueda’s Interpreter [35], there is not a

generic interpreter to run ntcc models in real-time.

We agree with Rueda et al. about the way to develop those systems, but we also

argue that currently there are no ntcc interpreters capable of real-time. We argue,

in agreement with Rueda et al.’s argument, that models based on ntcc such as

“A Concurrent Constraints Factor Oracle model for Music Improvisation” (Ccfomi)

[35] are a good alternative to model multimedia interaction because synchronization

is presented declaratively by means of variable sharing among concurrent agents

reasoning about information contained in a global store. However, due to non-

deterministic choices, improvisation in Ccfomi can be repetitive (i.e., it produces

loops without control). In addition, since Ccfomi does not change the intensity of

the learned notes, Ccfomi may produce a sharp difference in the relative loudness

between what a musician plays and what the improviser plays.

Our main objective is extending Ccfomi to model probabilistic choice

of musical sequences. We also want to show that a ntcc model can interact

with a human player in soft real-time using a ntcc interpreter. For that reason, we

developed Ntccrt, a generic real-time interpreter for ntcc.

The rest of this introduction is organized as follows. First section, gives a defini-

tion of music improvisation. Second section, explains machine improvisation. Third

section, gives a brief introduction to ntcc and presents systems modeled with ntcc.

After explaining the intuitions about music improvisation, machine improvisation,

and ntcc we explain our solution to extend Ccfomi in Section fourth section. Fifth

section explains the contributions of this thesis work. Finally, sixth section explains

the organization of the following chapters.

Music improvisation

“Musical improvisation is the spontaneous creative process of making music while

it is being performed. To use a linguistic analogy, improvisation is like speaking or

having a conversation as opposed to reciting a written text. Among jazz musicians

there is an adage, improvisation is composition speeded up, and vice versa, composi-

tion is improvisation slowed down.”[21]

Improvisation exists in almost all music generel. However, improvisation is most

frequently associated with melodic improvisation as it is found in jazz. However,

xi



spontaneous real-time variation in performance of tempo and dynamics within a

classical performance may also be considered as improvisation [21]

The reader may see an example of music improvisation in [30], where musician

Alberto Riascos improvised in the Colombian music genre Guabina1 and explained

us how he did it.

Machine improvisation

Machine improvisation is the simulation of music improvisation by the computer.

This process builds a representation of music, either by explicit coding of rules or

applying machine learning methods. For real-time machine improvisation it is neces-

sary to perform two phases concurrently: Stylistic learning and Stylistic simulation.

In addition, to perform both phases concurrently, the system must be able to interact

in real-time with human players [35].

Rueda et al. define Stylistic learning as the process of applying such methods

to musical sequences in order to capture important musical features and organize

these features into a model, and the Stylistic simulation as the process producing

musical sequences stylistically consistent with the learned style [35]. An example

of a system running concurrently both phases is Ccfomi, a system using the Factor

Oracle (FO) to store the information of the learned sequences and the ntcc calculus

to synchronize both phases of the improvisation.

Introduction to ntcc

The ntcc calculus is a mathematic formalism used to represent reactive systems

with synchronous, asynchronous and/or non-deterministic behavior. This formalism

and its extensions have been used to model systems such as: musical improvisation

systems [35], [26], [40], an audio processing framework [37], and interactive scores

[2], [40].

Ntcc is not only useful for multimedia semantic interaction, it has also been used

in other fields such as modeling molecular biology [36], analyzing biological systems

[14], and security protocols [18] because these fields also include the study of complex

interactions where we want to observe certain properties showing up and to model

1Guabina is a Colombian traditional music very common in the regions of Antioquia, Santander,
Boyacá, Cundinamarca, Tolima, and Huila.

xii



the answer of the system to them. Modeling of molecular biology, security protocols,

and multimedia semantic interaction using process calculi are the base of the project

Robust Theories for Emerging Applications in Concurrency Theory (REACT2).

The novelty of this approach is the specification of the synchronization in a declar-

ative way, opposed to programming languages such as C++, where the programmer

has to specify multiple steps to guarantee a correct synchronization and safe access

to shared resources. Further explanation about ntcc and how to model musical

processes in ntcc is presented in Chapter 1.

Our solution

To avoid a repetitive improvisation, we extend Ccfomi with the Probabilistic

Non-deterministic Timed Concurrent Constraint (pntcc) calculus [26] to decrease

the probability of choosing a sequence previously improvised. This idea is based on

the Probabilistic Ccfomi model [26] developed by Pérez and Rueda. That model,

chooses the improvised sequences probabilistically, based on a probability distribu-

tion. Unfortunately, Probabilistic Ccfomi does not give information about how that

probability distribution can be built nor how it can change through time according

to the user and the computer interaction. Our model is the first pntcc model, as far

as we know, where probability distributions change from a time-unit to another.

For instance, consider that our system can play in a certain moment the pitches

(i.e., the frecuency of the notes) a,b and c with an equal probability. Then it outputs

the sequence “aaba”. After that, it is going to choose another pitch. When choosing

this pitch, c has a greater probability to be chosen than b, and b has a greater

probability to be chosen than a because a was played three times and b once in the

last sequence. Using this probabilistic extension, we avoid multiple cycles in the

improvisation which can happen without control in Ccfomi.

On the other hand, to be coherent with the relative loudness on which the user is

currently playing, we change the intensity of the improvised notes. This idea is based

on interviews with musicians Riascos [30] and Juan Manuel Collazos [5], where they

argue that this is a technique they use when improvising and improves the “quality”

of the improvisation, when two or more persons improvise at the same time.

For instance, if the computer plays five notes with intensities (measured from 0 to

127) 54, 65, 30, 58, 91 and the user plays, at the same time, four notes with intensities

2This thesis is partially funded by the REACT project, sponsored by Colciencias.
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10, 21, 32, 5; they are incoherence results because the user is playing low and the

computer is playing loud. For that reason, our system multiplies its intensities by a

factor of 0.29 (the relation of the average of both sequences) changing the intensities

of the computer output to 16, 19, 9, 17, 26.

Contributions

Gecol 2. Our first approach to provide an interface for Gecode to Common

Lisp was to extend Gecol to work with Gecode 2. Using Gecol 2 we wrote several

prototypes for the ntcc interpreter. Examples, sources, and binaries can be found

at http://common-lisp.net/project/gecol/.

Ntccrt. A real-time capable interpreter for ntcc. Using Ntccrt, we executed Cc-

fomi. Examples, sources and binaries can be found at http://ntccrt.sourceforge.net.

An article about Ntccrt is to be published this year.

Gelisp. A new graphical constraint solving library for OpenMusic. We plan to

use it in the future for a closer integration between Ntccrt and OpenMusic. Exam-

ples, sources, and binaries can be found at http://gelisp.sourceforge.net. An article

about Gelisp is to be publish this year. The original version of Gelisp was developed

by Rueda for Common Lisp [34].

Technical report. A report including all the implementation details of Ntccrt,

the graphical interface for Gelisp, Gecol 2, applications of Ntccrt, and our previous

attempts to develop a real-time ntcc interpreter [43].

Organization

The structure of this thesis is the following. In Chapter 1, we explain the back-

ground concepts. Chapter 2 focuses on the modeling of Ccfomi to allow probabilistic

choice of musical sequences. Chapter 3 explains the modifications to Ccfomi to allow

variation of the intensity of learned notes during the style simulation phase. Chapter

4 describes our model in pntcc. Chapter 5 explains the design and implementation

of Ntccrt, our real-time interpreter for ntcc. Chapter 6 shows some results and tests

made with the interpreter. Finally, in Chapter 7, we present a summary of this

thesis, concluding remarks, and propose some future work.

xiv



1 Background

1.1. Concurrent Constraint Programming (CCP)

Concurrent Constraint Programming (CCP [39]) is a model for concurrent sys-

tems. In CCP, a concurrent system is modeled in terms of constraints over the system

variables and in terms of agents interacting with partial information obtained from

those variables. A constraint is a formula representing partial information about the

values of some of the system variables. Programming languages based on the CCP

model, provide a propagator for each user-defined constraint.

Propagators can be seen as operators reducing the set of possible values for

some variables. For instance, in a system with variables pitch1 and pitch2 taking

Musical Instrument Digital Interface (MIDI) values, the constraint pitch1 > pitch2+2

specifies possible values for pitch1 and pitch2 (where pitch1 is at least one tone higher

than pitch2). In MIDI notation, each MIDI pitch unit represents a semi-tone.

The CCP model includes a set of constraints and a relation to know when a

constraint can be deduced from others (named entailment relation |=). This rela-

tion gives a way of deducing a constraint from the information supplied by other

constraints.

“The idea of the CCP model is to accumulate information in a store. The in-

formation on the store can increase but it cannot decrease. Concurrent processes

interact with the store by either adding more information or by asking if some con-

straint can be deduced from the current store. If the constraint cannot be deduced,

this process blocks until there is enough information to deduce the constraint” [35].

Consider for instance four agents interacting concurrently (fig. 1.1). The pro-

cesses tell (pitch1 > pitch2 + 2) and tell(pitch2 > 60) add new information to the

store. The processes ask(pitch1 > 58) do P and ask(pitch1 = 58) do Q launch

process P and Q (P and Q can be any process) respectively, when their condition

can be entailed from the store. After the execution of the tell processes, process
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ask (pitch1 > 58) do P launches process P , but the process ask (pitch1 = 58) do

Q will be suspended until its condition can be entailed from the store.

STORE

tell pitch2 > 60

tell pitch1  > pitch2 + 2

ask pitch1 > 58 do P

ask pitch1 = 58 do Q

STORE
pitch2 > 60

pitch1  > pitch2 + 2

P

ask pitch1 = 58 do Q

Figure 1.1: Process interaction in CCP

Formally, the CCP model is based on the idea of a constraint system. “A con-

straint system is a structure < D,`, V ar > where D is a (countable) set of primitive

constraints (or tokens), `∈ D ×D is an inference relation (logical entailment) that

relates tokens to tokens and V ar is an infinite set of variables” [39]. A (non primitive)

constraint can be composed out of primitive constraints.

The formal definition of CCP does not specify which types of constraints can be

used. Thus, a constraint system can be adapted to a particular need depending on

the set D. For instance, finite domain (FD) constraint system provides primitive

constraints (also called basic constraints) such as x ∈ R, where R is a set of ranges

of integers. On the other hand, finite set (FS) constraint system provides primitive

constraints such as y ∈ S, where S is a set of FD variables and y is an FD variable.

Constraints systems may also include expressions over trees, graphs, and sets.

Valencia and Rueda argue in [38] that the CCP model posses difficulties for

modeling reactive systems where information on a given variable changes depending

on the interactions of a system with its environment. The problem arises because

information can only be added to the store, not deleted nor changed.

1.2. Non-deterministic Timed Concurrent Constraint

(ntcc)

Ntcc introduces the notion of discrete time as a sequence of time-units. Each

time-unit starts with a store (possibly empty) supplied by the environment, then

ntcc executes all processes scheduled for that time-unit. In contrast to CCP, in

ntcc variables, changing values along time can be modeled. In ntcc we can have a
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Agent Meaning
tell (c) Adds the constraint c to the current store
when (c) do A If c holds now run A
local (x) in P Runs P with local variable x
A ‖ B Parallel composition
next A Runs A at the next time-unit
unless (c) next A Unless c can be inferred now, run A∑
i∈I

when (ci) do Pi Non deterministically chooses Pi s.t. (ci) holds

*P Delays P indefinitely (not forever)
!P Executes P each time-unit (from now)

Table 1.1: Ntcc Agents

variable x taking different values along time-units. To model that in CCP, we would

have to create a new variable xi each time we change the value of x.

Following, we give some examples of how the computational agents of ntcc can

be used. The operational semantic of all ntcc agents can be found in Appendix 8.5

and a summary can be found in table 1.1. Using the tell agent with a FD constraint

system, it is possible to add constraints such as tell(pitch1 = 60) (meaning the pitch1

must be equal to 60) or tell(60 < pitch2 < 100) (meaning that pitch2 is an integer

between 60 and 100).

The when agent can be used to describe how the system reacts to different events,

for instance when pitch1 = 48∧ pitch2 = 52∧ pitch3 = 55 do tell(CMayor = true)

is a process reacting as soon as the pitch sequence C, E, G (represented as 48, 52,

55 in MIDI notation) has been played, adding the constraint CMayor = true to the

store in the current time-unit.

Parallel composition allows us to represent concurrent processes, for instance

tell (pitch1 = 52) ‖ when 48 < pitch1 < 59 do tell (Instrument = 1) is a process

telling the store that pitch1 is 62 and concurrently reacts when pitch1 is in the octave

-1, assigning instrument to 1 (fig. 1.2). The number one represents the acoustic

piano in MIDI notation.

The next agent is useful when we want to model variables changing through

time, for instance when (pitch1 = 60) do next tell (pitch1 <> 60), means that if

pitch1 is equal to 60 in the current time-unit, it will be different from 60 in the next

time-unit.

The unless agent is useful to model systems reacting when a condition is not
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STORE

tell (pitch1 = 52)

when 48 < pitch1 < 59 do
 tell (instrument = 1)

STORE

when 48 < pitch1 < 59 do
 tell (instrument = 1)

pitch1 = 52

STORE

 tell (instrument = 1)

pitch1 = 52
STORE

pitch1 = 52

instrument = 1

Figure 1.2: Tell, when, and parallel agents in Ntcc

satisfied or it cannot be deduced from the store. For instance, unless (pitch1 = 60)

next tell (lastpitch <> 60), reacts when pitch1 = 60 is false or when pitch1 = 60

cannot be deduced from the store (i.e., pitch1 was not played in the current time-

unit), telling the store in the next time-unit that lastpitch is not 60 ( fig. 1.3).

STORE

unless pitch1 = 60 next 
tell (pitch1 <> 60)

STORE
pitch1 <> 60

STORE

unless pitch1 = 60 next 
tell (pitch1 <> 60)

STORE
pitch1 <> 60

STORE

unless pitch1 = 60 next 
tell (pitch1 <> 60)

STORE

pitch1 = 61

pitch1 = 60

a) There is not information about pitch1

b) pitch1 is equal to 61

c) pitch1 is equal to 60

CURRENT TIME UNIT NEXT TIME UNIT

Figure 1.3: Unless agent in ntcc

The * agent may be used in music to delay the end of a music process indefinitely,

but not forever (i.e., we know that the process will be executed, but we do not know

when). For instance, ∗tell (End = true). The ! agent executes a certain process in

every time-unit after its execution. For instance, !tell (PlaySong = true). The
∑

agent is used to model non-deterministic choices. For instance, !
∑

i∈{48,52,55} when
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Agent Meaning
A + B

∑
i∈1,2

when true do (when i = 1 do A ‖ when i = 2 do B )

x← t local v in
∑
v

when t = v do next !tell (x = v)

Table 1.2: Derived ntcc agents

true do tell (pitch = i) models a system where each time-unit, a note is chosen from

the C major chord (represented by the MIDI numbers 48,52 and 55) to be played

(fig. 1.41).

The agents presented in table 1.2 are derived from the basic operators. The agent

A + B non-deterministically chooses to execute either A or B. The persistent

assignation process x ← t changes the value of x to the current value of t in the

following time-units. In a similar way, the agents in table 1.3 are used to model cells.

Cells are variables which value can be re-assigned in terms of its previous value. x :

(z) creates a new cell x with initial value z, x :← g(x) changes the value of a cell

(this is different from x← t which changes the value of x only once), and exchg[x, y]

exchanges the value of cell x and z.

STORE

tell (pitch1 = 48) +
tell (pitch1 = 52) +
tell (pitch1 = 55)

STORE

tell (pitch1 = 48) +
tell (pitch1 = 52) +
tell (pitch1 = 55)

STORE

tell (pitch1 = 48) +
tell (pitch1 = 52) +
tell (pitch1 = 55)

STORE

tell (pitch1 = 48) +
tell (pitch1 = 52) +
tell (pitch1 = 55)

pitch1 = 52 pitch1 = 55

pitch1 = 48
pitch1 = 55

TIME UNIT = 0 TIME UNIT = 1

TIME UNIT = 2 TIME UNIT = 3

Figure 1.4: Execution of a non-deterministic process in ntcc

Finally, a basic recursion can be defined in ntcc with the form q(x)
def
= Pq, where

q is the process name and Pq is restricted to call q at most once and such call must

1 !
∑

i∈{48,52,55} when true do tell (pitch = i) can be expressed as !(tell (pitch = 48) + tell
(pitch = 52) + tell (pitch = 55))
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Agent Meaning
x : (z) tell(x = z) ‖ unless change(x) next x : (z)
x :← g(x) local v

∑
v

when x = v do (tell change(x) ‖ next x : g(v) )

exchg[x, y] local v
∑
v

when t = v do (tell(change(x) ‖ (tell(change(y)

‖ next (x : g(v) ‖ y : (v))

Table 1.3: Definition of cells

be within the scope of a “next”. The reason of using “next” is that we do not want

an infinite recursion within a time-unit. Recursion is used to model iteration and

recursive definitions. For instance, using this basic recursion, it is possible to write

a function to compute the factorial function. Further information about recursion

in ntcc can be found at [22].

1.3. Generic Constraint Development Environment

(Gecode)

Gecode is a constraint solving library written in C++. Gecode is based on

Constraints as Propagation agents (CPA) according to [34]. A CPA system pro-

vides multiple propagators to transform a (non-primitive) constraint into primitive

constraints supplying the same information. In a finite domain constraint system,

primitive constraints have the form x ∈ [a..b]. For instance, in a store containing

pitch1 ∈ [36..72], pitch2 ∈ [60..80], a propagator pitch1 > pitch2 + 2 would add

constraints pitch1 ∈ [63..72] and pitch2 ∈ [60..69].

The reader may notice that there is a similarity between CPA and ntcc. Both

of them are based on concurrent agents working over a constraint store. In chapter

5, we explain how we can encode ntcc agents as propagators.

Gecode works on different operating systems and is currently being used as the

constraint library for Alice[31] and soon it will be used in Mozart-Oz, therefore it will

be maintained for a long time. Furthermore, it provides an extensible API, allowing

us to create new propagators. Finally, we conjecture that Gecode’s performance is

better than the constraints solving tool-kits used in Sicstus Prolog and Mozart-Oz

based on Gecode’s benchmarks2.

2Benchmarks presented in http://www.gecode.org
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1.4. Factor Oracle (FO)

The Factor Oracle (FO)[1] is a finite automaton that can be built in linear time

and space, in an incremental fashion. The FO recognizes at least all the sub-

sequences (factors) of a given a sequence (it recognizes other sequences that are

not factors). All the states of the FO are considered as accepting states. A sequence

of symbols s = σ1σ2...σn is learned by such automaton, which states are 0,1,2...n.

There is always a transition arrow (called factor link) from the state i − 1 to the

state i and there are some transition arrows directed “backwards”, going from state

i to j (where i > j), called suffix links. Suffix links, opposed to factor links, are not

labeled. For instance, a FO automaton for s = ab is presented in Figure 1.5, where

black headed arrows represent the factor links and white headed arrows represent

the suffix links.

0 1 2
a b

b

Figure 1.5: A FO automaton for s = ab

The FO is built on-line and their authors proved that its algorithm has a linear

complexity in time and space[1]. For each new entering symbol σ, a new state i is

added and an arrow from i − 1 to i is created with label σi. Starting from i − 1,

the suffix links are iteratively followed backward, until a state is reached where a

factor link with label σi going to some state j, or until there are no more suffix

links to follow. For each state met during this iteration, a new factor link labeled

by σi is added from this state to i. Finally, a suffix link is added from i to state

j or to state 0 depending on which condition terminated the iteration. Further

formal definitions and the proof of FO complexity can be found in [1]. The on-line

construction algorithm is presented with detail in Appendix 8.1

Since the FO has a linear complexity in time and space, it was found in [12]

that it is appropriate for machine improvisation. In addition, all attribute values for

a music event can be kept in an object attached to the corresponding node, since

the actual information structure is given by the configuration of arrows (factor and
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suffix links). Therefore a tuple with pitch (the frecuency of the note), duration (the

amount of time that the note is played), and intensity (the volume on which is the

note is played) can be related to each arrow according to [12].

1.5. Concurrent Constraint Factor Oracle Model

for Music Improvisation

Concurrent Constraint Factor Oracle Model for Music Improvisation (Ccfomi)

is defined in [35]. Following, we present a briefly explanation of the model taken

from [35]. Ccfomi has three kinds of variables to represent the partially built FO

automaton: Variables fromk are the set of labels of all currently existing factor

links going forward from k. Variables Si are the suffix links from each state i, and

variable δk,σi give the state reached from k by following a factor link labeled σi.

For instance, the FO in figure 1.5 is represented by from0 = {a, b},from1 = {b},
S1 = 0, S2 = 0, δ0,a = 1, δ0,b = 2.

Although it is not stated explicitly in Ccfomi, the variables fromk and δk,σi
are modeled as infinite rational trees [29] with unary branching, allowing us to add

elements to them, each time-unit. Infinite rational trees have infinite size. How-

ever, they only contain a finite number of distinct sub-trees. For that reason, they

have been subjects of multiple axiomatizations to construct a constraint system

based on them. For instance, posting the constraints cons(c, nil, B), cons(b, B, C),

cons(a, C,D) we can model a list of three elements [a, b, c].

Ccfomi is divided in three subsystems: learning (ADD), improvisation (CHOICE)

and playing (PLAYER) running concurrently. In addition, there is a synchronization

process (SYNC) that takes care of synchronization.

The ADD process is in charge of building the FO (this process models the learn-

ing phase) by creating the factor links and suffix links. Note that the process ADD

calls the LOOP process.

ADDi
def
= !tell(δi−1,σi = i) ‖ LOOPi(Si−1)

“Process LOOPi(k) adds (if needed) factor links labeled σi to state i from all states

k reached from i− 1 by suffix links, then computes Si, the suffix link from i” [35].
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LOOPi(k)
def
=

when k ≥ 0 do

unless σi ∈ fromk

next(!tell (σi ∈ fromk) ‖ !tell(δk,σi = i) ‖ LOOPi(Sk))
‖ when k = −1 do !tell(Si = 0)

‖ when k ≥ 0 ∧ σi ∈ fromk do !tell(Si = δk,σi)

“A musician is modeled as a PLAY ER process playing some note p every once

in a while. The PLAY ER process non-deterministically chooses between playing a

note now or postponing the decision to the next time-unit” [35].

PLAY ERj
def
=∑

p∈Σ

when true do (!tell(σj = p) ‖ tell(go = j) ‖ next PLAY ERj+1)

+ (tell (go = j − 1) ‖ next PLAY ERj)

The learning and the simulation phase must work concurrently. In order to achieve

that, it is required that the simulation phase only takes place once the sub-graph

is completely built. The SY NCi process is in charge of doing the synchronization

between the simulation and the learning phase to preserve that property.

Synchronizing both phases is greatly simplified by the used of constraints. When

a variable has no value, the when processes depending on it are blocked. Therefore,

the SY NCi process is “waiting” until go is greater or equal than one. It means that

the PLAY ERi process has played the note i and the ADDi process can add a new

symbol to the FO. The other condition Si−1 ≥ −1 is because the first suffix link of

the FO is equal to -1 and it cannot be followed in the simulation phase.

SY NCi
def
=

when Si−1 ≥ −1 ∧ go ≥ i do (ADDi ‖ next SY NCi+1)

‖ unless Si−1 ≥ −1 ∧ go ≥ i next SY NCi)

“The improvisation process CHOICEΦ(k) uses the distribution function Φ :

R→ {0, 1}. The process starts from state k and stochastically, chooses according to

probability q, whether to output the symbol σk or to follow a backward link Sk”[35].
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CHOICEΦ(k)
def
=

when Sk = −1 do next( tell (out = σk+1) ‖ CHOICEΦ(k + 1))

‖ tell (flip = Φk(q))

‖ when flip = 1 ∧ Sk+1 ≥ 0 do next (tell (out = σk+1) ‖ CHOICEΦ(k + 1))

‖ unless flip = 1 ∧ Sk+1 ≥ 0

next
∑
σ∈Σ

when σ ∈ fromsk do ( tell (out = σ) ‖ CHOICEΦ(δsk,σ)

The whole system is represented by a process doing all the initializations and launch-

ing the processes when corresponding. Improvisation starts after n symbols have

been created by the PLAY ER process.

Systemn,p
def
=

!tell(q = p) ‖ !tell(S0 = −1) ‖ PLAY ER1 ‖ SY NC1

‖ !when go = n do CHOICE(n)

1.6. Probabilistic Non-deterministic Timed Con-

current Constraint (pntcc)

“One possible critique to CCP is that it is too generic for representing certain

complex systems. Even if counting with partial information is extremely valuable,

we find that properly taking into account certain phenomena remains to be difficult,

which severely affects both modeling and verification. Particularly challenging is the

case of uncertain behavior. Indeed, the uncertainty underlying concurrent interac-

tions in areas such as computer music goes way beyond of what can be modeled

using partial information only.” [26].

The first attempt to extend ntcc to work with probabilities was the Stochastic

Non-deterministic Timed Concurrent Constraint (sntcc [23]) calculus. Sntcc pro-

vides an operator Pρ to decide whether to execute or not a process with a certain

probability ρ. Using sntcc, Ccfomi models the action of choosing between a suffix

link or a factor link with a probability ρ. However, when using sntcc, it is not pos-

sible to use a probability distribution to choose among all the factor links following

a state in the FO. The probability distribution describes the range of possible values
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that a random variable can take.

Pntcc overcomes that problem, it provides a new agent to the calculus for prob-

abilistic choice
⊕

. The probabilistic choice
⊕

operator has the following syntax:

⊕
i∈I

when Ci do (Pi, ai),

where I is a finite set of indexes, and for every ai ∈ R(0.0,1.0] we have
∑
i∈I
ai = 1.0.

“The intuition of this operator is as follows. Each ai associated to Pi represents its

probability of being selected for execution. Hence, the collection of all ai represents

a probability distribution. The guards that can be entailed from the current store

determine a subset of enabled processes, which are used to determine an eventual

normalization of the ai’s. In the current time interval, the summation probabilisti-

cally chooses one of the enabled process according to the distribution defined by the

(possibly normalized) ai
′s. The chosen alternative, if any, precludes the others. If

no choice is possible then the summation is precluded.” [26].

Using the probabilistic choice we can model a process choosing a factor link from

the FO with a probability distribution ρ.

⊕
σ∈

P when σ ∈ fromk do (tell(output = σ),ρσ)

The operational semantic of the
⊕

agent and other formal definitions about

pntcc can be found in Appendix 8.5.
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2 Probabilistic Choice of Musical
Sequences

When modeling machine improvisation, we want to choose a certain music se-

quence, based on the history of user and computer interaction. For instance, when

traversing the Factor Oracle (FO) in the simulation phase, we want some informa-

tion to choose among the factor links and the suffix link following a certain state.

To achieve that, we propose to assign integers to the links in the FO. Using those

integers, we can calculate probabilities to choose a link based on a probability distri-

bution. We recall from the introduction that our main objective is extending Ccfomi

to model probabilistic choice of musical sequences.

In the beginning of this thesis work, we developed a probabilistic model which

changes the complexity in time for building the FO to quadratic (see Appendix

8.2.1). The idea behind it was changing the probabilities of all the factor links

coming from state i when modifying a factor link leaving from that state. This idea

was discarded for not being compatible with soft real-time (consider soft real-time

as defined in the introduction).

The probabilistic model we chose is based on a simple, yet powerful concept.

Using the system parameters, the probability of choosing a factor link in the simula-

tion phase will decrease each time a factor link is chosen. Additionally, we calculate

the length of the common suffix (context) associated to each suffix link. Using the

context, we reward the suffix links. Further information about the context can be

found at [17].

We represent the system with four kind of variables used to represent: the FO

states and transitions; the musical information attached to the FO ; the probabilistic

information; and the information to change musical attributes in the notes, based

on the user style.

In addition to the variables described before, the system has some information
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parametrized by the user: α, β, γ, τ and n. The constant α is the recombination

factor, representing the proportion of new sequences desired. β represents the factor

for decreasing the importance of a factor link when it is chosen in the simulation

phase. γ represents the importance of a new factor link in relation with the other

factor links coming from the same state. τ (described in Chapter 3) is a parameter

for changing musical attributes in the notes. Finally, n is a parameter representing

the number of notes that must be learned before starting the simulation phase. In

Chapter 4 we describe how can we use n to synchronize the improvisation phases.

We label each factor link by the pitch. Moreover, outside the FO definition, we

create a tuple of three integers for each factor link : pitch, duration, and intensity.

These three characteristics are represented by integers. The pitch and the intensity

are represented by integers from 0 to 127 and the duration is represented by mil-

liseconds1. That way we can build a pitch FO (i.e., a FO where the symbols are

pitches) associating to it other musical information.

At the same time we build a FO, we also create three integer arrays: ρ, C and

sum. There is an integer ρi,σ for every factor link, Ci for every suffix link, and sumi

for every state i. Note that ρi,σ/sumi would represent the probability of choosing a

factor link if suffix links were not considered, and Ci is the context.

Next, we show the learning and simulation phases for the probabilistic extension.

We present some simple examples explaining how the probabilities are calculated in

the learning phase and how they are used in the simulation phase. Finally, we present

some concluding remarks and other improvisation models related to our model.

2.1. Stylistic learning phase

During the learning phase we store an integer ρi,σ for each factor link going from

i labelled by σ. We also store an integer sumi for each state i of the automaton.

The initial value for ρi,σ is sumi ∗ γ (fig. 2.1), where γ is a system parameter

representing the importance of a new sequence in relation with the sequences already

learned. When a factor link from i labeled by σj is the first factor link leaving from

i, we assign to sumi and ρi,σj the constant c. We want c to be a big integer, allowing

us to have more precision when reasoning about ρi,σj/sumi.

The reader may notice that this approach gives a certain importance to a new

factor link leaving from i labeled by σj, without changing the value of all the other

1Pitch, duration and intensity are represented according to MIDI 1.0 standard
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quantities ρi,σ leaving from i. Furthermore, we preserve the sum of all the values ρi,σ

in the variable sumi, for each state i. This system exhibits a very important property:

For each state i,
∑

σ∈fromi
[ρi,σ/sumi] = 1. The sum of all the probabilities associated

to the factor links coming from the same state are equal to one. This property is

preserved, when changing the values of ρi,σ and sumi in both improvisation phases.

...

sum0

sum1

S0

S1

Si

ρi,σ0 = a0

ρi,σ1 = a1

ρi,σn = an

ρi,σn+1 = sumi ∗ γ

...sumi

sum0

sum1

S0

S1

Si

ρi,σ0 = a0

ρi,σ1 = a1

ρi,σn = an

sumi =
n∑

j=0

aj

sum’i
Sn

sumn

sum’i = sumi ∗ (1 + γ)

sumn+1
Sn+1

Snsumn

Figure 2.1: Adding a factor link to the FO

On the other hand, we give rewards to the suffix link using the context. To

calculate the context, Lefebvre and Lecroq modified the FO construction algorithm,

conserving its linear complexity in time and space [17]. This approach has been

successfully used by Cont, Assayag and Dubnov on their anticipatory improvisation

model [9].

Figure 2.2 is a simple example of a FO and the integer arrays presented previously.

First, we present the score of a fragment of the Happy Birthday song; then we present

a sequence of possible tuples < pitch, duration, intensity > for that fragment; and

finally the FO with the probabilistic information.

2.2. Stylistic simulation phase

In the simulation phase, we use all the information calculated in the learning

phase to choose the notes probabilistically. Factor links chosen in this phase, will

decrease the importance proportionally to β. In addition, the probability of choosing

secondary factor links is proportional to γ . We consider primary factor links those
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Music engraving by LilyPond 2.11.31—www.lilypond.org

(a) The Score of the fragment

(G, 375,80), (G, 125,60), (A, 500,100), (G, 500,90), (C, 500,100), (B, 1000,60)
(b) Fragment of the Happy Birthday Song represented with tuples

S0

S1
S2

S3

S4

S5

S6

(C,500,100)

(B,1000,60)

(G,125,60)

(A,500,100)(A
,50

0,1
00

)

(A,500,100)

(G,500,90)

(C,500,100)

(C,500,100)

(B,1000,60)

C1

C2

C3

C4

C5

C6

ρ
0
,G

ρ 1,
A

ρ0,A

ρ3,G

ρ0,C

ρ4,C

ρ1,C

ρ5,B

ρ0,B

ρ1,Gsum1

sum0

sum3

sum4

sum5

sum6

sum2

ρ2,A

(G
, 375, 80)

(c) Factor Oracle with the probabilistic information

Figure 2.2: Factor Oracle used to represent a Happy Birthday fragment

going from the state i to i+ 1, and all the others as secondary . On the other hand,

the suffix links are rewarded by the context, calculated on-line in the learning phase.

If there were not suffix links, we would choose a factor link leaving from the state

i with a probability distribution ϕ(i, σ) such that ϕ(i, σ) = ρi,σ/sumi. Later on, we

will explain how we can extend this concept to work with the suffix links, rewarded

by their context. However, the concept of decreasing the probability of a factor link

when it is chosen remains invariant.

When the system chooses a certain factor link leaving from i and labeled by σk,

the value of ρi,σ is decremented, multiplying it by β. Subsequently, we update the

new value of sumi by subtracting (1 − β) ∗ ai,σk (fig. 2.3). That way, we preserve
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the property
∑

σ∈fromi
[ρi,σ/sumi] = 1 for each state i. Note that we are only adding

constant time operations, making our model compatible with soft real-time.

...

sumi

sum0

S0

Si

ρi,σ0 = a0

sumi =
n∑

j=0

aj

...

Sksumk

ρi,σk
= ak

...

sum0

S0

Si

ρi,σ0 = a0

...

Sksumk

ρi,σk
= ak ∗ β

ρi,σn = an ρi,σn = an

sum’i = sumi − ak(1− β)

sum’i

sumn

Sn
Sn

sumn

Figure 2.3: Choosing a factor link from k labelled by σk

Following only the factor links we obtain all the factor (subsequences) of the

original sequence. This causes two problems: first, if we always follow the factor

links, soon we will get to the last state of the automaton; second, we only improvise

over the subsequences of the information learned from the user, without sequence

variation. This would make the improvisation repetitive. Following the suffix link

we achieve sequence variation because we can combine different suffixes and prefixes

of the sequences learned. For instance, in Omax [4] –a model for music improvisa-

tion processing in real-time audio and video– this is called recombination and it is

parametrized by a recombination factor.

Rueda et al approaches this problem in Ccfomi by creating a probability dis-

tribution parameterized by a value α. The probability of choosing a factor link is

given by α and the probability of choosing a suffix link is given by 1−α. There is a

drawback in this approach. Since it does not reward the suffix links with the context

(the length of the common suffix), this system may choose multiple times in a row

suffix links going back one or two states, creating repetitive sequences.

Our approach is based on rewarding the suffix links by their context. The intu-

ition is choosing between the factor links leaving a state i and the factor links leaving

the state reached by following the current state’s suffix link. Rewarding the last ones

by the product of the recombination factor α and the context Ci. Consider S(i) a

function returning the state where a suffix link leads from a state i. If we only con-

sider the factor links, we would have two probability distributions ϕ(i, σ) = ρi,σ/sumi
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and ϕ(S(i), σ) = ρS(i),σ/sumS(i) and no way to relate them. Using the context Ci,

we create a probability distribution Φ(i, σ) ranking the factor links leaving from the

state S(i) with the product α ∗ C(i).

Φ(i, σ) =

{
ρi,σ
sumi

if S(i) = −1,
ρi,σ+ρS(i),σ∗Ci∗α
sumi+sumS(i)∗Ci∗α if S(i) > −1

Using Φ(i, σ), the system is able to choose a symbol at any state of the FO. The

advantage of this probability distribution over the one presented in Ccfomi, is that

it takes into account the context, as well as the recombination factor α.

To exemplify how to build this probability distribution, consider the FO with

the probabilistic information in figure 2.4. That example correspond to the FO for

s = ab and random values for the integer arrays described in this chapter. Table 2.1

shows how to build a probability distribution Φ(i, σ) for the FO in figure 2.4.

Note that for the states zero and two in the table, the probabilities calculated

are the same. This happens because the first state does not have a suffix link to

go backwards and the last state does not have factor links to go forward. On the

other hand, the probabilities calculated for the state one combine the probability of

choosing a factor link following state 1 or choosing the suffix link and then choosing

a factor link from state zero.

S0 S1 S2

sum0 = 20 sum1 = 10 sum2 = 0

A

B

ρ0,A = 15

ρ0,B = 5

ρ1,B = 10
C1 = 1 C2 = 2

B

Figure 2.4: A Factor Oracle including probabilities, for the sequence s = ab

i σ Φ(i, σ) i σ Φ(i, σ) i σ Φ(i, σ)
0 a 3/4 1 a 0+15∗α

10+20∗α 2 a 3/4

0 b 1/4 1 b 10+5∗α
10+20∗α 2 b 1/4

Table 2.1: Probability distribution Φ(i, σ) for figure 2.4
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2.3. Summary

In this chapter we explained how we can model music improvisation using proba-

bilities, extending the notion of non-deterministic choice described in Ccfomi. The

intuition is decreasing the probability of choosing a factor link, each time it is cho-

sen and rewarding a suffix link based on the context. Furthermore, we explained

how the parameters α, β, and γ allow us to parameterize the computation of the

probabilities.

This procedure is simple enough so that the probabilities can be computed in con-

stant time when the FO is built, preserving the linear complexity in time and space

of the FO on-line construction algorithm. Additionally, using probabilities allows us

to generate different sequences, without repeating the same sequence multiple times

in a row like Ccfomi.

2.4. Related work

For Omax, Assayag and Blonch recently proposed a new way to traverse the

oracle based on heuristics [3]. They argue that traversing the oracle using only the

suffix links and not using the factor links, produces more “interesting” sequences.

There is an extension of Ccfomi using pntcc. The use of pntcc makes possible

to choose the sequences in the simulation phase, based on a probability distribution.

Although Perez and Rueda modeled the probabilistic choice of sequences using the

FO, they do not provide a description of how those probabilities can be calculated

during the learning phase.
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3 Changing Musical Attributes of
the Notes

According to Conklin [6], music-generation systems aim to create music based on

some predefined rules and a corpus (i.e., a collection of musical pieces in a certain

music style) learned previously. Those systems can create new musical material

based on the style of the corpus learned. Unfortunately, they use algorithms with

high complexity in time and space, making them inappropriate for music interaction

according to [12]. On the other hand, interactive systems for music improvisation

(e.g., Ccfomi) are usually based on the recombination of sequences learned from the

user.

Although recombination creates new sequences based on the user style, it does

not create new notes. In fact, it does not even change a single characteristic of a

note. To solve that problem, one of the objectives of this thesis work is changing at

least one musical attribute of the notes generated during the style simulation.

In the beginning of this work, we tried to develop an algorithm for creating new

notes, based on the learned style. The idea was calculating the probability of being

on a certain music scale. Based on that probability, we choose a random pitch from

that scale. A music scale is an ascending or descending series of notes or pitches.

We also developed an algorithm to calculate the duration of those new notes (see

Appendix 8.2.2.1).

We did not include those ideas in this thesis work. First, because choosing a

pitch based on a supposition of the scale cannot be generalized to music which is not

based on scales. In addition, because the procedure for calculating the probability

of being on a certain scale was not very accurate, as we found out during some tests.

Finally, because the algorithm to generate new durations is not compatible with soft

real-time.

The approach we chose to change a musical attribute is again based on simple,
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but powerful concept. We store the average intensity (the other musical attributes

are not changed in our model for the reasons mentioned above) of the notes currently

being played (current dynamics) by the computer. We also store the current dynam-

ics of the user. Then, we compare them and change the current dynamics of the

computer (if necessary), making it similar to the user current dynamics. The idea

behind this intensity variation was originally proposed by musicians Riascos [30]

and Collazos [5]. It is based on a concept that they usually apply when improvising

with other musicians.

In order to formalize that concept, we calculate, in the learning phase, the current

dynamics of the last τ (a system parameter) notes played by both, the user and the

computer, separately. Concurrently, in the simulation phase, we compare the two

current dynamics. If they are not equal, we multiply the intensity of the current note

being played by the computer by a factor proportional to relation of the user and

computer current dynamics. As follows, we explain in detail how we can calculate

the current dynamics in the learning phase and how to change the intensity of notes

generated in simulation phase.

3.1. Stylistic learning phase

The intensity in music represents two different things at the same time. When

analyzing the intensity of a single note in a sequence, we reason about that intensity

as a musical accent meaning the importance of certain notes or defining rhythms.

On the other hand, we reason about the average intensity of a sequence of notes

as the dynamics of that sequence of notes. The accents may be written explicitly in

the score with a symbol > bellow the note and the dynamics for relative loudness

may be written explicitly in the score as piano (p), forte (f), fortissimo (ff), etc.

To capture these two concepts, in the learning phase we store the intensity in a

tuple < pitch,duration,intensity >. In addition, we store the current dynamics for

the last τ notes played by the user Qu and the computer Qc.

To calculate the current dynamic we propose the Calculate-Current-Dynamics

algorithm. The idea of this algorithm is storing the last τ intensities in a queue Qi.

This algorithm receives a sequence of intensities I, the value for τ , a reference to

the queue Qi, and the current dynamic Qi. The invariant of the algorithm is always

having the average of the queue data in the variable Qi and the sum in the variable

IntensitySum. Append 8.1.3 gives an example of the operation of this algorithm.
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CALCULATE-CURRENT-DYNAMICS(I = I1I2...Im, τ , Qi, Qi)

01 Qi ← new Queue(τ)

02 IntensitySum ← 0

03 QueueSize ← 0

04 for i ← 0 to m do

05 if QueueSize < τ then

06 IntensitySum ← IntensitySum+ Ii

07 else IntensitySum ← IntensitySum + Ii - Qi.pop()

08 Qi.push(Ii)

09 Qi ← IntensitySum/QueueSize

3.2. Stylistic simulation phase

In this phase, we traverse the FO using the probabilistic distribution Φ(i, σ) pro-

posed in chapter 2. Remember that there is an intensity and a duration associated

to each pitch in the FO. If we play the intensities with the same value as they were

learned, we could have a problem of coherence between the current dynamics of the

user and the current dynamics of the sequences we are producing.

To give an example of this problem, consider the Happy Birthday fragment pre-

sented in figure 2.2. The current dynamics for that fragment is 98. Now, suppose

the computer current dynamics is 30. This poses a problem, because the user is

expecting the computer to improvise in the same dynamics that he is, according to

the interviews with Riascos and Collazos.

The solution we propose is multiplying by a factor Qc/Qu the intensity of every

note generated by the computer. In the previous example, the next note generated

by the computer would be multiplied by a factor of 30/98.

3.3. Summary

We explained how we can change the intensity of the notes generated during the

improvisation. The idea is to maintain the current dynamics of the notes generated

by the computer similar the current dynamics of the notes generated by the user.
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This corresponds to formalizing an improvisation technique used by two musicians

interviewed for this thesis work.

This kind of variation in the intensity is something new for machine improvi-

sation systems as far as we know. We believe that this kind of approach, where

simple variations can be made preserving the style learned from the user and being

compatible with real-time, should be a topic of investigation in future works.

3.4. Related work

To solve this problem of creating new notes and changing the attributes of the

notes during the improvisation, the Omax model has a parameter called innovation

rate, indicating the amount of new material desired [4]. Furthermore, Omax calcu-

lates a rhythmic quality function to compare the density (the number of events for

overall duration) between the current state and the place where a link is leading.

Using that rhythmic quality function, the improvisation does not “jump” abruptly

between different rhythmic patterns. Therefore, Omax improvisation is rhythmically

coherent within itself. However, generating new rhythms coherent with the user style

on machine improvisation is still an open problem.

The anticipatory model developed by Cont et al [8] presents some results where

the sequences produced in the improvisation have different pitches, compared to the

original sequence. To achieve this, they improvise on a pitch intervals FO (a FO

learning the intervals of the pitches played by the user), allowing them to calculate

new pitches, when using the pitch intervals attribute to improvise.

Neither Ccfomi nor its probabilistic extension provides a way to change musical

attributes of the notes nor creating new material based on the user style.
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4 Modeling the system in pntcc

Ntcc has been used in a large variety of situations for synchronizing musical

processes. From the introduction chapter, we recall the models for interactive scores,

audio processing, formalizing musical processes, and music improvisation. In those

models, the synchronization is made declaratively. It means that ntcc hides the

details on how the processes are synchronized and how the shared resources (in the

store) are accessed.

One objective of this work is modeling our improvisation system with ntcc. So

far, we presented the modifications for the improvisation phases allowing probabilis-

tic choice of musical sequences and changing the musical attributes in the simulation

phase. Since we are choosing the sequences probabilistically, we use pntcc (the

probabilistic extension of ntcc) for modeling our improvisation system.

In order to synchronize the improvisation phases, the learning phase must take

place from the beginning. However, the simulation phase is launched once the learn-

ing phase has learned n notes. After that, both phases run concurrently. Syn-

chronization must be provided because the improvisation phase must not work in

partially built graphs, it can only improvise in the fragment of the graph that rep-

resents a FO. Additionally, the simulation phase can only work in state k once the

value for the current dynamics, the context, and the probabilistic distribution has

been calculated up to state k.

Our approach to synchronize the improvisation phases is similar to the one used

in Ccfomi. Remember that Ccfomi synchronizes the improvisation phases using

a variable go and the variables Si. The PLAY ER process can post constraints

over those variables and the processes for building the FO (ADD and LOOP ) are

activated when they can deduce certain information from those variables. We extend

that concept using some of the new variables introduced in this model.

In addition to the variables fromk, Si, and δi,σ used in Ccfomi, our model has

a few more variables: ρi,σ, sumi, Φi,σ, and Ci represent the probabilistic choice of
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musical sequences; durationσ and intensityσ represent the musical attributes asso-

ciated to each pitch σ; and Qi, SumQi and Qi represent the intensity variation. The

variables Φi,σ, Ci, Qi, durationσ, and intensityσ are represented with rational trees

of FD variables because they do not change their value from a time-unit to another.

The other variables are represented with cells (cells are defined in chapter 1).

In this chapter, we explain how we can write a sequential algorithm for the

learning phase combining the algorithm for building on-line the FO, calculating the

context, calculating the probabilistic distribution Φk,σ and the current dynamics.

After that, we show how both phases can be modeled in pntcc. Finally, we give

some concluding remarks and we present related work.

4.1. Modeling the stylistic learning phase

The learning phase can be easily integrated to the on-line algorithm that builds

a FO and calculates the context (the original algorithms are presented in Appendix

8.1). The learning phase is represented by the functions Ext Oracle On-line and

Ext Add Letter. To calculate the context we use the Length Repeated Suffix function

proposed by Lefevre et al. The Length Repeated Suffix calculates the context. It finds

the length of a repeated suffix of P [1..i+ 1] in linear time and space complexity.

The Ext Add Letter function is in charge of adding new pitches to the FO. It

also creates a tuple < pitch, duration, intensity >; updates values of ρi,σ and sumi;

and calculates the current dynamics of the user Qu, and the context Ci+1 for state

i+1. This function receives a FO with i states, a pitch σ, the duration, the intensity,

the system parameters γ and τ , and the Intensity Queue Qi. During its execution,

it uses the constant c, the function S(i), and the temporal variable π. C is a big

integer constant, S(i) is a function returning the suffix link for state i, and π is a

temporal variable used to calculate the context.

EXT ADD LETTER(Oracle(P [1..i]),σ,duration,intensity,γ,τ ,Qi)

01 Create a new state i+ 1

02 δ(i, σ)← i+ 1

03 k ← S(i)

04 π1 ← i

05 ρi,σ ← c

06 sumi ← c
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07 if QueueSize < τ then

08 intensitySum ← IntensitySum+ intensity

09 else IntensitySum ← intensity - Qi.pop()

10 Qi.push(Ii)

11 Qi ← IntensitySum/QueueSize

12 durationσ ← duration

13 intensityσ ← intensity

14 While k > −1 and δ(k, σ) is undefined do

15 δ(k, σ)← i+ 1

16 π1 ← k

17 k ← S(k)

18 ρk,σ ← sumk ∗ γ
19 sumk ← sumk ∗ (1 + γ)

20 if k = −1 then S(i+ 1)← 0

21 else S(i+ 1)← δ(k, σ)

22 Ci+1 ← LENGTH REPEATED SUFFIX(π1, S(i+ 1))

23 Return Oracle(P [1..i]σ)

The Ext Oracle On-line function is a sequential algorithm representing the learn-

ing phase. It receives three vectors: the pitches, the durations, and the intensities.

In addition, it takes γ, the system parameter for ranking the importance of a new

note added to the FO, and the system parameter τ , representing the number of

notes taken into account to calculate the current dynamics . Figure 4.1 presents the

execution of this function for the three first symbols of the Happy Birthday Fragment

presented in figure 2.2.

EXT ORACLE ON LINE(P [1..m],D[1..m],I[1..m],γ,τ)

01 Create Oracle(ε) with one single state 0 and S(0) = −1

02 Qu ← new Queue(τ)

03 IntensitySum ← 0

04 for i ← 1 to m do Oracle([1..i]) ←
05 EXT ADD LETTER(Oracle(P [1..i− 1]),Pi,Di,Ii,γ,τ ,Qu)

The learning phase is modeled in pntcc by the processes PHI, ADD, LOOP ,
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Figure 4.1: Executing the Ext Oracle On-line algorithm with τ = 2

ADD ELEMENT , PLAY ER, CONTEXT , and CONTEXT LOOP . Process

PHI calculates the values for the probability distribution φk,σ, used to choose A

factor link leaving from state k labeled by a symbol σ. Where the recombination

factor is parameterized by α. The process Tree| represents the act of adding a

“fresh” variable to the infinite rational tree (as described in chapter 1). We use

infinite rational trees to represent the variable such as from and δ that represents

the transitions of the FO.

PHI(k, σ, α)
def
=

when Sk = −1 do !tell (φk,σ =
ρk,σ
sumk

)
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‖when Sk > −1 do !tell (φk,σ =
ρi,σ+ρS(i),σ∗Ci∗α
sumi+sumS(i)∗Ci∗α) ‖ φ|

The Process ADD is the one in charge of adding new pitches to the FO. In

addition, this process updates the values of the cells ρ and the variable φ calling the

function PHI.

ADDi(α, γ)
def
=

δi−1,σi ← i ‖ !tell (σi ∈ fromi−1) ‖ ρi−1,σi : (c) ‖ sumi−1 : (c)

‖ PHI(i− 1, σi, α) ‖ from| ‖ δ| ‖ ρ| ‖ sum| ‖ next LOOPi(Si−1, α, γ, i− 1)

The LOOP process represents the “while” loop in the Ext Add Letter function.

This process adds a new factor link in the FO that points to the new state i, while

k is greater than -1 and there is not a transition from k labeled by σ. The values for

k depends on the suffix links. In addition, it calculates the values for the context Ci

and the probabilistic information.

LOOPi(k, α, γ, π1)
def
=

when k ≥ 0 do(

when σi ∈ fromk do

(!tell (Si = δk,σi) ‖ S| ‖ CONTEXT (i, π1, Si) )

‖unless σi ∈ fromk next (

sumk :← sumk(1 + γ) ‖ sum| || ρk,σi :← γsumk ‖ ρ| ‖ PHI(α, k, σi)

|| next ( !tell (σi ∈ fromk) || !tell (δk,σi = i)

|| LOOPi(Sk, α, γ, k) ‖ from| ‖ δ| )))

‖when k = −1 do ( !tell (Si = 0) ‖ S| ‖ CONTEXT (i, π1, Si) )

In the CONTEXT process the reader may notice how we can use when a 6= b

do P instead of unless a 6= b next P because we know that a,b always have a value.

The values π, s, π1 and pi2 are used to calculate efficiently the context according to

Lefevre et al.’s algorithm.

CONTEXT (i, π, s)
def
=

when s = 0 do !tell (Ci = 0)

‖when s 6= 0 do (
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when s− 1 = Sπ1 do !tell (Ci = Cπ1 + 1)

‖when s− 1 6= Sπ1 do CONTEXT LOOP (π, s− 1, i))

CONTEXT LOOP (π1, π2, i)
def
=

when Sπ1 = Sπ2 do !tell (Ci = min(Cπ1 ,Cπ2) + 1)

‖when Sπ1 6= Sπ2 do next CONTEXT LOOP (π1, Sπ2 , i)

The ADD ELEMENT process calculates the value for the current dynamics.

In addition, it updates sum based on the parameter τ .

ADD ELEMENT (Q, I, τ, index, sum,Q)
def
=

when index ≥ τ do sum :← sum+ I −Qindex−τ

‖when index < τ do sum :← sum+ I ‖ Q :← sum/min(index, τ)

Finally, the PLAY ER stores the values of pitch, duration, and intensity re-

ceived from the environment when a note is played by the user. Furthermore, it

updates the current dynamics Qu.

PLAY ERj
def
=

when P > 0 ∧D > 0 ∧ I > 0 do (

ADD ELEMENT (Qu, I, τ, j, SumQu, Qu)

‖ next ( !tell (σj = P ) ‖ Qu| ‖ !tell Quj = I

‖ !tell (durationσj = D) ‖ !tell (intensityσj = I) ‖ tell (go = i) ‖ PLAY ERj+1))

‖unless P > 0 ∧D > 0 ∧ I > 0 next (tell (go = j − 1) ‖ PLAY ERj )

4.2. Modeling the style simulation phase

In this phase, we use the
⊕

agent, defined in pntcc to model probabilistic

choice. This model is an extension of the model presented in [26]. In our model,

the IMPROV process chooses a link according to the probability distribution φk,σi .

Furthermore, it updates the values for sum and ρ, sets-up the outputs, and updates

the computer current dynamics Qc.

In order to ask if a constraint A ∧ B or A ∨ B can be deduced from the store,

we use reification. For instance, the process when a = b ∧ c = d do P, can be codi-
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fied as the process when g do P and the constraints a = b↔ e, c = d↔ f , e∧f ↔ g.

IMPROV (k, τ, β)
def
=

|| when Ck ≥ 0 do (⊕
i∈

P when σi ∈ fromk ∨ σi ∈ fromSk do (

next( tell (out pitch = σi) || tell (out duration = durationσi)

|| tell (out intensity = intensityσi ∗Qu/Qc) || tell (Qci = intensityσi)

|| ADD ELEMENT (Qc, out intensity, τ, i, SumQc, Qc))

|| when σi ∈ fromk ∧ σi ∈ fromSk do next (IMPROV (k + 1, τ, β) +

IMPROV (Sk, τ, β))

|| unless σi ∈ fromk next ( IMPROV (Sk, τ, β)

|| ρSk,σi :← β ∗ ρSk,σi || sumSk :← sumSk − (1− β)ρSk,σi )

|| unless σi ∈ fromSk next ( IMPROV (k + 1, τ, β)

|| ρk,σi :← β ∗ ρk,σi || sumk :← sumk − (1− β)ρk,σi),Φk,σi)

|| unless Ck ≥ 0 next IMPROV (k, τ, β)

4.3. Synchronizing the improvisation phases

Synchronizing both phases is greatly simplified by the used of constraints. When

a variable has no value, when processes depending on it are blocked. Therefore, the

SY NCi process is “waiting” until go is greater or equal than one. That means that

the PLAY ERi process has played the note i and the ADDi process can add a new

symbol to the FO. The other condition Si−1 ≥ −1 is because the first suffix link of

the FO is equal -1 and that suffix link cannot be followed in the simulation phase. In

addition, the SY NC process is also “waiting” for the current dynamics Qu to take

a value greater of equal than 0.

SY NCi(α, γ)
def
=

when Si−1 ≥ −1∧ go ≥ i∧Qu > 0 do (ADDi(α, γ) ‖ next SY NCi+1(α, γ))

||unless Si−1 ≥ −1 ∧ go ≥ i ∧Qu > 0 next SY NCi(α, γ)

A waitn process is necessary to wait until n symbols have been learned to launch

the IMPROV process.
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WAIT (n, τ, β)
def
=

when go = n do next IMPROV (n, τ, β) || unless go = n next WAIT (n, τ, β)

The system is modeled as the PLAY ER and the SY NC process running in parallel

with a process waiting until n symbols have been played to start the IMPROV

process. The reader should remeber that α is the recombination factor, representing

the proportion of new sequences desired. β represents the factor for decreasing the

importance of a factor link when it is chosen in the simulation phase. γ represents

the importance of a new factor link in relation with the other factor links coming

from the same state. τ is a parameter for changing musical attributes in the notes.

Finally, n is a parameter representing the number of notes that must be learned

before starting the simulation phase.

SY STEM(n, α, β, γ, τ)
def
=

!tell (S0 = −1) || SY NC1(α, γ) || PLAY ER1(τ) || WAIT (n, τ, β)

4.4. Summary

We modeled all the concepts described in previous chapters using pntcc. Al-

though synchronization and probabilistic choice are modeled declaratively, matching

the time-units is not an easy task because the value of a cell only can be changed

in the following time-unit. If we change the value of a cell in the scope of an unless

process, we need to be aware that the value will only be changed two time-units

after.

4.5. Related work

The Omax model uses FO, but instead of using ntcc, it uses shared state concur-

rency (for synchronizing the improvisation phases) and message passing concurrency

(for synchronizing OpenMusic and Max/Msp). Although this a remarkable model,

we believe that ntcc can provide an easier way to synchronize processes and to rea-

son about the correctness of the implementation because it is obviously easier to

synchronize declaratively. Constraints provide a much more powerful way to express

declaratively complex synchronizing patterns. Since the ntcc model has a logical
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counterpart [22], it is possible to prove properties of the model. For instance, the

fact that it always (or never or sometimes) chooses the longest context, or that

repetitions of some given subsequence are avoided.

Probabilistic Ccofmi [26] fixes the problems with synchronization and extends

the notion of probabilistic choice in the improvisation phase, giving it a clear and

concise semantic. However, it does not model how can probabilistic distributions

may change from a time-unit to another based on user and computer interaction.
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5 Implementation

A ntcc interpreter is a program that takes ntcc models and creates a program

that interacts with an environment, simulating the behavior of the ntcc models.

Ntcc interpreters (including our interpreter) are designed to simulate a finite ntcc

model. It means that they only simulate a finite number of time-units.

During the last decade, three interpreters for ntcc have been developed. Lman

[20] by Hurtado and Muñoz in 2003, NtccSim (http://avispa.puj.edu.co) by the

Avispa research group in 2006, and Rueda’s sim in 2006. They were intended to

simulate ntcc models, but they were not made for real-time interaction. Recall

from the introduction that soft real-time interaction means that the user does not

experience noticeable delays in the interaction.

When designing a ntcc interpreter, we need a constraint solving library or pro-

gramming language allowing us to check stability (i.e., know when a time-unit is

over), check entailment (i.e., know if a constraint can be deduced from the store),

post constraints, and synchronize the concurrent access to the store. These tasks

must be performed efficiently to achieve a good performance.

The authors of the ntcc model for interactive scores proposed to use Gecode as

a constraint solving library for future ntcc interpreters, and create an interface for

Gecode to OpenMusic to specify multimedia interaction applications. Furthermore,

they proposed to extend Lman to work under Mac OS X using Gecode.

One objective of this thesis is to develop a prototype for a ntcc interpreter real-

time capable. We followed the advise from the authors of the interactive scores model

and we tried out several alternatives to develop an interpreter using Gecode.

Our first attempt was using a thread to represent each ntcc process in the sim-

ulation. However, we found out that using threads adds an overhead in the perfor-

mance of the interpreter because of the context-switch among threads, even when

using lightweight (lw) threads. Then, we tried using event-driven programming. Per-

formance was better compared with threaded implementations. However, each time
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a when process asks if a condition can be entailed, we need to check for stability,

thus adding an unnecessary overhead. The reader may find more information about

our previous attempts in Appendix 8.3 and performance results in chapter 6.

Our implementation, Ntccrt, is once again based on a simple but powerful con-

cept. The when and
∑

processes are encoded as propagators in Gecode. That way

Gecode manages all the concurrency required for the interpreter. Gecode calls the

continuation of a process when a process condition is assigned to true.

On the other hand, tell processes are trivially codified to existing Gecode prop-

agators and timed agents (i.e. ∗, !, unless, ← and next) are managed providing

different process queues for each time-unit in the simulation.

Our interpreter works in two modes, the developing mode and the interaction

mode. In the developing mode, the users may specify the ntcc system that they

want to simulate in the interpreter. In the interaction mode, the users execute the

models and interact with them.

This chapter is about the design and implementation of Ntccrt. We explain

how to encode all the ntcc processes. We also explain the execution model of the

interpreter. After that, we show how to run Ccfomi in the interpreter.

In addition, we describe how we made an interface to OpenMusic and how we can

generate binary plugins for data-flow programming languages: Pure Data (Pd) [27]

or Max/Msp [28] where MIDI, audio, or video inputs/outputs can interact with a

Ntccrt binary. Finally, we give some conclusions, future work, and a short description

of the other existing interpreters. A detailed description of Ntccrt, the generation

of binary plugins, Pure Data, Max/Msp, and the previous Ntccrt prototypes can be

found in a previous publication [43].

5.1. Design of Ntccrt

Our first version of Ntccrt allowed us to specify ntcc models in C++ and execute

them as stand-alone programs. Current version offers the possibility to specify a ntcc

model on either Lisp, Openmusic or C++. In addition, currently, it is possible to

execute ntcc models as a stand-alone program or as an external object (i.e., a binary

plugin) for Pd or Max.
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5.1.1. Developing mode

In order to write a ntcc model in Ntccrt, the user may write it directly in C++,

use a parser that takes Common Lisp macros as input or defining a graphical “patch”

in OpenMusic. Using either of these representations, it is possible to generate a

stand-alone program or an external object (fig 5.1).

OpenMusic
interface

Ntccrt
compiler

Pure Data
external

Max/Msp
external

Common Lisp
interface

C++
interface Stand-alone

program

User

Programmer

Figure 5.1: Ntccrt: Developing mode

To make an interface for OpenMusic, first, we developed a Lisp parser using

Common Lisp macros to write an ntcc model in Lisp syntax and translate it to

C++ code. Lisp macros extend Lisp syntax to give special meaning to characters

reserved for users for this purpose. Executing those macros automatically compile a

ntcc program.

After the success with Lisp macros, we created OpenMusic methods to represent

ntcc processes. Openmusic methods are a graphical representation using the Com-

mon Lisp Object System (CLOS). Those graphical objects are placed on a graphical

“patch”. Executing the “patch” generates a Ntccrt C++ program.

5.1.2. Execution mode

To execute a Ntccrt program we can proceed in two different ways. We can create

a stand-alone program that can interact with the Midishare library [10], or we can

create an external object for either Pd or Max. An advantage of compiling a ntcc

model as an external object lies in using control signals and the message passing
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API provided by Pd and Max to synchronize any graphical object with the Ntccrt

external.

Ntccrt Program

Midishare input

Midi input

Control signals

Midishare output

Midi output

Control signals

Only Available when executing a Ntccrt program in Pure Data or Max/Msp

Figure 5.2: Ntccrt: Interaction mode

To handle MIDI streams (e.g., MIDI files, MIDI instruments, or MIDI streams

from other programs) we use the predefined functions in Pd or Max to process MIDI.

Then, we connect the output of those functions to the Ntccrt binary plugin. We also

provide an interface for Midishare, useful when running stand-alone programs (fig.

5.2).

5.2. Implementation of Ntccrt

Ntccrt is the first ntcc interpreter written in C++ using Gecode. In this section,

we focus on describing the data structures required to represent each ntcc agent.

Then, we explain how the interpreter makes a simulation of a ntcc model. Ntcc

agents are represented by classes. To avoid confusions, we write the agents with

bold font (e.g., when C do P) and the classes with italic font (e.g., When class).

5.2.1. Data structures

To represent the constraint systems we need to provide new data types. Gecode

variables work on a particular store. Therefore, we need an abstraction to represent

ntcc variables present on multiple stores with the same variable object. Boolean

variables are represented by the BoolV class, FD variables by the IntV class, FS
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variables by the SetV class, and infinite rational trees (with unary branching) by

SetV Array, BoolV Array, and IntV Array classes.

After encoding the constraint systems, we defined a way to represent each process.

All of them are classes inheriting from AskBody. AskBody is a class, defining an

Execute method, which can be called by another object when it is nested on it.

To represent the tell agent, we defined a super class Tell. For this prototype, we

provide three subclasses to represent these processes: tell (a = b), tell (a ∈ B), and

tell (a > b). Other kind of tell agents can be easily defined by inheriting from the

Tell superclass and declaring an Execute method.

For the when agent, we made a When propagator and a When class for calling

the propagator. A process when C do P is represented by two propagators: C ↔ b

(a reified propagator for the constraint C) and if b then P else skip (the When

propagator). The When propagator checks the value of b. If the value of b is true, it

calls the Execute method of P . Otherwise, it does not take any action. Figure 5.3

shows how to encode the process when a = c do P using the When propagator

when a=c do P

STORE STORE

a=c ↔ b

b

if b then P
else skip

Figure 5.3: Example of the When propagator

To represent the
∑

agent (i.e. non-deterministic choice ) we made the parallel

conditional propagator. This propagator receives a sequence of tuples [< b1, P1 >

... < bn, Pn >], where bi is a Gecode boolean variable representing the condition of a

reified propagator (e.g., a = c↔ bi) and Pi (a pointer to an AskBody object) is the

process to be executed when bi is assigned to true.

The When propagator executes the process Pk associated to the first guard that

is assigned to true. It means Pk such that k = min({1 ≤ i ≤ n, bi = true}). Then,

its work is over. If all the variables are assigned to false, its work is over too.
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The When propagator is based on the idea of the Parallel conditional combina-

tor proposed by Schulte [41]. A curious reader might ask how we obtain a non-

deterministic behavior. In order to make a non-deterministic choice, we pass the

parameters to the propagator in a random order. That way, the propagator always

chooses the first process which condition is true, but since the processes (and condi-

tions) are given in a random order, it will simulate a non-deterministic choice. Figure

5.4 shows how to encode the process
∑
x ∈ P when x ∈ waitj do tell (controlj = x)

using the parallel conditional propagator. This process is explained in Appendix

8.4.

STORE

∑
x∈P

when x ∈ waitj do ( tell (controlj = x))

STORE

1 ∈ waitj ↔ b1

2 ∈ waitj ↔ b2

controlj = min({1 < i < n, bi = true})

b1 b2

Figure 5.4: Example of the Parallel conditional propagator

Local variables are easily represented by an instruction allowing the user to cre-

ate a new variable at the beginning of a procedure. Then, that new variable persists

during the following time-units being simulated. This implementation of local vari-

ables is useful when there is a process !P and P contains local variables. The other

variables are declared at the beginning of the simulation.

37



Timed agents are represented by the TimedProcess class. TimedProcess is an

abstract class providing a pointer for the current time-unit, for a queue used for

the unless processes, for a queue used for the persistent assignation processes, for a

queue used for the other processes, and for the continuation process. Each subclass

defines a different Execute method. For instance, the Execute method for the Star

class randomly chooses the time-unit to place the continuation (an AskBody object)

in its corresponding process queue.

The Unless class and the Persistent assignation class are different. The Execute

method of the Unless objects and the the Persistent assignation objects are called

after calculating a fixpoint common to all the processes in the process queue. For-

mally, a propagator can be seen as a function F : S → S, receiving a store and

returning a store. A fixpoint for a propagator is a store x such that F (x) = x. When

Gecode calculates a store, which is a fixpoint for all propagators, we said that the

store is stable.

After calculating a fixpoint, if the condition for the Unless cannot be deduced

from the stable store, its continuation is executed in the next time-unit. On the

other hand, the Persistent assignation copies the domain D of the variable assigned,

when the store is stable. Then, it assigns D to that variable in following time-units

(creating a tell object for each following time-unit).

We also have a Procedure class used to model both, ntcc simple definitions

(e.g., A
def
= tell(a = 2)) and ntcc recursive definitions (e.g., B(i)

def
= B(i+1)), which

are invocated using the Call class. For ntcc recursive definitions, we create local

variables simulating call-by-value (as it is specified in the formalism). Recursion in

ntcc is restricted. Parameters have to be variables in the store and we can only

make a recursive call in a recursive procedure. However, Ntccrt does not check these

conditions (they are left to the user) and implements general recursion.

5.2.2. Execution model

In order to execute a simulation, the users write a ntcc mdel in Ntccrt, compile it,

and then they call the compiled program with the number of units to be simulated

and the parameters (if any) of the main ntcc definition. For each time-unit i,

the interpreter executes the following steps: First, it creates a new store and new

variables in the store. Then, it processes the input (e.g., MIDI data coming from

PD or Max ). If it is simulating the first time-unit, it calls the main ntcc definition
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with the arguments given by the user.

After that, it moves the unless processes to the ith unless queue, moves the

persistent assignation processes to the ith persistent assignation queue, and ex-

ecutes all the remaining processes in the ith process queue. Then, it calculates a

fixpoint. Note how we only calculate one fixpoint each time-unit, opposed to the

previous prototypes.

After calculating a fixpoint, it executes the unless processes in the ith unless

queue and executes the persistent assignations in the ith persistent assignation

queue. Then, it calls the output processing method (e.g., sending some variable

values to the standard output or through a MIDI port). Finally, it deletes the

current store. Figure 5.5 illustrates the execution model.

PROCESS QUEUE - TIME UNIT 0P0 P1 PN

UNLESS QUEUE - TIME UNIT 0P0 P1 PN

P. ASSIGMENT QUEUE - TIME UNIT 0P0 P1 PN

...

...

...

PROCESS QUEUE - TIME UNIT 1P0 P1 PN

UNLESS QUEUE - TIME UNIT 1P0 P1 PN

P. ASSIGMENT QUEUE - TIME UNIT 1P0 P1 PN

...

...

...

PROCESS QUEUE - TIME UNIT NP0 P1 PN

UNLESS QUEUE - TIME UNIT NP0 P1 PN

P. ASSIGMENT QUEUE - TIME UNIT NP0 P1 PN

...

...

...

TIME

...

Calculates fixpoint

IN 0

IN 1

IN 2
OUT 1

OUT 2

OUT 0

IN J

OUT J
Input for Time Unit J
Output for Time Unit J

Delete Space

Delete Space

Delete Space

Delete Space

Creates a new Space

Deletes current Space

Figure 5.5: Execution model of the ntcc interpreter
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5.3. Implementation of Ccfomi

Rueda et al ran Ccfomi on their interpreter. They wrote Lisp macros to extend

Lisp syntax for the definition of ntcc processes. We provide a similar interface to

write ntcc processes in Lisp. Furthermore, we can write Ccfomi definitions in Ntccrt

in an intuitive way using OpenMusic. For instance, the Synci process (presented in

chapter 1), in charge of the synchronization between the PLAY ERi and the ADDi

processes, is represented with a few boxes: one for parallel processes, one for the

≤ condition, one for the = condition, and one for when and unless processes (fig.

5.6)

Figure 5.6: Writing the Synci process in OpenMusic

We successfully ran Ccfomi as an stand-alone program using Midishare. We

present the results of our tests with the stand-alone program in Chapter ??. We

also ran it as a Pd plugin generated by Ntccrt. The plugin is connected to the midi-

input, midi-output, and a clock (used for changing from a time-unit to the other).

For simplicity, we generate a clock pulse for each note played by the user (fig. 5.7).

In the same way, we could connect a Metronome object. Metronome is an object

that creates a clock pulse with a fixed interval of time.

5.4. Summary

Further than just developing an interpreter, we developed an interface for Open-

Music to write ntcc models for Ntccrt. Although the OpenMusic interface generates

40



Figure 5.7: Running Ccfomi in Pure Data (Pd)

code for Ntccrt, it is not able to embed Lisp code in the interpreter. In addition,

the current version of the interpreter does not support probabilistic choice nor cells,

required to run our model. This is acceptable because our objective was just to

develop a ntcc interpreter prototype. For that reason, we still do not support pntcc

nor cells (which are not basic operators on ntcc). In the following, we will describe

the possibilities and limitations of the interpreter and possible solutions for future

work.

Additionally, since we encoded the When processes as a Gecode propagators,

we are able to use search in ntcc models without using the
∑

agent. This is not

possible when encoding the when processes as lightweight threads or OS threads

because threads cannot be managed inside Gecode search engines. Models using

non-deterministic choices are incompatible with the recomputation used in the search

engines.

Ntccrt cannot simulate processes leading the Store to false. For instance,

when false do next tell (fail = true)

‖tell (a = 2)‖tell (a = 3)

Since the when agent is represented as a propagator, once the propagation

achieves a fail state no more propagators will be called in that time-unit, causing

inconsistencies in the rest of the simulation. Fortunately, processes reasoning about

a false Store can be rewritten in a different way, avoiding this kind of situations. For
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instance, the process above can be rewritten as:

when state = false do next tell (fail = true)

‖tell (a = 2)‖tell (a = 3)‖tell (state = false)

Although in many applications we do not want to continue after the store fails

in a time-unit because a failed store is like an exception in a programming language

(e.g., division by zero).

In addition, Ntccrt restricts the domains for the different constraint systems.

The domain for FD variables is [1− 231, 231 − 1] and each set or tree in the FS and

the rational trees variables cannot have more than 231 elements1. This limitation is

due to Gecode, which uses the C++ integer data type for representing its variables.

Another problem arises when we want to call Lisp functions in the interpreter.

This will be usefull to make computer music programs (written in Lisp) to interact

with Ntccrt. Currently, we are only using Lisp to generate C++ code. However, it is

not possible to embed Lisp code in the interpreter (e.g., calling a Lisp function as the

continuation of a when process). To fix that inconvenient, we propose using Gelisp

for writing a new interpreter, taking advantage of the call-back functions provided

by the Foreign Function Interface (FFI) to call Lisp functions from C++. That

way a propagator will be able to call a Lisp function. Although, this could have a

negative impact on performance and in the correctness of the system (e.g., when the

Lisp function does not end).

The implementation of cells is still experimental and it is not yet usable. The

idea for a real-time capable implementation of cells is extending the implementation

of persistent assignation. Cells, in the same way than persistent assignation, require

to pass the domain of a variable from the current time-unit to a future time-unit.

However, persistent assignation usually involves simple equality relations. On the

other hand, the cells assignation may involve any mathematical function g(x) (e.g

g(x) = x2 − 2).

Probabilistic choice is not yet possible neither. For achieving it, we propose

extending the idea used for non-deterministic choice agent
∑

. To model
∑

, it was

enough by determining the first condition than can be deduced and then activate

the process associated to it. For probabilistic choice, we need to check the conditions

1It is not 232 because one bit is used for the sign.
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after calculating a fixpoint, because we need to know all the conditions that can be

entailed before calculating the probabilistic distribution. When multiple probabilistic

choice
⊕

operators are nested, we need to calculate a fixpoint for each nested level.

By implementing cells and probabilistic choice it would be easy to implement the

model proposed for this work. Valencia proposed in [44] to develop model checking

tools for ntcc. In the future, we propose using model checking tools for verifying

properties of complex systems, such as ours.

In addition, Pérez and Rueda proposed in [26] exploring the automatic generation

of models for probabilistic model checker such as Prism [16]. The reader should be

aware that Prism has been used successfully to check properties of real-time systems.

We believe that this approach can be used to verify properties in our system.

Finally, we found out that the time-units inNtccrt do not represent uniform time-

units, because in the stand-alone simulation they have different durations. This is

a problem when synchronizing a ntcc program with other programs. To fix it, we

made the duration of each time-unit take a fixed time. We did that easily by using

the clock provided by Pd or Max and providing a clock input in Ntccrt plugins. That

way we only start simulating a new time-unit once we receive a clock pulse.

On the other hand, fixing the duration of a time-unit has two problems. First, if

the fixed time is less than the time required to compute all the processes in a time-

unit, this makes the simulation incoherent. Second, it makes the simulation last

longer because the fixed time has to be an upper limit for the time-unit duration.

5.5. Related work

Lman was developed as a framework to program RCX Lego Robots. It is com-

posed of three parts: an abstract machine, a compiler and a visual language. We

borrowed from this interpreter the idea of having several queues for storing ntcc’s

processes, instead of using threads. Regrettably, since Lman only supports finite

domain constraints.

NtccSim was used to simulate biological models [14]. It was developed in Mozart-

Oz [32]. It is able to work with finite domains (FD) and a constraint system to reason

about real numbers. We conjecture (it has not been proved) that using Mozart-Oz

for writing a ntcc interpreter it is not as efficient as using Gecode, based on the

results obtained in the benchmarks of Gecode, where Gecode performs better than

Mozart-Oz in constraint solving.

43



Rueda’s sim was developed as a framework to simulate multimedia semantic

interaction applications. This interpreter was the first one representing rational

trees, finite domain , and finite domain sets constraint systems. One drawback

of this interpreter is the use of Screamer [42] to represent the constraint systems.

Screamer is a framework for constraint logic programming written in Common Lisp.

Unfortunately, Screamer is not designed for high performance. This makes the

execution of the ntcc models in Rueda’s sim not suitable for real-time interaction.
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6 Tests and Results

Since the creation of Lman, performance and correctness have been the main

issues to evaluate a ntcc interpreter. Lman was a great success in the history of

ntcc interpreters because by using Lman it was possible to program LegoTM Robots,

and formally predict the behavior of the robots. A few years later, Rueda’s sim was

capable to model multimedia interaction systems.

Although, it is beyond the scope of this research to evaluate whether those inter-

preters are faster than Ntccrt or whether they are able to interact in real-time with a

human player, we conjecture that they are not appropriate for real-time interaction

for simulating hundreds of time-units in complex models such as Ccfomi, based on

the results presented by their authors.

In this chapter we want evaluate the performance of our ntcc interpreter proto-

types and also to evaluate the behavior of Ntccrt. In order to achieve these goals, we

performed different tests to Ntccrt and to our previous implementations of ntcc.

First, we tried to develop a generic implementation of lightweight threads that

could be used in Lispworks. The purpose was to use threads to manage concurrency

in ntcc interpreters. We compared Lisp processes (medium-weight threads), our im-

plementation of threads based on continuations, and our implementation of threads

based on event-driven programming.

We found out that continuations are not efficient in Lispworks. We also found out

that the event-driven implementation of threads is faster than using Lisp processes

or continuations. However, it is very difficult to express instructions such as go-to

jumps, exceptions and local variable definition on event-driven programming.

Then, we tried using both Lisp processes and the event-driven threads to im-

plement ntcc interpreters (explained in Appendix 8.3). We found out that context-

switch of threads and the fact that it checks for stability constantly adds an overhead

in the performance on the ntcc interpreter. For those reasons, we discarded using

threads for the ntcc interpreter. We also found out that encoding ntcc processes as
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Gecode propagators outperforms the threaded implementations of the interpreter.

Each test presented in this chapter was taken with a sample of 100 essays. Time

was measured using the time command provided by Mac OS X and the time macro

provided by Common Lisp. All tests were performed under Mac OS X 10.5.2 using

an Imac Intel Core 2 duo 2.8 Ghz and Lispworks Professional 5.02.

In the graph bars, we present the average of those samples. The vertical axe

is measure in seconds in all graphs. We do not present standard deviation nor

other statistical information because the differences of performances between one

implementation and another were considerable high to reason about the performance

of the implementations. Sometimes, we do not present all the bars in a graph because

they do not fit the scale of the graph.

6.1. Testing Ntccrt performance

In order to test Ntccrt performance, we made two tests. First, we compared a

ntcc specification to find paths in a graph with other three implementations. Second,

we tested Ccfomi using Ntccrt. Recall from the beginning of this chapter that each

test was taken with a sample of 100 essays. Time was measured using the time

command provided by Mac OS X and the time macro provided by Common Lisp.

All tests were performed under Mac OS X 10.5.2 using an Imac Intel Core 2 duo 2.8

Ghz and Lispworks Professional 5.02.

6.1.1. Test: Comparing implementations of ntcc interpreters

We compared the execution times of simulating the specification presented to find

paths in graph concurrently (explained in detail in Appendix 8.4) running on the

event-driven Lisp interpreter and Ntccrt. We also compared them with a concurrent

constraint implementation on Mozart/OZ and a recursive implementation in Lisp

(fig. 6.1).

6.1.2. Test: Executing Ccfomi

Ccfomi is able to receive up to one note each time-unit. A reasonable measure

of performance is the average duration of a ntcc time-unit during the simulation.

We ran Ccfomi in Ntccrt with a player interpretating at most the first 300 notes
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Figure 6.1: Comparing implementation to find paths in a graph

of J.S Bach’s two-part Invention No. 5, as studied in [7]. The player chooses (non-

deterministically) to play a note or postpone the decision for the next time-unit. It

took an average of 20 milliseconds per time-unit, scheduling around 880 processes per

time-unit, and simulating 300 time-units. We simulated these experiment 100 times.

Detailed results can be found at Appendix 8.6. We do not present musical results,

since it is out of the scope of this work to conclude whether Ccfomi produces or

not an improvisation “appealing to the ear”. We are only interested on performance

tests.

Pachet argues in [25] that an improvisation system able to learn and produce

sequences in less than 30ms is appropriate for real-time interaction. Since Ccfomi

has a response time of 20ms in average for a 300 time-units simulation, we conclude

that it is capable of real-time interaction according to Pachet’s research.

6.2. Summary

Ntccrt, our ntcc interpreter based on encoding ntcc processes as Gecode propa-

gators outperforms our threaded and our event-driven implementations of ntcc.

Since we are learning and producing sequences with a response time lower than

30 milliseconds then, according to the authors of the Continuator, we have a system

fast enough to interact with a musician.
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6.3. Related work

Lman’s developers ran a specification to play a MIDI pitch with a fixed duration

each time-unit [19]. The tests were made using a Pentium III 930 MHz, 256 MB

Ram, Linux Debian Woody (3.0), and the RCX 2.0 Lego robot with running BrickOS

2.6.1. They made a simulation with 100 time-units.

This simple process takes an average of 281.25 ms to run each time-unit using

Lman, unfortunately it is not suitable for real-time interaction in music, even if we

would run it on modern computers.

On the other hand, Rueda’s interpreter ran Ccfomi on a 1.67 GHz Apple Power-

Book G4 using Digitool’s MCL version of Common Lisp, taking an average of 25

milliseconds per time-unit, scheduling around 20 concurrent processes. They also

made a simulation with 100 time-units.

Unfortunately, Rueda’s implementation uses some MCL’s functions (not defined

in the Common Lisp standard) and we were not able to run his interpreter in Mac

OS X Intel to compare it with Ntccrt. On the other hand, Lman is designed for

Linux and it is no longer maintained for current versions of Linux and Tcl/tk.
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7 Conclusions

In this chapter, we present a summary of the thesis, some concluding remarks,

and we propose some future work thoughts.

7.1. Summary

We explained how we can model music improvisation using probabilities, ex-

tending the notion of non-deterministic choice described in Ccfomi. Although

this idea is very simple, the probabilities are computed in constant time and

space when the FO is built. We managed to preserve the linear complexity in

time and space of the FO on-line construction algorithm.

Calculating the probability of being on a certain scale makes the model more

appropriate for certain music genres, but it requires to calculate multiple con-

stants, which vary according to the genre of tonal music where the user is

improvising. For that reason, it is discarded.

We explained how we can change the intensity of the notes generated in the

improvisation. This kind of variation in the intensity is something new for

machine improvisation systems as far as we know. We believe that this kind

of approach, where simple variations can be made while preserving the style

learned from the user and being compatible with real-time implementations,

should be a topic of investigation in future work.

We used cells to represent the variables changing from a time-unit to another.

Using cells we modeled a probabilistic distribution that changes according to

the user and computer interaction. As far as we know, this is the first pntcc

model where probabilistic distributions change between time-units. Unfortu-

nately, current version of Ntccrt does not support cells nor probabilistic choice.
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We ran Ccfomi in Ntccrt taking an average of 20 milliseconds per time-unit

(see Chapter 6). Since we are learning and producing sequences with a re-

sponse time less than 30 milliseconds then, according to the authors of the

Continuator, we have a system fast enough to interact with a musician.

Although Gecode was designed for solving combinatory problems using con-

straints, we found out that using Gecode for Ntccrt give us outstanding results

for writing a ntcc interpreter.

Unfortunately, the interpreter is not able to execute processes leading the store

to false. However, processes reasoning about a false store can be rewritten in

a different way, avoiding this kind of situations.

7.2. Concluding remarks

We show how we can make a probabilistic extension of Ccfomi using the Factor

Oracle. This extension has three main features. First, it preserves the linear time

and space complexity of the on-line Factor Oracle algorithm. The Factor Oracle was

chosen as the data structure to capture the user style in Ccfomi because of its linear

complexity. Our extension would not be worth if we had changed the complexity

fo the Factor Oracle on-line construction algorithm in order to add probabilistic

information to the model, making it incompatible with real-time.

Second, we are using pntcc (a probabilistic extension of ntcc) for our model.

The advantage of pntcc is that we do not need to to model all the processes in a new

calculus to extend Ccfomi, instead we use pntcc where we have all the agents defined

in ntcc (except the ∗ agent, which is not used in this work) and a new agent for

probabilistic choice. Adding probabilistic choice to Ccofmi, we avoid loops without

control during the improvisation that may happen without control in Ccfomi due to

its non-deterministic nature. In addition, changing the probability distribution, we

could favor repetitions in the improvisation, if desired.

Third, the variation in the intensity during the improvisation. This is, as far as

we know, the first model considering this kind of variation. Generating variations

in the intensity during improvisation, we avoid sharp differences between the user

and computer intensity, making the improvisation appealing to the ear (according

the musicians we interviewed). Variations in the musical attributes are well-known

for decades in Computer Assisted Composition, but in interactive systems (such
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as machine improvisation) variations are still an open subject, in part, due to the

real-time requirements of the interactive systems.

If the reader does not consider relevant using process calculi (such as pntcc) to

model, verify and execute a real-time music improvisation system, we pose the reader

the following questions. Has the reader developed a real-time improvisation system

on a programming language mixing non-deterministic and probabilistic choices? Try

verifying the system formally! Is it an easy task? Would the reader be able to write

such system in 50 lines of code? Using pntcc, we did it.

If we can model such systems using pntcc and process calculi have been well-

known in theory of concurrency for the past two decades, why they have not been

used in real-life applications? Garavel argues that models based on process calculi are

not widespread because there are many calculi and many variants for each calculus,

being difficult to choose the most appropriate. In addition, it is difficult to express

an explicit notion of time and real-time requirements in process calculi. Finally, he

argues that existing tools for process calculi are not user-friendly.

We want to make process calculi widespread for real-life applications. We left the

task of representing real-time in process calculi and choosing the appropriate variant

of each calculus for each application to senior researchers. This work focuses on

developing a real-life application with pntcc and showing that our interpreter Ntccrt

is a user-friendly tool, providing a graphical interface to describe ntcc processes

easily and compile models such as Ccfomi to efficient C++ programs capable of

real-time user interaction. We also showed that our approach to design Ntccrt offers

better performance than using threads or event-driven programming to represent the

processes.

The reader may argue that although we can synchronize Ntccrt with an external

clock provided by Max or Pd, this does not solve the problem of simulating models

when the clock step is smaller than the time necessary to compute a time-unit. In

addition, the reader may argue that we encourage formal verification of ntcc and

pntcc models, but there is not an existing tool to verify these models automatically,

not even semi-automatically.

The reader is right! For that reason, currently the Avispa research group (spon-

sored by Pontificia Universidad Javeriana de Cali) is developing an interpreter for an

extension of ntcc capable of modeling time-units with fixed duration. In addition,

Avispa is proposing to Colciencias a project called Robust theories for Emerging Ap-
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plications in Concurrency Theory: Processes and Logic Used in Emergent Systems

(REACT-PLUS). REACT-PLUS will focus on developing verification tools for ntcc,

pntcc and other process calculi. In addition, the project will continue developing

faster and easier to use interpreters for them.

We invite the reader to read the following section to know about the future work

thoughts that we propose. In addition, the reader may find more information about

the REACT-PLUS proposal at http://www.lix.polytechnique.fr/comete/pp.html.

7.3. Future work

In the future, we propose extending our research in the following directions.

7.3.1. Extending our model

We propose capturing new elements in the music sequences. For instance, con-

sidering the music timbre, music pitch/amplitude variation (e.g., vibrato, bending

and acciaccatura), and resonance effects (e.g., delay, reverb and chorus).

7.3.2. Improvisation set-ups

Several concurrent improvisation situation set-ups have been proposed [4], [8],

but none of them have been implemented for real-time music improvisation. Rueda

et al. in [35] propose the following set-ups: n performers and n oracles learning and

performing; one performer, one oracle learning, and several improvisation processes

running concurrently in the same oracle; one performer and several oracles learning

from different viewpoints of the same performance.

7.3.3. Using Gelisp for Ntccrt

Currently, we are only using Lisp to generate C++ code. However, it is not

possible to embed Lisp code in the interpreter. To work around that, we propose

using Gelisp for writing a new interpreter, taking advantage of the call-back functions

provided by the Foreign Function Interface (FFI) to call Lisp functions from C++.

That way a process can trigger the execution of a Lisp function.

52



7.3.4. Adding support for cells for Ntccrt

The idea for a real-time capable implementation of cells is to extend the imple-

mentation of persistent assignation. Cells, in the same way than persistent assigna-

tion, require to pass the domain of a variable from the current time-unit to a future

time-unit.

7.3.5. Developing an interpreter for pntcc

Pérez and Rueda already propose an interpreter for pntcc. To achieve probabilis-

tic choice in Ntccrt, we propose extending the idea used for non-deterministic choice

agent
∑

. To model
∑

, it was enough by determining the first condition that can be

deduced and then activate the process associated to it. For probabilistic choice, we

need to check the conditions after calculating a fixpoint, because we need to know all

the conditions that can be entailed before calculating the probabilistic distribution.

When multiple probabilistic choice
⊕

operators are nested, we need to calculate a

fixpoint for each nested level.

7.3.6. Developing an interpreter for rtcc

There is not a way to describe the behavior of a ntcc time-unit if the fixed time is

less than the time required to execute all the processes scheduled. For that reason, we

propose developing an interpreter for the Real Time Concurrent Constraint (rtcc)

[40] calculus.

Rtcc is an extension of ntcc capable of dealing with strong time-outs. Strong

time-outs allow the execution of a process to be interrupted in the exact instant in

which internal transitions cause a constraint to be inferred from the store. Rtcc

is also capable of delays inside a single time unit. Delays inside a single time unit

allows to express things like “this process must start 3 seconds after another starts”.

Sarria proposed in [40] developing an interpreter for rtcc. We believe that we can

extend Ntccrt to simulate rtcc models.

7.3.7. Adding other graphical interfaces for Ntccrt

For this work, we conducted all the tests under Mac OS X using Pd and stand-

alone programs. Since we are using Gecode and Flext to generate the externals,

they could be easily compiled to other platforms and for Max. We used Openmusic
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to define an iconic representation of ntcc models. In the future, we also propose

exploring a way of making graphical specifications for ntcc similar to the graphical

representation of data structures in Pd.

7.3.8. Developing model checking tools for Ntccrt

Valencia proposed using model checking tools for verifying properties in complex

ntcc models. In addition, Pérez and Rueda proposed developing model checking

tools for pntcc. For instance, they propose exploring the automatic generation of

models for Prism based on a pntcc model. We propose generating models to existing

model checkers automatically to prove properties of the systems before simulating

them on Ntccrt.
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8 Appendix

8.1. Algorithms

Following, we present four algorithms. The Factor Oracle (FO) on-line algo-

rithm, the FO algorithm that calculates the context, our first approach to extend

the FO algorithm with probabilistic choice, and an example of the current dynamics

algorithm.

8.1.1. Factor Oracle on-line algorithm

This is the on-line algorithm to build a FO presented in [1].

ADD-LETTER(p = p1p2...pm,σ)

Create a new state m+ 1

Create a new transition from m to m+ 1 labeled by σ

k ← Sp(m)

while k > −1 and there is no transition from k by σ do

Create new transition from k to m+ 1 by σ

k ← Sp(k)

if K == −1 then

s ← 0

else s ← where leads the transition from k by σ

Spσ(m+ 1) ← s

return Oracle(p = p1p2...pmσ) ← s

ORACLE-ON-LINE(p = p1p2...pm)

Create Oracle(ε) with one single state

Sε[0] ← −1

for i ← 0 to m do
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Oracle(p = p1p2...pi) ← ADD-LETTER(Oracle(p = p1p2...pi−1),pi)

Theorem 1 The complexity of Oracle-On-line is O(m) in time and space [1].

8.1.2. Factor Oracle on-line algorithm that calculates the
context

Following the present the FO algorithm that calculates the context, preserving

linear time and space complexity. It was taken from [17].

The algorithm to add a new symbol to the FO

NewAddLetter(Oracle(p[1..i], σ)

01 Create a new state i+ 1

02 δ(i, σ) ← i+ 1

03 j ← Sp[i]

04 π1 ← i

05 while j > −1 and δ(j, σ) is undefined do

06 δj, σ ← i+ 1

07 π1 ← j

08 j ← Sp[j]

09 if j = −1 then

10 s ← 0

11 else s ← δ(j, σ)

12 Sp[i+ 1] ← s

13 lrs[i+ 1] ← LengthReppeatedSuffix(π1, Sp[i+ 1])

14 return Oracle(p[1..i], σ)

Finding the length of the repeated suffix of p[i..i+ 1]

LengthReppeatedSuffix(π1, s)

01 if s = 0 then

02 return 0

03 return LengthCommonSuffix(π1, s− 1)+1

Finding the common suffix of p[1..i] and p[1..S[i+ 1]− 1]
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LengthCommonSuffix(π1, π2)

01 if π1, S[π1] then

02 return lrs[π1]

03 else while S[π2] 6= S[π1] do

04 π2 ← S[π2]

05 return min(lrs[π1], lrs[π2])

8.1.3. Example of the current dynamics algorithm

This is an example of executing the current dynamics algorithm (fig. 8.1) pre-

sented in chapter 3 for the sequence D = [28, 28, 38, 25, 40, 30].

8.2. Our previous approaches for the model

Following, we present our previous approaches to model probabilistic choice and

changing the attributes of the notes during the improvisation. Probabilistic choice

was discarded because it is not compatible with real-time. On the other hand,

changing the pitch and the duration during the improvisation was discarded because

it is not suitable for all music genres (e.g., music genres that are not based on music

scales) and it requires elaborate training.

8.2.1. Extension for probabilistic choice

The idea behind this extension is to change all the values for ρ leaving from state

i when adding a new transition leaving from state i. In addition, when choosing a

transition during the improvisation phase, it is necessary to change the value ρ for all

the transitions leaving from state i. This posses a big problem, to change the value

of ρ for all the transitions leaving from state i, changes the complexity of the FO

on-line algorithm from linear to quadratic in time. For that reason, this extension

was discarded.

8.2.1.1. Adding a new transition to the FO

Let γ take values in the range [0..1]. γ is a constant that regulates the priority

for the new transitions added to the FO. Figure 8.2 represents the process of adding

a new transition to the FO.
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 28

SUM = 28
N = 1
AVERAGE = 28

(a)

 28 28

SUM = 56
N = 2
AVERAGE = 28

(b)

 38  28 28

SUM = 94
N = 3
AVERAGE = 31,33

(c)

 25  38  28 28

SUM = 119
N = 4
AVERAGE = 29,75

(d)

40  25  38  28

SUM = 119+40-28 = 131
N = 4
AVERAGE = 35,20

28

(e)

30  40  25  38

SUM = 131+30-28 = 133
N = 4
AVERAGE = 33,25

28

(f)

Figure 8.1: Current dynamics for D = [28, 28, 38, 25, 40, 30] and τ = 4.
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S0

S1

S2

Si

...

ρ = a1

ρ = a2

ρ = aI

S0

S1

S2

Si

...

Si+1

ρ = a1 ∗ (1− γ)

ρ = a2 ∗ (1− γ)

ρ = ai ∗ (1− γ)

ρ = 1 ∗ γ

Figure 8.2: Adding a new transition to the FO

8.2.1.2. Choosing a transition during improvisation

Let β take values in the range [0..1], and be a constant regulating the change of

probabilities when choosing a transition. The process of changing the probabilities

when choosing a transition is represented in figure 8.3.

S0

S1

Sk

Si

...

ρ = a1 ∗ β

ρ = ai ∗ β

...
ρ = ak S0

S1

Sk

Si

...

ρ = a1 ∗ β

ρ = ai ∗ β

...
ρ = ak + (a1 + ...ak−1 + ak+1 + ...ai) ∗ (1− β)

Figure 8.3: Choosing a transition k during improvisation

8.2.2. Pitch variation

The idea is finding on which scale the user is playing in. Based on that suppo-

sition, we generate new pitches that belong to that scale. This has two problems.

First, it is necessary to calculate the scale on which the user is playing. Second, it

is necessary to rank the notes of the scale to give a higher priority to some notes of

the scale over others.
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8.2.2.1. Probability of being on a certain music scale

In order to know on which music scale is the improvisation learned from the user,

we count the notes played by the user that are contained in the scale. We are con-

sidering five types of scales used in western music [15]: Major, Minor, Pentatonic,

Major Harmonic and Minor Harmonic. For each of those, there are 12 scales cor-

responding to C,C#,D,D#,E,F ,F#,G,G#,A,A#,B. Therefore, we are considering

60 different scales. The goal is to find out on which of those 60 scales the user is

playing.

For instance, the fragment of the Happy Birthday (fig. 2.2) was analyzed in the

60 possible scales. We found out that multiple scales have the same result as it is

show in table 8.1 . How can we differentiate, between C Major, C Major Harmonic

and A Minor? We tried ranking each degree of the scale, multiplying each degree of

the scale by a factor. This partially solves the problem to differentiate among scales,

but how can the value of such factors calculated? This would required additional

training and it will be specific for some music genres. For that reason, we discarded

the development of this extension.

Scale Formula Result
C Major NC +ND +NE +NF +NG +NA +NB 6
A Minor NA +NB +NC +ND +NE +NF +NG 6

C Major Harmonic NC +ND +NE +NF +NG# +NA +NB 3
A minor Pentatonic NA +NC +ND +NE +NG 5

G major NG +NA +NB +NC +ND +NE +NF# 6

Table 8.1: Automatically finding the scale for the Happy Birthday fragment

In addition, this idea is not compatible music genres that are not based on the

music scales we proposed.

8.2.3. Duration variation

In order to preserve the style learned, we are going to replace a note with a du-

ration ∆ by a sequence of notes (already played by the user) whose total duration is

equal to the duration of ∆. For instance, in the Happy Birthday fragment, we can

replace (B, 1000, 60) by a sequence already played such as

[(G, 500, 90), (C, 500, 100)]
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[(G, 375, 80), (G, 125, 60), (A, 500, 100)]

[(A, 500, 100), (G, 500, 90)]

preserving the original duration, in this case
∑

i[di] = ∆ = 1000.

8.3. Our previous prototypes for the ntcc inter-

preter

Before developing Ntccrt, we explored some combinations of programming lan-

guages (C++ and Common Lisp) and concurrency models, threads and event-driven

programming.

The first problem we faced when designing the interpreter was interfacing Gecode

to Common Lisp. Since OpenMusic is written on Common Lisp. First, we redesigned

the Gecol library to work with Gecode 2.2.0 (current version of Gecode). Gecol is

an Opensource interface for Gecode 1.3.2 originally developed by Killian Sprote.

Unfortunately, Gecol 2 is still a low-level API as Gecol. For that reason, using it

requires deep knowledge of Gecode and it has a difficult syntax.

To fix that inconvenient, we decided to upgrade the Gelisp [34] library (origi-

nally developed by Rueda for Gecode 1.3.2) to Gecode 2.2.2. We successfully used

this library to solve Constraint Satisfaction Problems (CSP) in the computer music

domain in [43]. This library is easy to use and could be the foundation of a new

version of Ntccrt.

8.3.1. Threaded interpreters in Lisp and C++

Using Gecol 2, we developed a prototype for the ntcc interpreter in Lispworks

5.0.1 professional using Lispworks processes (based on pthreads) under Mac OS X.

In a similar way, we made another interpreter using C++, Gecode, and Pthreads (for

concurrency control).

In both threaded prototypes, the tell agents are modeled as threads adding a

constraint to the store, which access is controlled by a lock. On the other hand, the

when processes are threads waiting until the store is free and asking if their condi-

tion can be deduced from the store. If they can deduce its condition they execute

their continuation, else they keep asking (fig. 8.4). The conditions for the when

processes are represented by boolean variables linked to reified propagators. Fortu-
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nately, Gecode provides reified propagators for most constraints used in multimedia

interaction (e.g. equality and boolean constraints).

GECOL

GECODE STORE

L
I
S
P

C
+
+

LISPWORKS
LOCK

TELL 1
TELL 2

ASK NASK 1

TELL N

PTHREADS
LOCK

TELL 1
TELL 2

ASK NASK 1

TELL N

C
+
+

a) Using LispWorks processes b) Using Pthreads in C++

Figure 8.4: Threaded ntcc interpreters using Lispworks and using C++

Since Gecode is not thread-safe, we protect the access to the store with a lock,

synchronizing the access to Gecode. A library is thread-safe when it supports the

concurrent access to its variables and functions. However, we still have a problem.

Each time we want to ask if a condition can be deduced from the store, we calculate

a fixpoint, because propagators in Gecode are “lazy”(they only act by demand).

The drawback of both threaded implementations (in C++ and Lispworks) is the

overhead of calculating a fixpoint each time they want to query if the “when” condi-

tion can be deduced. Making extensive use of fixpoints would be inefficient even if

we use an efficient lightweight threads library such as Boost (http://www.boost.org)

for C++ .

8.3.2. Event-driven interpreter in Lisp

After discarding the threading model, we found a concurrency model giving us

better performance. We chose event-driven programming for the implementation

of the next prototype. This model is good for a ntcc interpreter because we do

not use synchronous I/O operations and all the synchronization is made by the ask

processes (when,
∑

, and Unless) using constraint entailment. The reader may

see a comparison between the event-driven prototype and the threaded prototype in

chapter 6.

This prototype works on a very simple way. There is an event queue for the

ntcc processes, the processes are represented by events, and there is a dispatcher

67



handling the events. The handler for the When events checks if the boolean variable

b, representing their waiting condition, is assigned. If it is not assigned, it adds the

same When event to the queue, else it checks the value of b. If b is true, it adds the

continuation of the When events to the event queue, otherwise no actions are taken.

On the other hand, the handler for tell events add a constraint to the store. Finally,

the handler for the Parallel events adds all its sub-processes to the event queue (fig.

8.5).

Using event-driven programming led us to a faster and easier implementation

of ntcc than the approaches presented before. However, we realized that instead

of creating handlers for tell, ask, and parallel; and a dispatcher for processing

the events, we could improve the interpreter’s performance taking advantage of the

dispatcher and event queues provided by Gecode for scheduling its propagators,

encoding ntcc processes as Gecode propagators.

SCHEDULLER

DISPATCHER

TELL 
HANDLER

ASK
 HANDLER

PARALLEL 
HANDLER

GECOL

PROCESS 1
PROCESS 2 PROCESS NEVENTS

GECODE STORE

MAIN LOOP

L
I
S
P

C
+
+

Figure 8.5: Ntcc interpreter using event-driven programming and Gecol 2

8.4. Other applications ran in Ntccrt

In this section, we present other applications that we ran in Ntccrt besides Cc-

fomi. These applications were specified using the graphical interface provided in

OpenMusic and they were tested in Pure Data, using an external generated by Ntc-

crt. More details can be obtained at [43].
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8.4.1. The dining philosophers

Synchronization of multiple operations is not an easy task. For instance, consider

the problem of the dining philosophers proposed by Edsger Dijkstra. It consists of

n philosophers sitting on a circular table and n chopsticks located between each of

them. Each philosopher, is thinking until it gets hungry. Once he gets hungry, he

has to take control of the chopsticks to his immediate left and right to eat. When

he is done eating, he restarts thinking.

The dining philosophers problem mentioned before, has a few constraints. The

philosophers cannot talk between them and they require both chopsticks to eat. Fur-

thermore, a solution to this problem must not allow deadlocks, which could happen

when all the philosophers take a chopstick and wait forever until the other chopstick

is released. Additionally, it must not allow starvation, which could happen if one or

more philosophers are never able to eat.

We propose a solution to this problem for n philosophers, using the Ntcc formal-

ism. All the synchronization is made by reasoning about information that can be

entailed (i.e., deduced) from the store or information that cannot be deduced (using

the unless agent). This way, we can have a very simple model of this problem on

which the synchronization is made declarative.

The recursive definition Philosopher(i, n) represents a philosopher living forever.

The philosopher can be in three different states: thinking, hungry or eating. When

the philosopher is on the thinking or eating state, it will choose non- deterministically

to change to the next state or remain on the same state in the next time-unit. It

means it can choose to go from thinking to hungry or from eating to thinking.

On the other hand, when the philosopher is on the hungry state, it will wait

until he can control the first (F) chopstick (left for even numbered and right for

odd numbered). As soon as he controls the first chopstick, it will wait until he can

control the second (S) chopstick. Once he controls both chopsticks, it will change to

the eating state in next time unit.

8.4.1.1. Formal definition

Philosopher(i, n)
def
=

when Sti = thinking do next

(tell (Sti = hungry) + tell (Sti = thinking))

‖ when Sti = hungry do
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when ctrlF = i do

when ctrlS = i do next

(tell (Sti = eating) ‖tell (ctrlS = i) ‖tell (ctrlF = i))

‖ unless ctrlS = i next

(tell (i ∈ waitS) ‖ tell (ctrlF = i) ‖ tell (Sti = thinking))

‖ unless ctrlF = i next (tell (i ∈ waitF ) ‖ tell (Sti = thinking))

‖ when Sti = eating do next

((tell (Sti = thinking) ‖ tell (ctrlF = −1i) ‖ tell (ctrls = −1))+ (tell

(ctrlS = i) ‖ tell (ctrlF = i) ‖ tell (Sti = eating)))

‖ when i%2 = 0 do tell (F = (i− 1)%n) ‖ tell (S = (i+ 1)%n)

‖ when i%2 = 1 do tell (F = (i+ 1)%n) ‖ tell (S = (i− 1)%n)

‖ next Philosopher(i, n)

The Chopstick(j) process chooses non- deterministically one of the philosophers

waiting to control it, when the it is not being controlled by a process.

Chopstick(j)
def
=

unless ctrlj > −1 next∑
x∈Philosophers

when x ∈ waitj donext ( tell (ctrlj = x))

‖ next Chosptick(j))

Finally, the system is modelled as n philosophers and n chopsticks running in

parallel. The philosophers start their lives in the thinking state and all the chopsticks

are free.

System(n)
def
=

n∏
i=0

(Philosopher(i) ‖ Chopstick(i) ‖ Sti = thinking ‖ ctrli = −1)

8.4.1.2. Implementation

Figure 8.6 shows a Pd program where the philosophers are represented as bangs

(a graphical object design to send a message when the user clicks over it or when it

receives a message from another object) and the concurrency control is made by a

Ntccrt external. When the philosophers start eating, the Ntccrt external sends a

message to the bang changing its color. Chopsticks are represented as commentaries

for simplicity.
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Figure 8.6: Synchronizing the dining philosophers using a Ntccrt external in Pd

8.4.2. Signal processing

Ntcc was used in the past as an audio processing framework [37]. In that work,

Valencia and Rueda showed how this modeling formalism gives a compact and precise

definition of audio stream systems. They argued that it is possible to model an

audio system and prove temporal properties using the temporal logic associated to

ntcc. They proposed that each time-unit can be associated to processing the current

sample of a sequential stream. Unfortunately in practice this is not possible since it

will require to execute 44000 time units per second to process a 44Khz audio stream.

Additionally, it poses problems to find a constraint system appropriate for processing

signals.

Another approach to give formal semantics to audio processing is the visual audio

processing language Faust [24]. Faust semantics are based on an algebra of block

diagrams. This gives a formal and precise meaning to the operation programmed

there. Faust has also been interfaced with Pd [13].

Our approach is different since we use a ntcc program as an external for Pd or

Max to synchronize the graphical objects in charge of audio, video or MIDI processing

in Pd. For instance, the ntcc external decides when triggering a graphical object

in charge of applying a delay filter to an audio stream and it will not allow other

graphical objects to apply a filter on that audio stream, until the delay filter finishes

its work.

To illustrate this idea, consider a system composed by a collection of n processes
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(graphical objects applying filters) and m objects (midi, audio or video streams).

When a process Pi is working on an object mj, another process cannot work on mj

until Pi is done. A process Pi is activated when a condition over its input is true.

The system variables are: workj represents the identifier of the process working

on the object j. endj represents when the object j has finished its work. Values

for endj are updated each time unit with information from the environment. inputi

represents the conditions necessary to launch process i, based on information received

from the environment. Finally, waitj represents the set of processes waiting to work

on the object j.

Objects are represented by the IdleObject(j) and BusyObject(j) definitions. An

object is idle until it non - deterministically chooses a process from the waitj variable.

After that, it will remain busy until the endj constraint can be deduced from the

store.

8.4.2.1. Formal definition

IdleObject(j)
def
=

when workj > 0 do next BusyObject(j)

‖ unless workj > 0 next IdleObject(j)

‖ ∑
x∈P

when x ∈ waitj do tell workj = x

BusyObject(j)
def
=

when endj do IdleObject(j) ‖ unless endj next BusyObject(j)

A process i working on object j is represented by the following definitions. A

process is idle until it can deduce (based on information from the environment) that

inputi.

IdleProcess(i, j)
def
=

when inputi do WaitProcess(i, j) ‖ unless inputi next IdleProcess(i, j)

A process is waiting when the information for launching it can be deduced from

the store. When it can control the object, it goes to the busy state.

WaitingProcess(i, j)
def
=

when workj = i do BussyProcess(i, j) ‖ unless workj = i next

WaitingProcess(i, j) ‖ tell i ∈ waitj
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A process is busy until it can deduce (based on information from the environment)

that the process finished working on the object associated to it.

BusyProcess(i, j)
def
=

when endj do IdleProcess(i, j) ‖ unless endj next BusyProcess(i, j)

This system models a situation with 2 objects and 4 processes. The implemen-

tation of this external can be adapted to any kind of objects and processes, repre-

sented by graphical objects in Pd. Ntcc only triggers the execution of each process

workj = i, receives an input endj when the process is done and another input inputi

when the conditions to execute the process i are satisfied.

System()
def
=

IdleObject(1) ‖ IdleObject(2) ‖ IdleProcess(1, 1) ‖ IdleProcess(1, 2)

‖ IdleProcess(2, 1) ‖ IdleProcess(2, 2)

8.4.2.2. Implementation

This system is described in OpenMusic using the graphical boxes we provide.

We present the graphical description of the processes IdleProcess, BusyProcess

and WaitingProcess (see fig. 8.7).

Figure 8.7: Writing a synchronization Ntccrt external in OpenMusic
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8.4.3. Finding paths in a graph concurrently

Following, we describe an application where we use Ntccrt to find, concurrently,

paths in a graph. The idea is having one Ntccrt process for each edge. Each

Edge Process(i, j) sends forward “signals” to its successors and back “signals”

to its predecessors. When an Edge Process(i, j) receives a back “signal” and a

forward “signal”, it tells the store that there is a path and adds j to the set nexti

(A finite set variable containing the successors of the vertex i). After propagation

finishes, we iterate over the resulting sets to find different paths. For instance, we

can build a path in the graph getting the lower-bound of each variable nexti.

8.4.3.1. Formal definition

Edge Process(i, j) represents an edge in a graph.

Edge Process(i, j)
def
=

when Forwardi ∧Backj do (tell (it exists = true) ‖ tell (j ∈ Nexti) )

‖ when Forwardi do tell (Forwardj = true)

‖ when Backj do tell (Backi = true)

The Main process finds a path between the vertices a and b in a graph represented

by edges (a set of pairs (i, j) representing the graph edges). The Main process calls

Edge Process(i, j) for each (i, j) ∈ edges and concurrently, sends forward “signals”

to processes with the form Edge Process(a, j) and back “signals” to processes with

the form Edge Process(i, b). Notice that sending and receiving those “signals” is

greatly simplified by using tell, ask and the ntcc store.

Main(edges, a, b)
def
=∏

(i,j)∈edges
(Edge Process(i, j)) ‖ tell Forwarda = true ‖ tell Backb = true

8.4.3.2. Example

Following, we give an intuition about how this system works. To find a path

between the vertices 1 and 5 (fig. 8.8), it starts by sending forward “signals” to

all the processes with the form Edge Process(1, b) and back “signals” to all the

processes with the form Edge Process(a, 5). As soon as an Edge Process receives
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a back “signal” and a forward “signal”, it tells the store that there is path (i.e., tell

(it exists = true) ).

1 2 3

5

4

Figure 8.8: Example of finding paths in a graph concurrently (1)

Additionally, the reader may notice that there is not a path between vertices 1 and

5 in figure 8.9. In that example, back “signals” sent to processes Edge Process(a, 5)

are not received by any process. Therefore, none of the Edge Processes receives a

back and a forward signal. After calculating a fixpoint, we can ask the constraint

system for the value of it exists. Since the variable is not bounded, we can infer

that there is not a path.

1 2 3

5

4

Figure 8.9: Example of finding paths in a graph concurrently (2)

8.5. Operational semantics from ntcc and pntcc

“The operational semantics defines the states in which programs can be during

execution. This semantics is called this way because is dynamic, that is, it sees a

system as a sequence of operations. Each occurrence of an operation is called a tran-

sition. A transition system is a structure (Γ,−→), where Γ is a set of configurations

γ , and −→⊆ Γ× Γ is a transition relation. Notation γ −→ γ′ defines the transition

from configuration γ to configuration γ′. The transitions are often divided in internal

and external, depending on the system’s behavior. Normally, external transitions are

denoted by =⇒” [40].
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8.5.1. Operational semantics for ntcc

Following, we present the description given in [22]. “Rule OBS says that an

observable transition from P labeled by (c, d is obtained by performing a sequence

of internal transitions from the initial configuration (P, c) to a final configuration

(Q, d) in which no further internal evolution is possible. The residual process R

to be executed in the next time interval is equivalent to F (Q) (the “future” of Q).

The process F (Q), defined below, is obtained by removing from Q summations that

did not trigger activity within the current time interval and any local information

which has been stored in Q, and by “unfolding” the sub-terms within “next” and

“unless” expressions. This “unfolding” specifies the evolution across time intervals

of processes of the form next R and unless c next R.”

Following, we present the internal reduction, presented by → and the observable

reduction represented by⇒. “The relations
a→ are the smallest, which obey the form

Conditions
Conclusion

A rule states that whenever the given conditions have been obtained in the course

of some derivation, the specified conclusion may be taken for granted as well. ”[40]

TELL
(tell(c),d)→(skip,d∧c)

SUM
(
P
i∈I when ci doPi,d)→(Pj ,d)

if d |= cj, j ∈ I

PAR (P,c)→(P ′,d)
(P‖Q,c)→(P ′‖Q,d)

UNL
(unless c nextP,d)→(skip,d)

if d |= c

LOC (P,c∧∃xd)→(P ′,c′)
((localx,c)P,d)→((localx,c′)P ′,d∧∃xc′)

STAR
(∗P,d)→(nextnP,d)

if n ≥ 0

REP
(!P,d)→(P‖next!P,d)

STR γ1→γ2
γ′1→γ′2

if γ1 ≡ γ′1 and γ2 ≡ γ′2
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OBS (P,c)→∗(Q,d)→/

P
(c,d)
=⇒R

if R ≡ F (Q)

The future function (F). Let F : Proc→ Proc be the partial function defined by

F (Q) =


skip if Q =

∑
i∈I when ci do Qi

F (Q1)‖F (Q2) if Q = Q1‖Q2

(local x)F (R) if Q = (local x, c)R

R if Q = next R or Q = unless c next R

8.5.2. Operational semantics for pntcc

Following, we present the description given in [26]. “In pntcc, an observable

transition assumes a particular internal sequence leading to a state where no further

computation is possible. F (Q) is obtained by removing from Q summations that

did not trigger activity and any local information which has been stored in Q, and

by “unfolding” the sub-terms within “next” and “unless” expressions.” Next, we

present the internal reduction, presented by → and the observable reduction repre-

sented by ⇒.

TELL
(tell(c),d)→1(skip,d∧c)

PSUM
(
L
i∈I when ci do (Pi,ai),d){−→a′

j
(Pj ,d)} if d |= cj, j ∈ I

PAR
(P,c)→pi (P

′,d)

(P‖Q,c)→pi (P
′‖Q,d)

UNL
(unless c nextP,d)→1(skip,d)

if d |= c

LOC
(P,c∧∃xd)→pi (P

′,c′)

((localx,c)P,d)→pi ((localx,c′)P ′,d∧∃xc′)

REP
(!P,d)→1(P‖next!P,d)

STR
γ1→piγ2
γ′1→p1γ

′
2

if γ1 ≡ γ′1 and γ2 ≡ γ′2

OBS
<P,c>{→∗a<Q,d>}Schj→/

P
(c,d,a)

=⇒Schj
R

if R ≡ F (Q)
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The future function (F). Let F : Proc→ Proc be the partial function defined by

F (Q) =



skip if Q =
⊕

i∈I when ci do (Qi, ai) or

Q =
∑

i∈I when ci do Qi

F (Q1)‖F (Q2) if Q = Q1‖Q2

(local x)F (R) if Q = (local x, c)R

R if Q = next R or Q = unless c next R

8.6. Tests with Ccfomi: In detail

Detailed information about the tests can be found at http://ntccrt.sourceforge.net/

8.7. Tests with the model to find paths in a graph:

In detail

Detailed information about the tests can be found at http://ntccrt.sourceforge.net/
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