
Undergraduate Thesis Proposal

Bisimilarity Theory for ntcc Calculus

del Valle
Universidad

Researcher
Luis Fernando Pino Duque

Project Supervisor
Juan Francisco Dı́az Frias, Ph.D.

Professor
School of System’s Engineering and Computing

Engineering Faculty
Universidad del Valle

Project Co-Supervisor
Frank D. Valencia, Ph.D.

CNRS Research Scientist (Chargé de Recherche) at
Laboratoire d’Informatique (LIX)

École Polytechnique de Paris
in the INRIA team COMÈTE.

Santiago de Cali - August 26, 2009

1

Contents

1 Introduction 3
1.1 Problem Description . 3

2 Objectives 5
2.1 Main Objective . 5
2.2 Specific Objectives . 5

3 Justification 5

4 Background 6
4.1 Technical Background . 6

4.1.1 Process Calculi . 6
4.1.2 Bisimilarity . 7
4.1.3 Concurrent Constraint Programming 8
4.1.4 CCP-based calculi and ntcc calculus 11
4.1.5 State of the Art . 12

4.2 Concepts . 13
4.2.1 Process . 13
4.2.2 Calculus . 13
4.2.3 Concurrency . 13
4.2.4 Axiom . 13
4.2.5 Theorem . 13
4.2.6 Constraint . 13
4.2.7 Semantics . 14

4.3 Project Context . 14

5 Requirements 14

6 Methodology 15

2

1 Introduction

In today’s world, technology is one of the most important cores for the development of
the society. This role has made access to high-tech devices increasingly frequent. Ele-
ments like Web, wireless networks, high capacity laptops, mobile devices, among others,
have allowed advance towards information globalization, but carrying with it new chal-
lenges and problems that have to be solved for assure a reliable, correct and secure service.

Computer science offers a framework in which information technology can be formal-
ized, allowing establishing conditions where they work correctly. There exist many factors
that affect the correctness of such technologies, one of the most recent and challenging is
the concurrency, and this consists in many processes making use of a system in a simulta-
neous way. It is here where an area of computer science named concurrency theory goes
into action.

In this theory, process calculi are distinguished, its intention is to model and reason
about concurrent systems. Such calculi are capable to express systems formally, hence it
is possible to argue about them for obtaining correct results. There are many examples
such as CCS 1, π-calculus 2, sπ-calculus (π-calculus for arguing about security), among
others, they have been specialized for solving specific problems due to everyone of them
count on with a modeling approach and an associated expressiveness (things that can be
modeled with it). The calculus that will be studied is called ntcc calculus, which uses
logic, constraints and can express process behavior along time.

This project aims to develop a bisimilarity theory for ntcc calculus, which will allow
to analyze processes behavior and will make easier to implement tools associated with this
calculus. It also aims to provide an initial verification prototype for ntcc calculus (with
respect to bisimilarity theory), whose objective is to open the door for developing future
applications that help to automate activities related with the use of this calculus.

1.1 Problem Description

Concurrency theory investigates how to analyze those systems where many processes act
in a simultaneous way, and arguing about them for obtaining conclusions about correct-
ness, security, reliability and other important aspects.

Process calculi are used for this purpose, because they allow making process modeling
in concurrent systems, and depending of its specialization they are able to express, until
certain point, a series of actions that can be object of study for a subsequent reasoning.

Calculus like CCS and π-calculus have developed a notion of equivalence called bisim-
ilarity. This notion is very strong, since it allows to reason (in a simple way) about the
behavioral equivalence between processes, and this is very useful for making verification,

1Calculus of Communicating Systems more information in:

http://en.wikipedia.org/wiki/Calculus_of_communicating_systems
2 More information in: http://en.wikipedia.org/wiki/Pi-calculus

3

http://en.wikipedia.org/wiki/Calculus_of_communicating_systems
http://en.wikipedia.org/wiki/Pi-calculus

reasoning, and other tasks.

Concurrent constraint programming (CCP 3) is a formalism which analyses concur-
rent systems using constraints and logic. It has been extended and specialized in order to
model other important aspects. Especially asynchronous and non-deterministic behavior,
having in mind the time units in which processes are executed. This extension has been
called ntcc.

Such calculus has been developed during the last decade and it has a robust theoretical
base. But there is a problem, this calculus lacks of a behavioral equivalence as the bisimi-
larity theory which is so strong and important in concurrency theory. It is here where this
project aims to contribute to ntcc, by giving to the calculus a bisimilarity theory that
allows to determine when two processes behaves equivalently according to the definition
developed.

Once defined the theory, it is necessary to develop verification techniques, whose objec-
tive is to find a way to determine if two processes are bisimilar. By using these techniques
it will be possible have in mind another important problem, which consists in the lack of
practical tools on which it can be modeled and argued about the equivalences between
processes written in this calculus. Hence, through using of the techniques developed it
will be possible to make an implementation that will provide the possibility of establish if
two processes are bisimilar or not.

Therefore, another objective pursued by this project is to implement an initial proto-
type for ntcc calculus, whose purpose is to use (in a practical way) the bisimilarity notion
for modeling concurrent systems, this will be very specific to a subset of the calculus (due
to its complexity) and will allow to open the gap in the use of bisimilarity for this kind of
applications.

3 Concurrent constraint programming - more information in:

http://en.wikipedia.org/wiki/Concurrent_constraint_logic_programming

4

http://en.wikipedia.org/wiki/Concurrent_constraint_logic_programming

2 Objectives

2.1 Main Objective

Propose a bisimilarity theory for ntcc calculus.

2.2 Specific Objectives

• Define the concept of bisimilarity for ntcc calculus.

• Develop an axiom set that will constitute the base of bisimilarity theory.

• Establish the properties derived from bisimilarity theory.

• Define verification techniques that will provide the possibility of determining the
bisimilarity equivalence between the processes written in ntcc calculus

• Implement an initial prototype that allows describing processes in ntcc calculus and
verifying if they are bisimilar.

3 Justification

Bisimilarity theory is one of the most representative and substantial equivalence in con-
currency theory. As described in previous sections, most important calculi use this notion
for several types of applications (formal verification, simulation, among others).

Likewise, ntcc calculus lacks of a behavioral equivalence like bisimilarity, so it is not
possible to make applications that require it. This is why the importance of this project
lies in the development of a bisimilarity theory for ntcc calculus, which will be innovative
and will bring new forms of applying the calculus to problems of real life.

Moreover, as a complement of theoretical development, the project aims to open the
gap in process verification with ntcc calculus. This will be reflected in the implementation
of an initial prototype that will use bisimilarity notion.

The ntcc calculus has been chosen due to its importance in AVISPA research group,
since this group has decided to strengthen this calculus through REACT project 4, which
is in the conclusion phase and it will continue in REACT+ project. The main idea is to
strengthen ntcc calculus for applying it to problems of real life. Hence, bisimilarity theory
will contribute in the consolidation of such calculus, bringing new application possibilities.

In conclusion, through this project the ntcc calculus will be reinforced with a bisimi-
larity notion, and with an initial prototype that uses it in a practical way.

4Robust theories for Emerging Applications in Concurrency Theory

More information in: http://cic.puj.edu.co/wiki/doku.php?id=grupos:avispa:react

5

http://cic.puj.edu.co/wiki/doku.php?id=grupos:avispa:react

4 Background

4.1 Technical Background

4.1.1 Process Calculi[15]

The process calculi are a diverse family of related approaches to formally modeling concur-
rent systems. Process calculi provide a tool for the high-level description of interactions,
communications, and synchronizations between a collection of independent agents or pro-
cesses.

There are many different process calculi in the literature mainly agreeing in their em-
phasis upon algebra. The main representatives are CCS [4] , CSP [5] and the process
algebra ACP [6, 7]. The distinctions among these calculi arise from issues such as the
process constructions considered (i.e., the language of processes), the methods used for
giving meaning to process terms (i.e. the semantics), and the methods to reason about
process behavior (e.g., process equivalences or process logics). Some other issues addressed
in the theory of these calculi are their expressive power, and analysis of their behavioral
equivalences. It will be described some of the issues named previously.

The Language of Processes. A common feature of the languages of process calculi
is that they pay special attention to economy. That is, there are few operators or combi-
nators, each one with a distinct and fundamental role. Process calculi usually provide the
following combinators:

• Action, for representing the occurrence of atomic actions.

• Product, for expressing the parallel composition.

• Summation, for expressing alternate course of computation.

• Restriction (or Hiding), for delimiting the interaction of processes.

• Recursion, for expressing infinite behavior.

We presuppose an infinite set N of names a, b, ... and then introduce a set of co-names
N = {a | a ∈ N} disjoint from N . The set of labels, ranged over by l and l′, is L = N ∪N .
The set of actions Act, ranged over by the boldface symbols a and b extends L with a
new symbol τ . The action τ is said to be the silent (internal or unobservable) action. The
actions a and a are thought of as being complementary, so we decree that a = a. The
syntax of processes is given by:

P,Q, ... ::= 0 | a.P | P + Q | P || Q | P\a | A 〈b1, ..., bn〉

Intuitive Description. The intuitive meaning of the process terms is as follows.
The process 0 does nothing. a.P is the process which performs an atomic action a and
then behaves as P . The summation P + Q is a process which may behave as either P or
Q. P || Q represents the parallel composition of P and Q. Both P and Q can proceed
independently but they can also synchronize if they perform complementary actions. The
restriction P\a behaves as P except that it cannot perform the actions a or a. The names

6

Figure 1: An operational semantics example, CCS (taken from [18], Page 35)

a and a are said to be bound in P\a. A 〈b1, ..., bn〉 denotes the invocation to a unique

recursive definition of the form A(a1, ..., an)
def
= PA where all the non-bound names of

process PA are in {a1, ..., an}. Obviously PA may contain invocations to A. The process
A 〈b1, ..., bn〉 behaves as PA[b1, ..., bn/a1, ..., an], i.e., PA with each ai replaced by bi - with
renaming of bound names wherever necessary to avoid captures.

Semantics of Processes. The methods by which process terms are endowed with
meaning may involve at least three approaches: operational, denotational and algebraic
semantics. Traditionally, CCS and CSP emphasize the use of the operational and deno-
tational method, respectively, whilst the emphasis of ACP is upon the algebraic method.
For this work it is important to describe operational semantics and behavioral equivalence,
more specifically bisimilarity.

Operational semantics. An operational semantics interprets a given process term by
using transitions (labeled or not) specifying its computational steps. A labeled transition
P

a
−→ Q specifies that P performs a and then behaves as Q. The relations

a
−→ are defined

to be the smallest which obey the rules in Figure 1. In these rules the transition below
the line is to be inferred from those above the line.

4.1.2 Bisimilarity [?]

Once defined operational semantics, then it can be introduced the typical notions of process
equivalence. Especially bisimilarity of CCS calculus, due to its importance in this project.
We need a little notation: The empty sequence is denoted by ε. Given a sequence of
actions s = a1.a2.... ∈ Act∗, define

s
−→ as

7

(
τ

−→)∗
a1−→ (

τ
−→)∗...(

τ
−→)∗

an−→ (
τ

−→)∗

Notice that
ε

=⇒ =
τ

−→
∗

. It is used P
s

=⇒ to mean that there exists a P ′ s.t., P
s

=⇒ P ′

and similarly for P
s

−→.

Strong Bisimilarity. Intuitively, P and Q are strongly bisimilar if whenever P per-
forms an action a evolving into P ′ then Q can also perform a and evolve into a Q′ strongly
bisimilar to P ′, and similarly with P and Q interchanged.

The above intuition can be formalized as follows. A symmetric relation B between
process terms is said to be a strong bisimulation iff for all (P,Q) ∈ B,

If P
a

−→ P ′ then for some Q′, Q
a

−→ Q′ and (P ′, Q′) ∈ B

We say that P is strongly bisimilar to Q, written P ∼ Q iff there exists a strong
bisimulation containing the pair (P,Q).

Weak Bisimilarity. This version abstracts away from silent actions. Bisimilarity
can be obtained by replacing the transitions

a
−→ above with the (sequences of observable)

transitions
s

=⇒ where s ∈ L∗. We shall use ≈ to stand for (weak) bisimilarity. Notice that
P 6∼ τ.P but P ≈ τ.P .

4.1.3 Concurrent Constraint Programming [16]

In his seminal Ph.D. thesis [1], Saraswat proposed concurrent constraint programming as
a model of concurrency based on the shared-variables communication model and a few
primitive ideas taking root in logic. As informally described later, the ccp model elegantly
combines logic concepts and concurrency mechanisms.

The ccp model. A concurrent system is specified in the ccp model in terms of
constraints over the variables of the system. A constraint is a first-order formula repre-
senting partial information about the values of variables. As an example, for a system
with variables x and y taking natural numbers as values, the constraint x+y > 16 specify
possible values for x and y (those satisfying the inequation). The ccp model is param-
eterized by a constraint system, which specifies the constraints of relevance for the kind
of system under consideration, and an entailment relation |= between constraints (e.g,
x + y > 16 |= x + y > 0

During a ccp computation, the state of the system is specified by an entity called
the store in which information about the variables of the system resides. The store is
represented as a constraint, and thus it may provide only partial information about the
variables. Conceptually, the store in ccp is the medium through which agents interact
with each other.

A ccp process can update the state of the system only by adding (or telling) informa-
tion to the store. This is represented as the (logical) conjunction of the store representing

8

Figure 2: A simple CCP scenario

the previous state and the constraint being added. Hence, updating does not change the
values of the variables as such, but constraints further some of the previously possible
values.

Furthermore, ccp processes can synchronize by querying (or asking) information from
the store. Asking is blocked until there is enough information in the store to entail (i.e.,
answer positively) the query, i.e. the ask operation determines whether the constraint
representing the store entails the query.

A ccp computation terminates whenever it reaches a point, called a resting or a qui-
escent point, in which no more information can be added to the store. The output of the
computation is defined to be the final store, also called quiescent store.

Example. (Taken from [16]) For making a clearer description of ccp model, consider
the simple scenario illustrated in figure 2. There are four agents (or processes) wishing to
interact through an initially empty store. Let, starting from the upper leftmost agent in
a clockwise fashion, A1, A2, A3 and A4, respectively.

In this scenario, A1 may move first and tell the others through the store the (partial)
information that the temperature is greater than 42 degrees. This causes the addition of
the item “temperature > 42” to the previously empty store.

9

Now A2 may ask whether the temperature is exactly 50 degrees, and if so it wishes to
execute a process P . From the current information in the store, however, the exact value
of the temperature can not be entailed. Hence, the agent A2 is blocked, and so is the
agent A3 since from the store it can not be determined either whether the temperature is
between 0 and 100 degrees.

However, A4 may tell the information that the temperature is less than 70 degrees.
The store becomes “temperature > 42 ∧ temperature < 70”, and now process A3 can
execute Q, since its query is entailed by the information in the store. The agent A2 is
doomed to be blocked forever unless Q adds enough information to the store to entail its
query.

The Language of Processes CCP. In the spirit of process calculi, the language of
processes in the ccp model is given by a small number of primitive operators or combina-
tors. A typical ccp process language contains the following operators:

• A tell operator, telling constraints (e.g., agent A1 above).

• An ask operator, prefixing another process, its continuation (e.g. the agent A2

above).

• Parallel composition, combining processes concurrently. For example the scenario in
Figure 2 can be specified as the parallel composition of A1, A2, A3 and A4.

• Hiding (also called restriction or locality), introducing local variables, thus restricting
the interface through which a process can interact with others.

• Summation, expressing a nondeterministic combination of agents to allow alternate
courses of action.

• Recursion, defining infinite behavior.

It is worth pointing out that without summation, the ccp model is deterministic, in
the sense that the final store is always the same, independently of the execution order
(scheduling) of the parallel components[2].

CCP Syntax. Processes P,Q, ... in CCP are built from constraints in the underlying
constraint system by the following syntax :

P,Q := tell(c) | when c do P | P || Q | (local x)P | q(x)

The process tell(c) adds the constraint c to the store. The process when c do P asks
if c can be deduced from the store. If so, it behaves as P . In other case, it waits until
the store contains at least as much information as c. The parallel composition of P and
Q is represented as P || Q. The process (local x)P behaves like P , except that all the
information on x produced by P can only be seen by P and the information on x produced
by other processes cannot be seen by P . The process q(y) is an identifier with arity |y|.
We assume that every such an identifier has a unique (recursive) definition of the form

q(x)
def
= Q

with x pairwise distinct and |x| = |y|. The process q(y) behaves then as Q[y/x].

10

4.1.4 CCP-based calculi and ntcc calculus [17]

Several extensions of the basic constructs presented above have been studied in the litera-
ture in order to provide settings for the programming and specification of systems with the
declarative flavor of concurrent constraint programming. For this project, it is important
to describe ntcc calculus, which is an extension to tcc model, including asynchronous
and nondeterministic behavior.

Temporal CCP(tcc) The tcc model takes the view of reactive computation as pro-
ceeding deterministically in discrete time units (or time intervals). In other words, time
is conceptually divided into discrete intervals. In each time interval, a deterministic CCP
processes receives a stimulus (i.e. a constraint) from the environment, it executes with
this stimulus as the initial store and when it reaches its resting point, it responds to the
environment with the final store. Furthermore, the resting point determines a residual
process, which is then executed in the next time interval.

The tcc calculus introduces constructs to (1) delay the execution of a process. And
(2) time-out (or weak pre-emption) operations that waits during the current time interval
for a given piece of information to be present. If it is not, they trigger a process in the
next time interval.

Deterministic tcc syntax. Processes P,Q, ... in tcc are built from constraints in the
underlying constraint system by the following syntax:

P,Q := skip | tell(c) | when c do P | P || Q | (local x)P | next P | unless c next P | !P

The processes tell(c), when c do P , P || Q and (local x)P are similar to those in
CCP. The process next P delays the execution of P to the next time interval. The time-
out unless c next P is also a unit-delay, but P is executed in the next time unit iff c
is not entailed by the final store at the current time interval. Finally, the replication !P
means P || next P || next2P ||..., i.e., unboundly many copies of P but one at a time.

The ntcc calculus. The above syntax has been extended to deal with non-deterministic
behavior and asynchrony in the ntcc calculus

Syntax of ntcc. The ntcc processes result from adding to the syntax of tcc the
following constructs:

∑

i∈I

when ci do Pi | ? P

The guarded-choice
∑

i∈I when ci do Pi where I is a finite set of indices, represents
a process that, in the current time interval, must non-deterministically choose one of the
Pj (j ∈ I) whose corresponding guard (constraint) cj is entailed by the store. The chosen
alternative, if any, precludes the others. If no choice is possible then the summation re-
mains blocked until more information is added to the store.
The operator “?” allows to express asynchronous behavior through the time intervals.
Intuitively, process ?P represents P + next P + next2P + ..., i.e., an arbitrary long but

11

finite delay for the activation of P .

4.1.5 State of the Art

This project aims to develop a bisimilarity theory for ntcc calculus, hence it is important
to highlight other similar theories developed for the most representative process calculi,
like CCS and π-calculus. Moreover, which tools using this theories have been developed.
In the next section, those aspects are going to be presented.

1. Scientific Background

• CCS Bisimilarity[18]. As described previously (with more detail), bisimilar-
ity can be defined like this:

Definition. A symmetric relation B between process terms is said to be a
strong bisimulation iff for all (P,Q) ∈ B,

If P
a

−→ P ′ then for some Q′, Q
a

−→ Q′ and (P ′, Q′) ∈ B

We say that P is strongly bisimilar to Q, written P ∼ Q iff there exists a strong
bisimulation containing the pair (P,Q).

• The π-calculus bisimilarity [18] For the π-calculus the bisimilarity defini-
tion is analogous, the difference lies in the behavior of this processes, because
they are not like in CCS. Then, there are some changes (that will not be men-
tioned completely) because of a higher complexity in the execution of them.

Definition. A binary relation over S is a strong simulation if, whenever PSQ,

If P
α

−→ A then exists a B such that ASB and Q
α

−→ B

If both S and its converse are strong simulations then S is a strong bisimulation.
Two agents A and B are strongly equivalent, written A ∼ B, if the pair (A,B)
is in some strong bisimulation.

2. Technological Background

• The Edinburgh Concurrency Workbench (CWB) 5 This workbench is
an automated tool which caters for the manipulation and analysis of concurrent
systems. In particular, the CWB allows for various equivalence, preorder and
model checking using a variety of different process semantics. For example,
with the CWB it is possible to:

– define behaviors given either in an extended version of CCS or in SCCS,
and perform various analyses on these behaviors, such as analyzing the
state space of a given process, or checking various semantic equivalences
and preorders;

5http://homepages.inf.ed.ac.uk/perdita/cwb/summary.html

12

http://homepages.inf.ed.ac.uk/perdita/cwb/summary.html

– define propositions in a powerful modal logic and check whether a given
process satisfies a specification formulated in this logic;

– play Stirling-style model-checking games to understand why a process does
or does not satisfy a formula;

– derive automatically logical formulae which distinguish nonequivalent pro-
cesses;

– interactively simulate the behavior of an agent, thus guiding it through its
state space in a controlled fashion.

• The Mobility Workbench (MWB) 6 MWB is a similar to the previous tool,
but its application is focused in π-calculus instead of CCS. In an analogous way
this workbench is used to model concurrent systems and it allows to reason
about equivalences, behaviors, among other functionalities.

4.2 Concepts

4.2.1 Process [8]

A process is an instance of a computer program, consisting of one or more threads, that
is being sequentially executed by a computer system that has the ability to run several
computer programs concurrently.

4.2.2 Calculus [9]

Calculus is referred to any method or system of calculation guided by the symbolic ma-
nipulation of expressions.

4.2.3 Concurrency [10]

Concurrency is a property of systems in which several computations are executing simul-
taneously, and potentially interacting with each other

4.2.4 Axiom [11]

An axiom is a proposition that is not proved or demonstrated but considered to be either
self-evident, or subject to necessary decision. Therefore, its truth is taken for granted,
and serves as a starting point for deducing and inferring other (theory dependent) truths.

4.2.5 Theorem [12]

A theorem is a statement proved on the basis of previously accepted or established state-
ments such as axioms.

4.2.6 Constraint [16]

A constraint is a first-order formula representing partial information about the values of
variables.

6http://www.it.uu.se/research/group/mobility/mwb

13

http://www.it.uu.se/research/group/mobility/mwb

4.2.7 Semantics [14]

Considered as an application of mathematical logic, semantics reflects the meaning of
programs or functions. In this regard, semantics permits programs to be separated into
their syntactical part (grammatical structure) and their semantic part (meaning).

4.3 Project Context

Actually, a research project named REACT (Robust theories for Emerging Applications
in Concurrency Theory) is in course. This project is a joint research effort between the
AVISPA Research Group 7 (Universidad del Valle in agreement with Universidad Javeri-
ana at Cali, Colombia -which the researcher is a member-), the Musical Representations
Team at IRCAM 8(Institut de Recherche et Coordination Acoustique/Musique) and the
INRIA Team Comète 9(LIX, École Polytechnique de Paris, France), the main objectives
of this project focus on developing more robust CCP theories for dealing with applications
in the areas of Security Protocols, Biology and Multimedia Semantic Interaction.

As it can be seen, the application of process calculus such as ntcc is important in
different areas. This project will help for developing and implementing new tools based
in these calculus, since this equivalence theory can be used as a support for determining
similarities between processes in a different way than the existing ones in ntcc calculus.

Thus the main advantage is obtaining a theory that will allow performing automated
process verification, which is widely used in the application areas above mentioned. In
addition, providing to ntcc an initial prototype for process modeling using bisimilarity
notion.

An additional advantage of this project is to consolidate relationship between AVISPA
and Ecole Polytechnique at Paris, through teacher Frank Valencia (Project Co-Supervisor),
since this project feeds the interests that have been built-up jointly.

5 Requirements

Basically it is required an undergraduate student dedicated full-time to the project, as well
it is necessary a project supervisor that guides the development in order to execute the
tasks directed to achieve the objectives. An expert in the topic, in this case the project
co-supervisor, which is necessary to have constant communication for obtaining the infor-
mation needed properly.

About technological resources, it is necessary to have a computer with enough capac-
ities and tools in order to work correctly, in addition this equipment must have internet
access for getting the information required for project development.

7http://cic.puj.edu.co/wiki/doku.php?id=grupos:avispa:avispa
8http://www.ircam.fr/
9http://www.lix.polytechnique.fr/

14

http://cic.puj.edu.co/wiki/doku.php?id=grupos:avispa:avispa
http://www.ircam.fr/
http://www.lix.polytechnique.fr/

A basic budget is illustrated in the next figure:

Item Cost

Researcher 5’000.000

Computing Equipment 2’000.000

Books, magazines, photocopies 400.000

Food and Transport 1’000.000

Indirect Costs 250.000

Total 8’650.000

6 Methodology

The execution of this project can be summarized in a set of five global activities, which
encapsulate the development of every one of the objectives that has to be accomplished.
Those activities are enumerated in the next way:

• Bibliographic Review In this phase it has to be performed a bibliographic review
for the topics that will help to develop the project, i.e., the purpose is to go into
concepts like: CCS and π-calculus bisimilarity, a wide knowledge in ntcc calculus
and verification techniques. For this it will be carried out queries to articles, books,
internet and interviews with experts in the topics. As a result it has to be obtained
a strong theoretical base that will allow project development.

• Definition of ntcc bisimilarity For this stage the time will be dedicated mostly
in formally defining bisimilarity concept, basically a formal revision of the concept
will be done and a definition of the requirements that the notion must fulfill, so
subsequently the definition can be done in a clear and concrete way. The result is a
formal definition of bisimilarity.

• Bisimilarity Properties In this phase it will be done the definition of the properties
that the notion (before defined) fulfills. For this, the formal base will be taken and
it will be done proofs that allows to obtain the essential properties that bisimilarity
meets. As a result bisimilarity now will have its properties.

• Verification techniques and Prototype For this phase the verification techniques
that will be used for ntcc process verification are going to be defined. The purpose
of this stage is to get a set of techniques that will be used in the implementation
of the prototype, since it is aimed that this will be able to use bisimilarity notion
by checking if two processes are bisimilar or not. With these techniques, the next
step is the implementation of the prototype, whose function will be to do process
verification with respect to bisimilarity. As a result there will be a prototype that
uses the notion developed.

• Research Practice and Final Report In the final stage the last adjustments to
the theory will be made, for this the researcher will carry out a research practice at
École Polytechnique de Paris (France), where the work done will be verified. Once
made the revision, then the final report will be made, so the results and contributions
can be evaluated.

15

Stage Estimated Time

Bibliographical Review 3 Months

Bisimilarity Definition 1 Month

Bisimilarity Properties 3 Months

Verification Techniques and Prototype 3 Months

Research Practice and Final Report 2 Months

Total Estimated 12 Months

References

[1] V. Saraswat, Concurrent Constraint Programming. The MIT Press, Cambridge, MA,
1993

[2] V. Saraswat, M. Rinard, y P. Panangaden. The semantic foundations of concurrent
constraint programming. In POPL ’91, pages 333-352, 21-23 January 1991.

[3] R. Milner. Operational and Algebraic Semantics of Concurrent Processes, pages 1203-
1241. Elsevier, 1990.

[4] R. Milner. Communication and Concurrency. International Series in Computer Sci-
ence. Prentice Hall, 1989. SU Fisher Research 511/24.

[5] C. A. R. Hoare. Communications Sequential Processes. Prentice-Hall, Englewood Cliffs
(NJ), USA, 1985.

[6] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37(1):77-121, 1985.

[7] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University Press,
1990.

[8] Wikipedia Contributors. Process (computing) [online]. Wikipedia, The Free Encyclo-
pedia, 2009 [query date: April 13, 2009].
Available at: http://en.wikipedia.org/wiki/Process_(computing).

[9] Wikipedia Contributors. Calculus [online]. Wikipedia, The Free Encyclopedia, 2009
[query date: April 13, 2009].
Available at: http://en.wikipedia.org/wiki/Calculus.

[10] Wikipedia Contributors. Concurrency [online]. Wikipedia, The Free Encyclopedia,
2009 [query date: April 13, 2009].
Available at: http://en.wikipedia.org/wiki/Concurrency_(computer_science).

[11] Wikipedia Contributors. Axiom [online]. Wikipedia, The Free Encyclopedia, 2009
[query date: April 13, 2009].
Available at: http://en.wikipedia.org/wiki/Axiom.

[12] Wikipedia Contributors. Theorem [online]. Wikipedia, The Free Encyclopedia, 2009
[query date: April 13, 2009].
Available at: http://en.wikipedia.org/wiki/Theorem.

16

http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Calculus
http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Axiom
http://en.wikipedia.org/wiki/Theorem

[13] Wikipedia Contributors. Constraint [online]. Wikipedia, The Free Encyclopedia, 2009
[query date: April 13, 2009].
Available at: http://en.wikipedia.org/wiki/Constraint_(mathematics).

[14] Wikipedia Contributors. Semantics [online]. Wikipedia, The Free Encyclopedia, 2009
[query date: April 13, 2009].
Available at: http://en.wikipedia.org/wiki/Semantics.

[15] Catuscia Palamidessi y Frank D. Valencia. Languages for concurrency. EATCS. 2006.

[16] Frank Valencia. Decidability of Infinite-State Timed CCP Processes and First-Order
LTL. Theor. Comput. Sci. 330(3): 577-607. Elsevier. 2005

[17] Carlos Olarte, Camilo Rueda y Frank Valencia. Concurrent Constraint Programming:
Calculi, Languages and Emerging Applications.

[18] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University
Press, 1999.

17

http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Semantics

	Introduction
	Problem Description

	Objectives
	Main Objective
	Specific Objectives

	Justification
	Background
	Technical Background
	Process Calculi
	Bisimilarity
	Concurrent Constraint Programming
	CCP-based calculi and ntcc calculus
	State of the Art

	Concepts
	Process
	Calculus
	Concurrency
	Axiom
	Theorem
	Constraint
	Semantics

	Project Context

	Requirements
	Methodology

