
A Framework for Abstract Interpretation
of Timed Concurrent Constraint Programs

Moreno Falaschi
Dipartimento di Scienze Matematiche e Informatiche.

Università di Siena, Italy.
moreno.falaschi@unisi.it

Carlos Olarte Catuscia Palamidessi
INRIA and LIX, Ecole Polytechinque, France.

carlos.olarte,catuscia@polytechnique.fr

Abstract
Timed Concurrent Constraint Programming (tcc) is a declarative
model for concurrency offering a logic for specifying reactive sys-
tems, i.e. systems that continuously interact with the environment.
The universal tcc formalism (utcc) is an extension of tcc with
the ability to express mobility. Here mobility is understood as com-
munication of private names as typically done for mobile systems
and security protocols. In this paper we consider the denotational
semantics for tcc, and we extend it to a ”collecting” semantics
for utcc based on closure operators over sequences of constraints.
Relying on this semantics, we formalize the first general frame-
work for data flow analyses of tcc and utcc programs by abstract
interpretation techniques. The concrete and abstract semantics we
propose are compositional, thus allowing us to reduce the complex-
ity of data flow analyses. We show that our method is sound and
parametric w.r.t. the abstract domain. Thus, different analyses can
be performed by instantiating the framework. We illustrate how it
is possible to reuse abstract domains previously defined for logic
programming, e.g., to perform a groundness analysis for tcc pro-
grams. We show the applicability of this analysis in the context of
reactive systems. Furthermore, we make also use of the abstract se-
mantics to exhibit a secrecy flaw in a security protocol. We have
developed a prototypical implementation of our methodology and
we have implemented the abstract domain for security to perform
automatically the secrecy analysis.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]

General Terms Languages, Security, Theory, Verification

Keywords Timed Concurrent Constraint Programming, Process
Calculi, Abstract Interpretation, Denotational Semantics, Reactive
Systems

1. Introduction
Concurrent Constraint Programming (ccp) [29] is a process cal-
culus which combines the traditional operational view of process
calculi with a declarative one based upon logic. This combination
allows ccp to benefit from the large body of reasoning techniques

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP’09, September 7–9, 2009, Coimbra, Portugal.
Copyright c© 2009 ACM 978-1-60558-568-0/09/09. . . $10.00

of both process calculi and logic. In fact, ccp-based calculi have
successfully been used in the modelling and verification of sev-
eral concurrent scenarios: biological, security, timed, reactive and
stochastic systems, see e.g., [29, 25, 27, 23, 28, 18].

In the ccp model, agents interact by telling and asking pieces of
information (constraints) on a shared store of partial information.
The type of constraints that agents can tell and ask (e.g. x ≤ 42) is
parametric in an underlying constraint system.

The ccp model has been extended to consider the execution of
processes along a series of time intervals or time-units. In tccp
[7], the notion of time is identified with the time needed to ask
and tell information to the store. In this model, the information
in the store is carried through the time units. On the other hand,
in Timed ccp (tcc) [28], stores are not automatically transferred
between time-units. This way, computations during a time-unit
proceed monotonically but outputs of two different time-units are
not supposed to be related to each other.

More precisely, computations in tcc take place in bursts of ac-
tivity at a rate controlled by the environment. In this model, the
environment provides a stimulus (input) in the form of a constraint.
Then the system, after a finite number of internal reductions, out-
puts the final store (a constraint) and waits for the next interaction
with the environment. This view of reactive computation is akin
to synchronous languages such as Esterel [2] where the system re-
acts continuously with the environment at a rate controlled by the
environment. These languages allow then to program safety criti-
cal applications as control systems, for which it is fundamental to
develop tools aiming at helping to develop correct, secure, and ef-
ficient programs.

Universal tcc [27] (utcc), adds to tcc the expressiveness
needed for mobility. Here we understand mobility as the ability
to communicate private names (or variables) much like in the π-
calculus [22]. Basically, the tcc ask operator when c do P is
generalized by a parametric ask operator of the form (abs ~x; c)P
called abstraction. Roughly speaking, an ask process of the form
P = when c do Q remains blocked until the store is strong
enough to entail the constraint c and then P behaves as Q. In the
case of P = (abs ~x; c)Q, the process Q[~t/~x] is executed for all
term ~t such that the current store entails c[~t/~x]. Notice that when ~x
is the empty vector, we recover the tcc ask operator.

Several domains and frameworks, e.g. [6, 5, 1], have been pro-
posed for the analysis of logic programs. The particular character-
istics of the timed ccp programs pose additional difficulties for the
development of such tools in this language. Namely, the concurrent,
timed nature of the language, and the synchronization mechanisms
by entailment of constraints (blocking asks). Aiming at statically
analyzing utcc as well as tcc programs, we have to consider the
additional technical issues due to mobility, particularly, the infinite
internal computations generated by the abs operator in utcc.

We develop here a semantics for tcc and utcc which collects
all concrete information which is then suitable to properly abstract
the properties of interest. This semantics is based on closure op-
erators over sequences of constraints in the lines of [28]. Our se-
mantics is precise for tcc and allows us to effectively approximate
the operational semantics of utcc and compositionally describe the
behavior of programs. We prove this semantics to be fully abstract
w.r.t the operational semantics for a significant fragment of the cal-
culus. Next, we propose an abstract denotational semantics which
approximates the concrete one.

Our framework is formalized by abstract interpretation tech-
niques and is parametric w.r.t. the abstract domain. It allows us
to exploit also the work done for developing abstract domains for
logic programs. Moreover, we can make new analyses for reactive
and mobile systems, thus widening the reasoning techniques, avail-
able for both, tcc and utcc (e.g., type systems [17], logical char-
acterizations [21, 23, 27], semantics [28, 26, 23]).

The abstraction we propose proceeds in two-levels. First, we
approximate the constraint system leading to an abstract constraint
system. We give the sufficient conditions which have to be satis-
fied for ensuring the soundness of the abstraction. Next, since we
are dealing with infinite sequences of (abstract) constraints, we ap-
proximate the output of the program by a finite cut. It is worth notic-
ing that the abstract semantics here proposed is computable and
compositional. Thus, it allows us to master the complexity of the
data-flow analyses. Moreover, the abstraction over-approximates
the concrete semantics and then it preserves safety properties.

To the best of our knowledge, we are the first ones to propose a
general abstract interpretation framework for a language adhering
to the above-mentioned characteristics of tcc or utcc programs.
Hence we can develop analyses for several applications of utcc
or its sub-calculus tcc (see [25] for a survey of applications of
ccp-based languages). In particular, in this paper we instantiate
our framework in two different scenarios. The first one tailors an
abstract domain for groundness and type dependencies analysis
in logic programming to perform a groundness analysis of a tcc
program. This analysis is proven useful to derive a property of a
control system specified in tcc. The second scenario presents an
abstraction of a cryptographic constraint system. We then use the
abstract semantics to approximate the behavior of the protocol and
exhibit a secrecy flaw in a security protocol programmed in utcc.

We have also developed a prototypical application of our frame-
work and implemented the abstract domain for the verification
of secrecy properties. The examples in Section 5.3 were auto-
matically verified with this tool available at http://www.lix.
polytechnique.fr/~colarte/prototype/. In this URL the
reader can also find the complete outputs of these examples as well
as the application of the framework for the verification of another
protocol not described in this paper.

We believe that our results can also help to define analyses for
other languages for modeling reactive systems, e.g. Esterel [2],
and for mobile computations (e.g. for languages based on the π-
calculus [22]). See the discussion on related work in Section 6.

Organization The rest of the paper is organized as follows. Sec-
tion 2 recalls the notion of constraint system and the operational se-
mantics of tcc and utcc. In Section 3 we develop the denotational
semantics based on sequences of constraints. Next, in Section 4,
we study the abstract interpretation framework for tcc and utcc
programs. The two instances and the applications of the framework
are presented in Section 5. Section 6 concludes.

Due to a lack of space, the proofs are omitted; they are included
in the extended version of this paper [13].

2. Preliminaries
ccp-based calculi are parametric in a constraint system specifying
the basic constraints (e.g. x ≤ 42) agents can tell and ask. Here we
consider an abstract definition of such systems as lattices following
[29]. The notion of constraint system as first-order formulae (e.g.
in [27, 23]) can be seen as an instance of this definition. All results
of this paper still hold, of course, when more concrete systems are
considered.

A cylindric constraint system is a structure

C = 〈C,≤,t, true, false,Var , ∃, d〉 s.t.:

• 〈C,≤,t, true, false〉 is a lattice with t the lub operation
(representing the logical and), and true, false the least and
the greatest elements in C respectively. Elements in C are called
constraints with typical elements c, c′, d, d′....
• Var is a denumerable set of variables and for each x ∈ Var the

function ∃x : C → C is a cylindrification operator satisfying:
(1) ∃xc ≤ c. (2) If c ≤ d then ∃xc ≤ ∃xd. (3) ∃x(c t ∃xd) =
∃xc t ∃xd. (4) ∃x∃yc = ∃y∃xc.
• For each x, y ∈ Var , dxy ∈ C is a diagonal element and

it satisfies: (1) dxx = true. (2) If z is different from x, y
then dxy = ∃z(dxz t dzy). (3) If x is different from y then
c ≤ dxy t ∃x(c t dxy).

The cylindrification operators model a sort of existential quantifica-
tion, helpful for defining the hiding operator as we explain below.
The diagonal elements are useful to model parameter passing in
procedures calls. If C contains an equality theory, then dxy can be
thought as the formulae x = y.

We say that d entails c in C iff c ≤ d and we write d ` c. If
d ` c and c ` d we write d ≡ c.

We lift the previous notations to sequences of constraints. We
denote respectively by C∗, Cω the set of finite and infinite sequences
of constraints with typical elements s, s′.... We use cω to denote the
sequence c.c.c.... The length of s is denoted by |s| and the empty
sequence by ε. The i-th element in s is s(i). We write s ≤ s′ iff
|s| ≤ |s′| and for all i ∈ {1, . . . , |s|}, s′(i) ` s(i). If |s| = |s′|
and for all i ∈ {1, ..., |s|}, s(i) ≡ s′(i), we shall write s ≡ s′.

We denote by T the set of terms in the constraint system. We
use ~t for a sequence of terms t1, . . . , tn with length |~t| = n. If
|~t| = 0 then ~t is written as ε. We use c[~t/~x], where |~t| = |~x| and
xi’s are pairwise distinct, to denote c in which the free occurrences
of xi have been replaced with ti. The substitution [~t/~x] will be
similarly applied to other syntactic entities. We shall use .

= to
denote syntactic term equivalence (e.g., x .

= x and x 6 .= y).

2.1 Reactive Systems and Timed CCP
Reactive systems [2] are those that react continuously with their
environment at a rate controlled by the environment. For example, a
controller or a signal-processing system, receive a stimulus (input)
from the environment. It computes an output and then, waits for the
next interaction with the environment.

In the ccp model, the shared store of constraints grows mono-
tonically, i.e., agents cannot drop information (constraints) from it.
Then, a systems that changes the state of a signal (i.e., the value of
a variable) cannot be modeled: The conjunction of the constraints
signal = on and signal = off leads to an inconsistent store.

The timed ccp calculus (tcc) [28] extends ccp for reactive
systems. Time is conceptually divided into time intervals (or time
units). In a particular time interval, a ccp process P gets an input c
from the environment, it executes with this input as the initial store,
and when it reaches its resting point, it outputs the resulting store
d to the environment. The resting point determines also a resid-
ual process Q which is then executed in the next time unit. The

micCtrl(Error,Button) :–
(localE′, B′, e, b) (
! tell(Error = [e | E′] tButton = [b|B′])
‖ when on t open do

! tell(e = yes t E′ = [] t b = stop)
‖ when off do (tell(e = no) ‖ next micCtrl(E ′,B ′))
‖ when closed do (tell(e = no) ‖ next micCtrl(E ′,B ′)))

Figure 1. tcc model for a microwave controller.

resulting store d is not automatically transferred to the next time
unit. This way, computations during a time-unit proceed monoton-
ically but outputs of two different time-units are not supposed to
be related to each other. Therefore, the variable signal above may
change its value when passing from one time-unit to the next one.

In the following we present the syntax of tcc following the
notation in [23].

DEFINITION 1 (tcc Processes). The set Proc of tcc processes is
built from constraints in the underlying constraint system by the
following syntax :

P,Q := skip | tell(c) |when c do P | P ‖ Q |
(local ~x; c)P | nextP | unless c nextP |
!P | p(~x)

The process skip does nothing thus representing inaction.
The process tell(c) adds c to the store in the current time inter-
val making it available to the other processes. The ask process
when c do P remains blocked until the store is strong enough to
entail the guard c; if so, it behaves like P .

The parallel composition of P and Q is denoted by P ‖ Q.
Given a set of indexes I = {i1, ..., in}, we shall use

Q
i∈I

Pi to

denote the parallel composition Pi1 ‖ ... ‖ Pin .
The process (local ~x; c)P binds ~x in P by declaring it private

to P . It behaves like P , except that all the information on the vari-
ables ~x produced by P can only be seen by P and the information
on the global variable in ~x produced by other processes cannot be
seen by P . The local information on ~x produced by P corresponds
to the constraint c representing a local store. When c = true, we
shall simply write (local ~x)P instead of (local ~x; true)P.

We shall use bv(Q) (resp. fv(Q)) to denote the set of bound
(resp. free) variables occurring in Q.

The unit-delay nextP executes P in the next time unit. The
time-out unless c nextP is also a unit-delay, but P is exe-
cuted in the next time unit iff c is not entailed by the final store
at the current time interval. We use nextnP as a shorthand for
next . . .nextP , with next repeated n times. Finally, the repli-
cation !P means P ‖ nextP ‖ next2P ‖ . . ., i.e., unboundedly
many copies of P but one at a time.

Assume a (recursive) procedure definition p(~y) :– P where
fv(P) ⊆ ~y. The call p(~x) replaces the formal parameters ~y in P
with the actual parameters ~x. Recursive calls in P must be guarded
by a next process to avoid non-terminating sequences of recursive
calls during a time-unit (see [28, 23]).

Let us give an example of a control system modeled in tcc.

EXAMPLE 1 (Control System). Assume a simple control system
for a microwave checking that the door must be closed when it is
turned on. Otherwise, it must emit an error signal. The specification
in tcc of this system is depicted in Figure 1.

In this tcc program, constraints of the form X = [e|X ′]
asserts that X is a list with head e and tail X ′. This way, the

process micCtrl binds Error to a list ended by “yes” when
the microwave was turned on and the door was open at the same
interval of time. Furthermore, the constant stop is added into the
list Button signaling the environment that the microwave must be
powered off.

Later on, in Section 5.2, we shall show how the abstract inter-
pretation framework developed here allows for the verification of
this system.

2.2 Mobile behavior and UTCC
The tcc calculus lacks of mechanisms for name passing, i.e.,
mobility in the sense of the π-calculus [22]. Let us illustrate
this with an example. Let out(·) be a constraint and let P =
when out(x) do R a system that must react when receiving a
stimulus of the form out(n) for n > 0. We notice that under in-
put out(42), P does not execute R since out(42) does not entail
out(x) (i.e. out(42) 6` out(x)). The issue here is that x is a free-
variable and hence does not act as a formal parameter (or place
holder) for every term t such that out(t) is entailed by the store.

In [27], tcc is extended for mobile reactive systems leading
to universal timed ccp (utcc). To model mobile behavior, utcc
replaces the tcc ask operation when c do P with a more general
parametric ask construction, namely (abs ~x; c)P . This process can
be viewed as a λ-abstraction of the process P on the variables
~x under the constraint (or with the guard) c. Intuitively, Q =
(abs ~x; c)P performs P [~t/~x] in the current time interval for all
the terms ~t s.t c[~t/~x] is entailed by the current store. For example,
P = (abs x; out(x))R under input out(42) executes R[42/x].

From a programming point of view, we can then see the vari-
ables ~x in the abstraction (abs ~x; c)P as the formal parameters of
P (see Remark 1).

DEFINITION 2 (utcc Processes). The utcc processes result from
replacing in the syntax in Definition 1 the expression when c do P
with (abs ~x; c)P with the variables in ~x being pairwise distinct.

As explained above, the process Q = (abs ~x; c)P executes
P [~t/~x] in the current time interval for all the terms ~t s.t c[~t/~x] is
entailed by the store. When |~x| = 0 (i.e. ~x = ε), we recover the tcc
ask operator and we write when c do P instead of (abs ε; c)P .

The process Q = (abs ~x; c)P binds ~x in P and c. Therefore,
we extend accordingly the sets bv(Q) and fv(Q) of bound and
free variables. Furthermore Q evolves into skip at the end of the
time unit, i.e. abstractions are not persistent when passing from one
time-unit to the next one.

DEFINITION 3 (utcc programs). LetD be a set of procedure dec-
larations of the form p(~y) :– P . A utcc program takes the form
D.P where P is a process. For every procedure name, we assume
that there exists one and only one corresponding declaration in D.

REMARK 1. The utcc calculus was introduced in [27] without
procedure definitions. Here we add them to properly deal with tcc
programs with recursion. In utcc, recursive definitions do not add
any expressiveness since they can be encoded by using abstrac-
tions. The reader can find in [13][Appendix B] the encoding.

We conclude this section with an example of mobile behavior
in utcc. Here, a process P sends a local variable to Q. Then, both
processes can communicate through the shared variable.

EXAMPLE 2. Assume two components P and Q of a system such
that P creates a local variable that must share with Q. Roughly,
this system can be modeled as

P = (localx) (tell(out(x)) ‖ P ′)
Q = (abs z; out(z))Q′

In the next section, we shall see that the parallel composition of P
and Q evolves to a process of the form

(localx) (P ′ ‖ Q′[x/z])

where P ′ and Q′ share the local variable x created by P . Then,
any information produced by P ′ on x can be seen by Q′ and vice
versa.

2.3 Operational Semantics (SOS)
The structural operational semantics (SOS) of tcc and utcc con-
siders transitions between process-store configurations 〈P, c〉 with
stores represented as constraints and processes quotiented by ≡.
We use γ, γ′, . . . to range over configurations.

DEFINITION 4. Let ≡ be the smallest congruence satisfying:
(1) P ≡ Q if they differ only by a renaming of bound vari-
ables (alpha-conversion). (2) P ‖ skip ≡ P . (3) P ‖ Q ≡
Q ‖ P . (4) P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R. (5) P ‖
(local ~x; c)Q ≡ (local ~x; c) (P ‖ Q) if ~x 6∈ fv(P) (Scope
Extrusion) (6) (local ~x; c) (local ~y; d)P ≡ (local ~x; ~y ; c∧ d)P
if ~x ∩ ~y = ∅ and ~y /∈ fv(c). Extend ≡ by decreeing that
〈P, c〉 ≡ 〈Q, c〉 iff P ≡ Q.

Transitions are given by the relations −→ and =⇒ in Table 1.
The internal transition 〈P, d〉 −→ 〈P ′, d′〉 should be read as “P
with store d reduces, in one internal step, to P ′ with store d′ ”. The
observable transition P

(c,d)
====⇒ R should be read as “P on input

c, reduces in one time unit to R and outputs d”. The observable
transitions are obtained from finite sequences of internal ones.

We only describe some of the rules in Table 1. See [23, 27] for
further details. The rules are easily seen to realize the operational
intuitions given above. As clarified below, the seemingly missing
rules for next and unless processes are given by ROBS.

Let Q = (localx; c)P in Rule RLOC. The global store is
d and the local store is c. We distinguish between the external
(corresponding toQ) and the internal point of view (corresponding
to P). From the internal point of view, the information about x,
possibly appearing in the “global” store d, cannot be observed.
Thus, before reducing P we first hide the information about x
that Q may have in d by using the cylindrification operator ∃x
in d. Similarly, from the external point of view, the observable
information about x that the reduction of the internal agent P may
produce (i.e., c′) cannot be observed. Thus we also hide it by ∃xc′
before adding it to the global store. Additionally, we make c′ the
new private store of the evolution of the internal process.

Let Q = (abs ~x; c)P in Rule RABS. If the current store en-
tails c[~t/~x] then P [~t/~x] is executed. Additionally, the abstraction
persists in the current time interval to allow other potential replace-
ments of ~x in P . Notice that the guard c is augmented with ~x 6 .= ~t
(syntactic difference) to avoid executing P [~t/~x] again. We assume
then the constraint “ 6 .=” to be defined in the constraint system. Fur-
thermore, without loss of generality (by alpha conversion), we as-
sume that the variables in ~x does not occur in ~t.

The rule RCALL makes use of the diagonal elements (see Sec-
tion 2) to model parameter passing as standardly done in ccp [29].
In this equation,

∆~x
~yP = (local~a) (! tell(d~x~a) ‖ (local ~y) (! tell(d~a~y) ‖ P))

where the variables in ~a are assumed to occur neither in the dec-
laration nor in the process P , and d~x~y denotes the constraintF

1≤i≤|~x| dxiyi . Roughly speaking, ∆~x
~y equates the actual param-

eters ~x and the formal parameters ~y. What we observe is then the
execution of P [~x/~y].

Rule ROBS says that an observable transition from P labeled
with (c, d) is obtained from a terminating sequence of internal

transitions from 〈P, c〉 to 〈Q, d〉. The process R to be executed
in the next time interval is equivalent to F (Q) (the “future” of Q).
F (Q) is obtained by removing from Q abstractions and any local
information which has been stored in Q, and by “unfolding” the
sub-terms within next and unless expressions.

Now we can show how the evolution of the processes in Exam-
ple 2 leads to a configuration where the variable x created by P is
sent to Q and then, both processes can communicate using it.

EXAMPLE 3. Let P and Q be as in Example 2. The parallel com-
position R = P ‖ Q under input true evolves as follows:

〈R, true〉−→∗ 〈(localx; c) (P ′ ‖ (abs z; out(z))Q′), ∃x(c)〉
−→∗ 〈(localx; c) (P ′ ‖ Q′[x/z] ‖ Q′′), ∃x(c)〉

where Q′′ = (abs z; out(z)t x 6 .= z)Q′ and c = out(x). Notice
that P ′ and Q′[x/z] share the local variable x.

2.3.1 Observables and Input-output Behavior
In this section we formally define the behavior of a process P
relating its outputs under the influence of a sequence of inputs
(constraints) from the environment.

DEFINITION 5 (Behavior). Let s = c1.c2...ci and s′ = c′1.c
′
2...c

′
i

be sequences of constraints. If P = P1
(c1,c

′
1)

====⇒ P2
(c2,c

′
2)

====⇒
...Pi

(ci,c
′
i)====⇒, we write P

(s,s′)
====⇒. The set

io(P) = {(s, s′) | P (s,s′)
====⇒}

denotes the input-output behavior of P .

In [27], the outputs of a utcc process were proven to be equiv-
alent up to ≡:

THEOREM 1 (Determinism [27]). Let P be a utcc process. If

P
(s,s′)

====⇒ and P
(s,s′′)
====⇒ then s′ ≡ s′′

Notice that, unlike the other constructs in utcc, the unless
operator exhibits non-monotonic input-output behavior in the fol-
lowing sense: Let P = unless c nextQ. Given s ≤ s′, if
(s, w), (s′, w′) ∈ io(P), it may be the case that w 6≤ w′. For
example, take Q = tell(d), s = trueω and s′ = c. trueω . Then,
w = true .d. trueω and w′ = c. trueω with w 6≤ w′.

We then define a monotonic process as follows:

DEFINITION 6 (Monotonic Processes). We say that P is a mono-
tonic process iff P does not have occurrences of processes of the
form unless c nextQ.

2.3.2 Strongest Postcondition
Given a process P , we can show that io(P) is a partial closure
operator [26], i.e., it is a function satisfying extensiveness and
idempotence. Furthermore, if P is monotonic, io(P) is a closure
operator satisfying additionally monotonicity.

A pleasant property of closure operators is that they are uniquely
determined by their set of fixpoints, here called the strongest post-
condition.

DEFINITION 7 (Strongest Postcondition). Given a utcc process
P , the strongest postcondition of P , denoted by sp(P), is defined
as the set {s | (s, s) ∈ io(P)}.

Intuitively, s ∈ sp(P), iff P under input s cannot add any
information whatsoever, i.e. s is a quiescent sequence for P . We
also can think of sp(P) as the set of sequences that P can output
under the influence of an arbitrary environment. Therefore, proving
whether P satisfies a given property A, in the presence of any
environment, reduces to proving whether sp(P) is a subset of the
the set of sequences (outputs) satisfying the property A.

Internal Transitions :

RTELL 〈tell(c), d〉 −→ 〈skip, d t c〉
RPAR

〈P, c〉 −→
˙
P ′, d

¸
〈P ‖ Q, c〉 −→

˙
P ′ ‖ Q, d

¸ RUNL
d ` c

〈unless c next P, d〉 −→ 〈skip, d〉

RLOC

〈P, c t (∃~xd)〉 −→
˙
P ′, c′ t (∃~xd)

¸
〈(local ~x; c)P, d〉 −→

˙
(local ~x; c′)P ′, d t ∃~xc′

¸ RABS
d ` c[~t/~x] |~t| = |~x|

〈(abs ~x; c)P, d〉 −→
˙
P [~t/~x]||(abs ~x; c t ~x 6 .= ~t)P, d

¸

RSTR
γ1 −→ γ2

γ′1 −→ γ′2

if γ1 ≡ γ′1 and γ2 ≡ γ′2
RCALL

p(~y) :– P ∈ D

〈p(~x), d〉 −→
D

∆~x
~yP, d

E RREP 〈!P, d〉 −→ 〈P ||next !P, d〉

Observable Transition :

ROBS
〈P, c〉 −→∗ 〈Q, d〉 6−→

P
(c,d)

====⇒ F (Q)
where F(P) =

8><>:
skip if P = skip or P = (abs ~x; c)Q
F (P1) ‖ F (P2) if P = P1 ‖ P2
(local ~x)F (Q) if P = (local ~x; c)Q
Q if P = nextQ or P = unless c nextQ

Table 1. Operational Semantics for tcc and utcc. ≡ is given in Definition 4. In RABS, ~x 6 .= ~t denotes
W

1≤i≤|~x| xi 6
.
= ti. If |~x| = 0, ~x 6 .= ~t

is defined as false.

Finally, it is worth noticing that for the monotonic fragment of
utcc, the input-output behavior can be retrieved from the strongest
postcondition. This is formalized in the following theorem whose
proof is standard, given that io(·) is a closure operator.

THEOREM 2. Let min be the minimum function w.r.t. the order
induced by ≤. Given a monotonic utcc process P , (s, s′) ∈
io(P) iff s′ = min(sp(P) ∩ {w | s ≤ w})

3. A Denotational model for TCC and UTCC
As we explained before, the strongest postcondition relation fully
captures the behavior of a process considering any possible out-
put under an arbitrary environment. In this section we develop a
denotational model for the strongest postcondition. The semantics
is compositional and it is the basis for the abstract interpretation
framework we develop in Section 4.

Our semantics is built on the closure operator semantics for ccp
and tcc in [29, 28]. Unlike the denotational semantics for utcc in
[26], our semantics is more appropriate for the data-flow analysis
due to its simpler domain based on sequences of constraints instead
of sequences of temporal formulae. In Section 6 we elaborate more
on the differences between both semantics.

Roughly speaking, the semantics is based on a (continuous)
immediate consequence operator TD , which computes in a bottom-
up fashion the interpretation of each procedure definition p(~x) :– P
in D. Such an interpretation is given in terms of the set of the
quiescent sequences for p(~x).

3.1 Compositional Semantics
Let ProcHeads denote the set of process names with their formal
parameters and recall that Cω stands for the set of infinite sequences
of constraints. We shall call Interpretations the set of functions in
the domain ProcHeads → P(Cω). The semantics is defined as
a function [[·]] : (ProcHeads → P(Cω)) → (Proc → P(Cω))
which given an interpretation I , associates to each process a set of
sequences of constraints.

Let us give some intuitions about the semantic equations in
Table 2. Recall that [[·]] aims at capturing the strongest postcondition

(or quiescent sequences) of a process P , i.e. the sequences s s.t. P
under input s cannot add any information whatsoever. So, skip
cannot add any information to any sequence (Equation DSKIP).
The sequences to which tell(c) cannot add information are those
whose first element entails c (Equation DTELL). A sequence is
quiescent for P ‖ Q if it is for P and Q (Equation DPAR).

The process nextP has no influence on the first element of
a sequence, thus d.s is quiescent for it if s is quiescent for P
(Equation DNEXT). A similar explanation can be given for the
process unless c nextP (Equation DUNL). A sequence s is
quiescent for !P if it is quiescent for every process of the form
next nP with n ≥ 0. Then, every suffix of smust be quiescent for
P (Equation DREP).

We say that s is an ~x-variant of s′ if ∃~xs(i) = ∃~xs′(i) for i > 0
(i.e. s and s′ differ only on the information about ~x). A sequence s
is quiescent for Q = (local ~x; c)P if there exists an ~x-variant s′

of s s.t. s′ is quiescent for P and s′(1) ` c. Hence, if P cannot add
any information to s′ then Q cannot add any information to s.

The abstraction process (abs x; c)P can be seen as the parallel
composition

Q
~t∈T |~x|

(when c do P)[~t/~x] where T denotes the set

of terms in the underlying constraint system. Therefore, the Equa-
tion DABS is given in terms of the equation for the ask operator
[28]: a sequence d.s is quiescent for when c do P either if d does
not entail c or if d entails c and d.s is quiescent for P (Equation
DASK). This way, s is quiescent for (abs x; c)P , if for all term ~t,
s(1) ` c[~t/~x] implies that s is quiescent for P [~t/~x] (rule DABS).

Finally, the meaning of a procedure call is directly given by the
interpretation I .

The domain of the denotation is E = (E,⊆c) where E =
P(Cω) and ⊆c is a Smyth-like ordering defined as follows: Let
X,Y ∈ E and . be the preorder s.tX . Y iff for all y ∈ Y , there
exists x ∈ X s.t. x ≤ y. X ⊆c Y iff X . Y and (Y . X implies
Y ⊆ X). The bottom of E is then Cω (the set of all the sequences).
We do not consider the empty set to be part of the domain. Then, the
top element is the singleton {falseω} (since false is the greatest
element in (C,≤)).

Let us briefly elaborate on the choice of the domain above. The
upward closure which is implicit in the Smyth powerdomain (in
the sense that every set is equivalent to its upward closure) is nec-
essary in order to deal correctly with the entailment of constraints
(d ` c iff c ≤ d) and with the parallel operator (intersection).
This would not be possible with the Hoare or with the Egli-Milner
powerdomains, which are not upward closed. Roughly speaking, if
we consider for instance the Hoare powerdomain, then the fixpoint
construction should start with a bottom defined as the interpreta-
tion which assigns to every process definition the empty set or the
singleton {trueω}. But in these interpretations the parallel com-
position of tell(c) with a call p() would be empty, which does not
correspond to the standard meaning for these operators. A similar
situation arises when considering the Egli-Milner powerdomain.

Formally, the semantics is defined as follows:

DEFINITION 8 (Concrete Semantics). Let [[·]]I be defined as in Ta-
ble 2. The semantics of a program D.P is defined as the least fix-
point of the continuous operator:

TD(I)(p(~y)) = [[∆~x
~yP
′]]I if p(~x) :– P ′ ∈ D

We shall use [[P]] to represent [[P]]lfp(TD)

Let us exemplify the least fixpoint construction above with a
system similar to that of Example 2.

EXAMPLE 4. Assume two constraints outa(·) and outb(·) ,intu-
itively representing outputs of names on two different channels a
and b. Let D be the following procedure definitions

D = p() :– tell(outa(x)) ‖ next tell(outa(y))
q() :– (abs z; outa(z)) tell(outb(z)) ‖ next q()
r() :– p() ‖ q()

The procedure p() outputs on channel a the variables x and y
in the first and second time-units respectively. The procedure q()
resends on channel b every message received on channel a. Starting
from the bottom interpretation I⊥ (assigning Cω to each name
procedure), the semantics of r() is obtained as follows

I0 : p→ {c.c′.s | c ` outa(x) and c′ ` outa(y)}
q → {c1.s | c1 ` outa(t) implies c1 ` outb(t)}
r → Cω ∩ Cω = Cω

I1 : p→ I0(p)
q → {c1.c2.s | ci ` outa(t) implies ci ` outb(t) , i=1,2}
r → I0(p) ∩ I0(q)

. . .
Iω : p→ I0(p)

q → {s | (s(i) ` outa(t) imp. s(i) ` outb(t) for i > 0}
r → Iω(p) ∩ Iω(q)

where t denotes any term. In words, if s ∈ [[r()]] then s(1) `
outa(x), s(2) ` outa(y) and for i ≥ 1, if s(i) ` outa(t) then
s(i) ` outb(t)

3.2 Semantic Correspondence
In this section we prove the semantic correspondence between the
operational and the denotational semantics. Before that, it is worth
noticing that unlike tcc, some utcc processes may exhibit infinite
behavior during a time-unit due to the abstraction operator. Take for
example a process of the form P = (abs x; c(x)) tell(c(x+ 1)).
Under input c(1), this process will generate constraints of the
form c(2), c(3), ..., thus never producing an observable transition
(see [27] for details). This behavior will arise in the application
to security in Section 5.3, where the model of the attacker may
generate infinitely many messages. We shall show later that the
abstract semantics allows us to restrict the number of messages
generated, thus avoiding this situation.

Considering this fact, it may be the case that sequences in the
input-output behavior (and then in the strongest postcondition)
are finite or even the empty sequence ε. Nevertheless, this is not
the case for all utcc process. We shall call well-terminated the
processes which do not exhibit infinite internal behavior:

DEFINITION 9 (Well-termination). The process P is said to be
well-terminated if and only if for every s such that s(i) 6= false
for each i, there exists s′ such as (s, s′) ∈ io(P).

The fragment of well-terminated processes is a meaningful one.
For instance, it was shown to be enough to encode Turing-powerful
formalisms in [26]. It has also found application, e.g., in multime-
dia interaction systems [24] and declarative interpretation of lan-
guages for structured communications [19].

The following theorem shows that if a (finite) sequence s is in
the strongest postcondition, then there exists an infinite sequence s′

in the denotation such that s is a prefix of s′.

THEOREM 3 (Soundness). Let [[·]] be as in Definition 8. Given a
program D.P , if s ∈ sp(P) then there exists s′ s.t. s.s′ ∈ [[P]].

For the converse of the previous theorem, we have similar tech-
nical problems as in the case of tcc, namely: the combination be-
tween the local and the unless operator—see [8, 23] for details.
Thus, similarly to [8, 23], completeness is verified only for the fol-
lowing fragment of utcc:

DEFINITION 10 (Loc. Ind. & abs-unless fragment). We say that a
process P is a locally independent (resp. abstracted-unless free)
iff P has no occurrences of unless processes under the scope
of a local (resp. abs) operator. These definitions are extended to
programs D.P by decreeing that P and all Pi in pi(~x) :– Pi ∈ D
satisfy the conditions above.

THEOREM 4 (Completeness). Let D.P be a locally independent
and abstracted-unless free program s.t. s ∈ [[P]]. For all prefixes
s′ of s, if there exists s′′ s.t. (s′, s′′) ∈ io(P) then s′ ≡ s′′, i.e.,
s′ ∈ sp(P).

4. Abstract Interpretation Framework
In this section we develop an abstract interpretation framework [6]
for the analysis of utcc programs. The framework is based on the
above denotational semantics, thus allowing for a compositional
analysis of utcc (and then tcc) programs. The abstraction pro-
ceeds in two-levels: (1) we abstract the constraint system and then
(2) we abstract the infinite sequences of abstract constraints by a
finite cut. The abstraction in (1) allows us to reuse the most pop-
ular abstract domains previously defined for logic programming.
Adapting those domains, it is possible to perform, e.g., groundness,
freeness, type and suspension analyses of tcc and utcc programs.
Furthermore, it allows us to restrict the set of terms to be considered
in the Equation DABS. Thus, we can even approximate the output
of a non-well terminated process as we show in Section 5.3. On the
other hand, the abstraction in (2) along with (1) allows for comput-
ing the approximated output of the program in a finite number of
steps.

4.1 Abstract Constraint Systems
Let us recall some notions from [12] and [32].

DEFINITION 11. Given two constraint systems

C = 〈C,≤ t, true, false,Var ,∃, d〉
A = 〈A,≤α tα, trueα, falseα,Var , ∃α, dα〉

a description (C, α,A) consists of an abstract domain (A,≤α)
and a monotonic abstraction function α : C → A. We lift α to
sequences of constraints in the obvious way.

DSKIP [[skip]]I = Cω

DTELL [[tell(c)]]I = {d.s ∈ Cω | d ` c}

DPAR [[P ‖ Q]]I = [[P]]I ∩ [[Q]]I

DNEXT [[nextP]]I = {d.s ∈ Cω | s ∈ [[P]]I}

DUNL [[unless c nextP]]I = {d.s ∈ Cω | d 6` c and s ∈ [[P]]I} ∪ {d.s ∈ Cω | d ` c}

DREP [[!P]]I = {s ∈ Cω | for all s′′, s′ s.t. s = s′′.s′, s′ ∈ [[P]]I}

DLOC [[(local ~x; c)P]]I = {s ∈ Cω | there exists an ~x-variant s′ of s s.t. s′(1) ` c and s′ ∈ [[P]]I}

DASK [[when c do P]]I = {d.s ∈ Cω | d ` c and d.s ∈ [[P]]I} ∪ {d.s ∈ Cω | d 6` c}

DABS [[(abs ~x; c)P]]I =
T

~t∈T |~x|
[[(when c do P)[~t/~x]]]I

DCALL [[p(~x)]]I = I(p(~x))

Table 2. Semantic Equations for tcc and utcc constructs. In DABS, if |~x| = 0 then T |~x| is defined as {ε}

We shall use cκ, dκ to range over constraints in A and sκ, s′κ
to range over sequences in Aω and A∗. Let `α be defined as in
the concrete counterpart, i.e. cκ ≤α dκ iff dκ `α cκ. The set of
abstract terms is denoted by Tκ and ranged by tκ, t′κ...

Following standard lines in [12, 32] we impose the following
restrictions over α:

DEFINITION 12 (Correctness). Let α : C → A be monotonic. We
say that A is upper correct w.r.t the constraint system C if for all
c ∈ C and x, y ∈ V: (1) α(∃xc) = ∃αxα(c). (2) α(dxy) = dαxy .
(3) α(c t d) `α α(c) tα α(d). Let αt : T → Tκ be the
term-abstraction structurally based on α. Given the sequence of
variables ~x and ~t,~t′ ∈ T |~x|, (4) α(c[~t/~x]) = α(c[~t′/~x]) whenever
αt(~t) = αt(~t′).

Conditions (1), (2) and (3) relate the cylindrification, diagonal
and lub operators of both constraints systems. Condition (4) is
only necessary to have a safe approximation of the abs operator
in utcc, but it is not required when analyzing tcc programs. It
informally says that substituting by terms mapped to the same
abstract term, must lead to the same abstract constraint.

In the example below we illustrate an abstract domain for the
groundness analysis of tcc programs. Here we give just an intuitive
description of it. We shall elaborate more on this domain and its
applications in Section 5.1.

EXAMPLE 5. Let the Herbrand constraint system (Hcs) [29] be the
concrete domain. In Hcs, a first-order language L with equality is
assumed. The entailment relation is that one expects from equality,
e.g., [x|y] = [a|z] must entail x = a and y = z. Terms, as
usual, are variables, constants and functions applied on terms.
As abstract constraint system, let constraints be predicates of the
form iff (x, []) meaning that x is a ground variable. Abstract terms
are variables and the special term g meaning “ground”. In this
setting, α(x = [a]) = iff (x, []) (i.e., x is a ground variable).
Furthermore αt(a) = αt(b) = g. By Condition (4) in Definition
12, α((x = [y])[a/y]) = α((x = [y])[b/y]) = iff (x, []).

We conclude this section by defining when an “abstract” con-
straint approximates a concrete one.

DEFINITION 13 (Approximations). Let A be upper correct w.r.t C
and (C, α,A) be a description. Given dκ = α(d), we say that dκ

is the best approximation of d. Furthermore, for all cκ ≤α dκ we
say that cκ approximates d and we write cκ ∝ d. This definition is
extended to sequences of constraints in the obvious way.

4.2 Abstract Semantics
Starting from the semantics in Section 3, we develop here an ab-
stract semantics which approximates the observable behavior of a
program and is adequate for modular data-flow analysis. We focus
our attention on a special class of abstract interpretations obtained
from what we call a sequence abstraction mapping possibly infinite
sequences of (abstract) constraints into finite ones.

DEFINITION 14 (Sequence Abstraction). A sequence abstraction
τ : Aω ∪ A∗ → A∗ is a reductive (τ(sκ) ≤α sκ) and monotonic
operator. We lift τ to sets of sequences in the obvious way: τ(Sκ) =
{sκ | sκ = τ(s′κ) and s′κ ∈ S}.

A simple albeit useful instance of the abstraction τ is the
sequence(k) cut. This abstraction approximates a sequence by pro-
jecting it to its first k elements, e.g., sequence(2)(c1.c2.c3....) =
c1.c2.

Given a description (C, α,A), we choose as concrete domain
E = (E,⊆c) as defined in Section 3. The abstract domain is
A = (A,⊆α) where A = P(A∗) and ⊆α is defined similarly
to ⊆c: Let X,Y ∈ A and .α be the preorder s.t. X .α Y iff for
all y ∈ Y , there exists x ∈ X s.t. x ≤α y. X ⊆α Y iff X .α Y
and (Y .α X implies Y ⊆ X). The bottom and top of this domain
are, similar to the concrete domain,A∗ and {falseα . falseα ...}
respectively.

We require A to be noetherian (i.e., there are no infinite ascend-
ing chains). This guarantees that the fixpoint of the abstract seman-
tics can be reached in a finite number of iterations.

The semantic equations are given in Table 3. We shall dwell a
little upon the description of the rules AASK, AABS and AUNL. The
other cases are easier.

We notice that from the fact α(d) `α α(c) we cannot conclude
d ` c. For example, let d = (x = 1), c = (x = 2) and
iff (·) be as in Example 5. We have iff (x, []) `α iff (x, []) but
x = 1 6` x = 2. Then, the equation AASK cannot be obtained from
the equation DASK by simply replacing the condition d ` c with
dκ `α α(c). We thus follow [32, 11, 12] for the abstract semantics
of the ask operator. Intuitively, the Equation AASK says that if the

abstract computation proceeds, then every concrete computation
it approximates proceeds too. This is formalized by the relation
dκ À c, meaning that the abstract constraint dκ entails c if all
concrete constraint approximated by dκ entails c.

DEFINITION 15. Given dκ ∈ A and c ∈ C, dκ À c iff for all
c′ ∈ C s.t. dκ ∝ c′, c′ ` c.

In Equation AABS, we compute the intersection over the ab-
stract terms (Tκ) and we replace ~x with a concrete term ~t′ s.t.
αt(~t′) = ~tκ. Notice that it may be the case that there exists ~t1,
~t2 s.t. αt(~t1) = αt(~t2) = ~tκ. Using property (4) in Definition 12,
we can show that the choice of the concrete term is irrelevant (see
[13][Appendix A]).

One could think of defining the abstract semantics of the
unless operator similarly to that of the when operator as fol-
lows:
[[unless c nextP]]τX = τ({dκ.sκ | dκ 6 À c and sκ ∈ [[P]]τX)

∪ τ({dκ.sκ | dκ À c)
Nevertheless, this equation leads to a non safe approximation of
the concrete semantics. This is because from dκ 6 À c we cannot
conclude that d 6` c where α(d) = dκ. To see this, take Q =
unless c nextP and d s.t. d ` c. Then d. trueω ∈ [[Q]]. Take
c′ s.t. c′ 6` c and c′κ = α(c′) ≤α α(d) = dκ. Then, dκ ∝ c′ and
dκ 6 À c. If P 6= skip, we have dκ. true∗ /∈ [[Q]]τ .

Defining dκ 6 À c as true iff c′ 6` c for all c′ approximated by dκ
does not solve the problem. This is because under this definition,
dκ 6 À c would not hold for any dκ and c: false entails all
the concrete constraints and it is approximated for every abstract
constraint.

Therefore, we cannot give a better (safe) approximation of
the semantics of Q = unless c nextP than τ(Aω), i.e.
[[Q]]τX = [[skip]]τX (Rule AUNL).

We define formally the abstract semantics as follows:

DEFINITION 16. Let [[·]]τX be as in Table 3. The abstract semantics
of a program D.P is defined as the least fixpoint of the following
continuous semantic operator:

TαD(X)(p(~x)) = [[(∆~y
~xP
′)]]τX if p(~y) :– P ′ ∈ D

We shall use [[P]]τ to denote [[P]]τlfp(TαD)

4.3 Soundness of the Approximation
This section proves the correctness of the abstract semantics in
Definition 16. We first establish a Galois insertion between the
concrete and the abstract domains. From [32, Proposition 3], we
deduce the following:

α(E) := τ({α(s) | s ∈ E})
γ(A) := {s | τ(α(s)) ∈ A}

We have used α to avoid confusion with α in (C, α,A). We can
lift in the standard way to abstract interpretations [6] the approxi-
mation induced by the above abstraction. Let I : ProcHeads →
E, X : ProcHeads→ A and p a procedure name. Then

α(I)(p) := τ({α(s) | s ∈ I(p)})
γ(X)(p) := {s | τ(α(s)) ∈ X(p)}

The following theorem states that concrete computations are
safely approximated by the abstract semantics.

THEOREM 5 (Soundness of the approximation). Let A be upper
correct w.r.t. C, (C, α,A) be a description and τ be a sequence
abstraction. Let [[·]] and [[·]]τ be respectively as in Definitions 8 and
16. Given a utcc program D.P , if s ∈ [[P]] then τ(α(s)) ∈ [[P]]τ .

5. Applications
This section describes two specific abstract domains as instances of
our framework. Firstly, we tailor two abstract domains from logic
programming to perform a groundness and a type analysis of a tcc
program. We then apply this analysis in the verification of a reactive
system in tcc. Secondly, we abstract a constraint system dealing
with cryptographic primitives. Here we use the abstract semantics
to exhibit a secrecy flaw in a security protocol programmed in
utcc.

5.1 Groundness Analysis
In logic programming, one useful analysis is groundness. It aims at
determining if a variable will always be bound to a ground term.
This information can be used, e.g., for optimization in the compiler
(to remove code for suspension checks at runtime) or as base for
other data flow analyses such as independence analysis, suspension
analysis, etc. Here we present a groundness analysis for a tcc
program. To this end, we shall use as concrete domain the Herbrand
constraint system (Hcs) [29] (see Example 5).

Assume the following procedure definitions:
gena(x) = (local x′) (! tell(x = [a|x′]) ‖

when goa do next gena(x ′) ‖
when stopa do ! tell(x ′ = []))

genb(x) = (local x′) (! tell(x = [b|x′]) ‖
when gob do next genb(x ′) ‖
when stopb do ! tell(x ′ = []))

append(x, y, z) = when x = [] do ! tell(y = z) ‖
when ∃x′,x′′ (x = [x′ |x′′]) do

(local x′, x′′, z′) (! tell(x = [x′ | x′′]) ‖
! tell(z = [x′ | z′]) ‖
next append(x′′, y, z′))

The process gena(x) adds to the stream x an “a” when the en-
vironment provides goa as input. Under input stopa, it terminates
the stream binding its tail to the empty list. Let x goa and x stopa
be two distinct variables different from x and x′, and goa and stopa
be the constraints x goa = [] and x stopa = []. The process genb
can be explained similarly. The process append(x, y, z) binds z to
the concatenation of x and y.

We shall use Pos [1] as abstract domain for the groundness
analysis. In Pos, positive propositional formulae represent ground-
ness dependencies among variables. Elements in the domain are or-
dered by logical implication. Let αg be defined over equations in
normal form as: αg(x = t) = iff (x, fv(t)).

For instance, αg(x = [y|z]) = iff (x, {y, z}) representing the
propositional formula x ⇔ (y ∧ z) meaning, x is ground if and
only if y and z are grounds.

Notice that Pos does not distinguish between the empty list
and a list of ground terms, i.e., dκ = αg(x = []) = αg(x =
[a]) = iff (x, {}). Therefore, we have dκ 6 À x = [] (see Definition
15). This means, e.g., that the semantics of P = tell(x = []) ‖
when x = [] do tell(y = []) is (safely) approximated by
iff (x, []). Thus we lose the information added by tell(y = []).

We can improve the accuracy of our analysis by using the ab-
stract domain in [4] to derive information about type dependencies
on terms. The abstraction is defined as follows:

αT (x = t) =
n

list(x, xs) if t = [y | xs] for some y
nil(x) if t = []

Informally, list(x, xs) means x is a list iff xs is a list and nil(x)
means x is the empty list. If x is a list we write list(x). Elements
in the domain are ordered by logical implication.

Let Ag = 〈A,≤α tα, trueα, falseα,Var , ∃α, dα〉 be the
abstract constraint system obtained from the reduced product ([6])
of the previous abstract domains. Elements g, g′... ∈ A are tuples
〈cκ, dκ〉 where cκ corresponds to groundness information and dκ

ASKIP [[skip]]τX = τ(Aω)

ATELL [[tell(c)]]τX = τ({dκ.sκ ∈ Aω | dκ `α α(c)})

APAR [[P ‖ Q]]τX = [[P]]τX ∩ [[Q]]τX

ANEXT [[nextP]]τX = τ({dκ.sκ ∈ A∗ | sκ ∈ [[P]]τX})

AUNL [[unless c nextP]]τX = τ(Aω)

AREP [[!P]]τX = τ({sκ ∈ A∗ | for all s′κ, wκ s.t. sκ = wκ.s
′
κ, s′κ ∈ [[P]]τX})

ALOC [[(local ~x; c)P]]τX = τ({sκ ∈ A∗ | there exists a ~x-variant s′κ of sκ s.t. s′κ(1) `α α(c) and s′κ ∈ [[P]]τX})

AASK [[when c do P]]τX = τ({dκ.sκ ∈ A∗| dκ 6 À c}) ∪ {dκ.sκ ∈ A∗| dκ À c and dκ.sκ ∈ [[P]]τX}

AABS [[(abs ~x; c)P]]τX =
T

~tκ∈T
|~x|
κ

[[(when c do P)[~t′/~x]]]τX where αt(~t′) = ~tκ

ACALL [[p(~x)]]τX = X(p(~x))

Table 3. Abstract denotational semantics for utcc. À in Definition 15

to type dependency information. The abstraction function is defined
as expected, i.e., α(c) = g = 〈αg(c), αT (c)〉 . The operations tα,
∃α correspond to logical conjunction and existential quantification
over the components of the tuple. The diagonal element dxy cor-
responds to 〈x = y, x = y〉. Finally, 〈cκ, dκ〉 ≤α 〈c′κ, d′κ〉 if
c′κ ⇒ cκ and d′κ ⇒ dκ.

Let τ = sequence(κ) and g1.g2....gκ ∈ [[Gena(x)]]τ . By
a derivation similar to that of Example 4, if there exists i ∈
{1, .., κ} such that gi À stopa, one can show that there exists
~x′ = x′0, x

′
1, ..., x

′
i such that

gi `α ∃~x′

*
iff (x, x′0) t

F
0≤j<i

iff (x′j , {x
′
j+1}) t iff (x′i, {}) ,

list(x, x′0) t
F

0≤j<i
list(x′j , x

′
j+1) t nil(x′i)

+
Thus, if gi À stopa we can deduce that x is a list and x is a ground
variable, i.e., gi `α 〈iff (x, []), list(x)〉.

Let sk = [[Gena(x) ‖ Genb(y) ‖ append(x, y, z)]]τ . If there
exist i, j ≤ κ s.t. sκ(i) À stopa and sκ(j) À stopb, we can show
that for l ≥ max(i, j), the variables x, y and z are list of ground
elements. More precisely,

sκ(l) `α 〈iff (x, [])tiff (y, [])tiff (z, []), list(x)tlist(y)tlist(z)〉

5.2 Analysis of Reactive Systems
Synchronous data flow languages [2] such as Esterel and Lustre
can be encoded as tcc processes [31, 28]. This makes tcc an
expressive declarative framework for the modeling and verification
of reactive systems. Here we show how our framework can provide
additional reasoning techniques in tcc for the verification of such
systems. More precisely, we shall use the groundness analysis
above to verify if the simplified version of a control system for
a microwave in Example 1 complies with its intended behavior: the
door must be closed when it is turned on.

We assume on, off, closed and open be respectively the
constraints on = [], off = [], close = [] and open = [] for
variables on, off , close and open different from E and E′. The
symbols yes and stop denote constant symbols.

Our analysis consists in determining when the variable Error
is bound to a ground term. If the system is correct, it must happen
when the the door is open and the microwave is turned on.

Let τ = sequence(κ) for a given κ. We can show that if sκ ∈
[[micCtrl(Error,Button)]]τ and sκ(i) À (open t on), then

sκ(i) `α 〈iff (Error, []), list(Error)〉, i.e., Error is a ground
variable.

We then conclude that the system effectively binds the list Error
to a ground term whenever the system reaches an inconsistent state.

5.3 Analyzing Secrecy Properties
In [27] it was shown that the ability of utcc to model mobile behav-
ior, as in Example 2, allows for the modeling of security protocols.
Nevertheless, the model of the attacker is a non-well terminated
process thus producing infinitely many internal reductions. In this
section we show how a suitable abstraction of the cryptographic
constraint system in [27] may allow us to bound the number of
messages to be considered in a secrecy analysis. Then we exhibit a
well-known flaw in a security protocol.

We consider a constraint system whose terms are the possible
messages generated during the execution of the protocol. Crypto-
graphic primitives are represented as functions over such terms.

DEFINITION 17. Let Σ be a signature with constant symbols in
P ∪ K, function symbols enc, pair , priv and pub and predicates
out(·) and secret(·). Constraints in C are first-order formulae
built over Σ.

Intuitively, P and K represent respectively the principal iden-
tifiers, e.g. A,B, . . . and keys k, k′. We use {m}k and {m1,m2}
respectively, for enc(m, k) (encryption) and pair(m1,m2) (com-
position). For the generation of keys, priv(k) stands for the private
key associated to the value k and pub(k) for its public key.

As standardly done in the verification of security protocols, a
Dolev-Yao attacker [10] is presupposed, able to eavesdrop, dis-
assemble, compose, encrypt and decrypt messages with available
keys. The attacker can be modeled as follows:

Disam :– (abs x, y; out({x, y})) tell(out (x) t out (y))
Comp :– (abs x, y; out(x) t out(y)) tell(out ({x, y}))
Enc :– (abs x, y; out(x) t out(y)) tell(out ({x}y))
Dec :– (abs x, k; out(priv(k)) t out({x}pub(k))) tell(out (x))
Pers :– (abs x; out(x)) next tell(out(x))
Spy :– Disam ‖ Comp ‖ Enc ‖ Dec ‖ Pers ‖ nextSpy

The first four processes represent the abilities previously men-
tioned. Since the final store is not automatically transferred to the
next time-unit, the process Pers represents the ability to remem-
ber all messages posted so far. Notice that the processes Comp

and Enc generate an infinite number of messages. E.g., if the cur-
rent store is out(m), the process Comp will add the constraints
out({m,m}), out({m, {m,m}}) and so on.

To deal with this state explosion problem, the number of mes-
sages to be considered can be bound (see e.g. [30]). We formalize
this with the following abstraction.

DEFINITION 18 (Abstract secure cons. system). LetM be the set
of (terms) messages in the constraint system in Definition 17 and
lg :M→ N be defined as:

lg(m) =

(
0 if m ∈ P ∪ K ∪ Var
1 + lg(m1) + lg(k) if m = {m1}k
1 + lg(m1) + lg(m2) if m = {m1,m2}

Let cutκ be the following term abstraction

cutκ(m) =
n

m if lg(m) ≤ κ
m> otherwise

with m> /∈ M (representing all the messages with length greater
than κ) . Let C be as in Definition 17 and (C, α,A) be a descrip-
tion where α(out(m)) = out(cutκ(m)) and α(secret(m)) =
secret(cutκ(m)).

5.3.1 Secrecy Analysis
Assume the following simplification of the Denning-Sacco key
distribution protocol [9]:

msg1 A→ B : {A,m}pub(B)

msg2 B → A : {n}m
In the first message, A sends to B {A,m}pub(B) representing

the composition of the A’s identifier and the nonce (unguessable
secret) m encrypted with the B’s public key. With its private key,
B is able to decrypt the message sent by A and then creates the
nonce n. B sends n encrypted with m. The goal of the protocol is
to keep secret n.

This protocol can be modeled in utcc as
init(i, r) :– (localm) tell(out({i,m}pub(r)))

‖ next init(i, r)
resp(t) :– (abs p, y; out({p, y}pub(t)))

(localn) ! tell(secret(n)) ‖
next tell(out({n}y))

‖ next resp(t)

Nonce generation is modeled by local constructs and the pro-
cess tell(out(m)) models the broadcast of the message m. In-
puts (message reception) are modelled by abs processes. Both,
init and resp are recursively called since principals may initi-
ate different sessions during the execution of the protocol. Finally,
tell(secret(n)) in resp states that the nonce n cannot be re-
vealed.

Assume an execution of the Denning-Sacco protocol with three
principals A,B,C where A starts the protocol with B and the
private key of B is known by the attacker:
DS = Spy ‖ init(A,B) ‖

Q
x∈{A,B,C}

(resp(x)) ‖ tell(out(priv(B)))

The abstraction cut3 and τ = sequence(2) allows us to verify
the following:

if sκ ∈ [[DS]]τ then sκ(2) `α ∃n(secret(n) t out(n))

meaning that DS leads to a secrecy attack. In fact, this is a
well known attack (see e.g. [3]) where the attacker replies to C
the message sent by A to B and C believes that he is establishing
a session key with A. Since the attacker knows m from the first
message, she can decrypt {n}pub (m) and n is not longer a secret
between A and C as intended.

Notice the importance of having here a finite cut of the messages
(terms) generated for the process Spy to compute [[DS]]τ . This

allows us to restrict the set of terms considered by the abs operator
and over-approximate the behavior of the protocol.

5.3.2 A prototypical implementation
We have implemented our framework and the abstract domain for
secrecy analysis in a prototype developed in Oz (http://www.
mozart-oz.org/). This tool is described in http://www.lix.
polytechnique.fr/~colarte/prototype/ and allows the user
to compute the least element of the abstract semantics of a process
P . The current implementation supports constraints as those used
in the cryptographic constraint system (e.g., predicates of the form
out(enc(x, pub(y)))). It implements the sequence(κ) and cutκ′
abstractions where κ and κ′ are parameters specified by the user.
We started by implementing the secrecy analysis since one of the
most appealing application of the utcc calculus is the modeling
and verification of security protocols. Our goal in the short term
is to develop (or adapt from existing implementation) previously
defined domains for logic programs such as those used in Section
5.1. This then will provide a valuable tool for the analysis of tcc
and utcc programs.

The reader may find in the URL above a deeper description of
the tool and some examples. Furthermore, we provide the program
excerpts to compute the output of the secrecy analysis for the
Denning-Sacco key distribution protocol [9]. We also illustrate a
similar analysis for the Needham-Schroeder Protocol [20].

6. Concluding Remarks
Several frameworks and abstract domains for the analysis of logic
programs have been defined (see e.g. [6, 5, 1]). Those works differ
from ours since they do not deal with the temporal behavior and
synchronization mechanisms present in tcc-based languages. On
the contrary, since our framework is parametric w.r.t the abstract
domain, it can benefit from those works.

We defined in [14] a framework for the declarative debugging
of ntcc [23] programs (a non-deterministic extension of tcc). The
framework presented here is more general since it was designed
for the static analysis of tcc and utcc programs and not only
for debugging. Furthermore, as mentioned above, it is parametric
w.r.t an abstract domain. The language utcc is also more involved:
processes may exhibit infinite internal behavior and, unlike ntcc,
utcc can encode Turing powerful formalisms [26]. In [14] we also
dealt with infinite sequences of constraints and a similar finite cut
over sequences was proposed there.

In [27] a symbolic semantics for utcc was proposed to deal
with the infinite internal reductions of non well-terminated pro-
cesses. This semantics, by means of temporal formulae, represents
finitely the infinitely many constraints (and substitutions) the SOS
may produce. The work in [26] introduces a denotational seman-
tics for utcc based on (partial) closure operators over sequences of
temporal logic formulae. This semantics captures compositionally
the symbolic strongest postcondition and it was shown to be fully
abstract w.r.t the symbolic semantics for the fragment of locally-
independent and abstracted-unless free processes (see Definition
10). The semantics here presented turns out to be more appropriate
than that in [26] to develop the abstract interpretation framework in
Section 4. Firstly, the inclusion relation between the strongest post-
condition and the semantics is verified for the whole language (The-
orem 3) – in [26] this inclusion is verified only for the abstracted-
unless free fragment–. Secondly, this semantics makes use of the
entailment relation over constraints rather than the more involved
entailment over first-order linear-time temporal formulae as in [26].
This shall ease the implementation of tools based on the frame-
work. Finally, our semantics allows us to capture the behavior of
tcc programs with recursion. This is not possible with the seman-

tics in [26] which was thought only for utcc programs where re-
cursion can be encoded.

For the kind of applications that stimulated the development
of utcc, it was defined entirely deterministic. The semantics here
presented could smoothly be extended to deal with some forms of
non-determinism like those in [12], thus widening the spectrum of
applications of our framework. It would be also interesting to study
how our framework could adapt to stochastic and probabilistic
extensions of ccp-based languages which have found application
e.g., in the modeling of biological systems [25].

In [27] the symbolic semantics and the underlying temporal
logic associated to utcc are used to verify a security protocol. The
flaw in the protocol was exhibited by hand computing the symbolic
outputs of the process. Here we go further by exhibiting the flaw
automatically with the help of a prototype. Since our approach is
based on approximations of the concrete semantics, not detecting a
flaw does not imply the correctness of it.

As we showed in Section 5.1, given that tcc is a sub-calculus
of utcc, our results apply straightforwardly to tcc programs. This
work then provides the theoretical basis for building tools for the
data-flow analyses of utcc and tcc programs whose verification
and debugging are not trivial due to their concurrent nature and
synchronization mechanisms. We have shown for example, how to
analyze groundness and how to detect mistakes in safety critical
applications, such as control systems and embedded systems.

Our results should foster the development of analyzers for dif-
ferent systems modeled in utcc and its sub-calculi such as security
protocols, reactive and timed systems, biological systems, etc (see
[25] for a survey of applications of ccp-based languages). We plan
also to perform freeness, suspension, type and independence anal-
yses among others. It is well known that this kind of analyses have
many applications, e.g. for code optimization in compilers, for im-
proving run-time execution, and for approximated verification.

We believe that the framework proposed here can also help to
develop new analyses for other languages for reactive systems (e.g.
Esterel [2]), which can be translated into tcc [31, 28] and for
languages featuring mobile behavior as the π-calculus [22]. For the
latter, many analyses have been already defined, see e.g. [15, 16].
As future work, it would be interesting to see if it is possible to
carry out similar analyses in our framework for suitable fragments
of π that can be encoded into utcc (see e.g., [19] that encodes a
π-based language for structured communication into utcc).

References
[1] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two

classes of Boolean functions for dependency analysis. Science of
Computer Programming, 31(1), 1998.

[2] G. Berry and G. Gonthier. The ESTEREL synchronous programming
language: Design, semantics, implementation. Science of Computer
Programming, 19(2):87–152, 1992.

[3] B. Blanchet. Security protocols: from linear to classical logic by
abstract interpretation. Inf. Process. Lett., 95(5):473–479, 2005.

[4] M. Codish and B. Demoen. Deriving polymorphic type dependencies
for logic programs using multiple incarnations of prop. In Proc. of
SAS’94, pages 281–296. Springer-Verlag, LNCS 864, 1994.

[5] M. Codish, H. Søndergaard, and P. Stuckey. Sharing and groundness
dependencies in logic programs. ACM Trans. Program. Lang. Syst.,
21(5), 1999.

[6] P. Cousot and R. Cousot. Abstract Interpretation and Applications to
Logic Programs. Journal of Logic Programming, 13(2&3):103–179,
1992.

[7] F. de Boer, M. Gabbrielli, and M. C. Meo. A timed concurrent
constraint language. Information and Computation, 161(1):45–83,
2000.

[8] F. S. de Boer, A. D. Pierro, and C. Palamidessi. Nondeterminism and
infinite computations in constraint programming. Theor. Comput. Sci.,
151(1):37–78, 1995.

[9] D. Denning and G. Sacco. Timestamps in key distribution protocols.
Commun. ACM, 24(8), 1981.

[10] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(12), 1983.

[11] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Compo-
sitional analysis for concurrent constraint programming. In Proc. of
LICS’93, 1993.

[12] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Con-
fluence in concurrent constraint programming. Theoretical Computer
Science, 183(2):281–315, 1997.

[13] M. Falaschi, C. Olarte, and C. Palamidessi. A framework for abstract
interpretation of timed concurrent constraint programs (extended ver-
sion), 2009. http://www.lix.polytechnique.fr/~colarte/.

[14] M. Falaschi, C. Olarte, C. Palamidessi, and F. Valencia. Declarative
diagnosis of temporal concurrent constraint programs. In Proc. of
ICLP’07. Springer LNCS 4670, 2007.

[15] J. Feret. Abstract interpretation of mobile systems. J. Log. Algebr.
Program., 63(1):59–130, 2005.

[16] P.-L. Garoche, M. Pantel, and X. Thiroux. Abstract interpretation-
based static safety for actors. Journal of Software, 2(3):87–98, 2007.

[17] T. Hildebrandt and H. A. Lopez. Types for secure pattern matching
with local knowledge in universal concurrent constraint programming.
In Proc. of ICLP’09. Springer LNCS, 2009.

[18] R. Jagadeesan, W. Marrero, C. Pitcher, and V. A. Saraswat. Timed
constraint programming: a declarative approach to usage control. In
Proc. of PPDP’05. ACM, 2005.

[19] H. Lopez, C. Olarte, and J. A. Pérez. Towards a unified framework for
declarative structured communications. In Proc. of PLACES’09, 2009.

[20] G. Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. In Proc. of TACAS’96. LNCS, 1996.

[21] N. P. Mendler, P. Panangaden, P. J. Scott, and R. A. G. Seely. A
logical view of concurrent constraint programming. Nord. J. Comput.,
2(2):181–220, 1995.

[22] R. Milner. Communicating and Mobile Systems: the π-calculus. Cam-
bridge University Press, 1999.

[23] M. Nielsen, C. Palamidessi, and F. Valencia. Temporal concurrent
constraint programming: Denotation, logic and applications. Nordic
Journal of Computing, 9(1):145–188, 2002.

[24] C. Olarte and C. Rueda. A declarative language for dynamic multime-
dia interaction systems. In Proc of. MCM’09. Springer, 2009.

[25] C. Olarte, C. Rueda, and F. Valencia. Concurrent constraint program-
ming: Calculi, languages and emerging applications. Newsletter of the
ALP, 21(2-3), 2008.

[26] C. Olarte and F. Valencia. The expressivity of universal timed CCP:
Undecidability of monadic FLTL and closure operators for security.
In Proc. of PPDP 08. ACM, 2008.

[27] C. Olarte and F. Valencia. Universal concurrent constraint program-
ming: Symbolic semantics and applications to security. In Proc. of
SAC’08. ACM, 2008.

[28] V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed con-
current constraint programming. In Proc. of LICS’94. IEEE Computer
Society, 1994.

[29] V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundation of
Concurrent Constraint Programming. In POPL’91. ACM, 1991.

[30] D. X. Song, S. Berezin, and A. Perrig. Athena: A novel approach to
efficient automatic security protocol analysis. Journal of Computer
Security, 9(1/2):47–74, 2001.

[31] S. Tini. On the expressiveness of timed concurrent constraint program-
ming. Electr. Notes Theor. Comput. Sci., 27, 1999.

[32] E. Zaffanella, R. Giacobazzi, and G. Levi. Abstracting synchroniza-
tion in concurrent constraint programming. Journal of Functional and
Logic Programming, 1997(6), 1997.

