
This is a preliminary version of a paper
that will appear in Electronic Proceedings
in Theoretical Computer Science.

c© López, Olarte, & Pérez
This work is licensed under the
Creative Commons Attribution License.

Towards a Unified Framework for Declarative Structured
Communications

Hugo A. López
IT University of Copenhagen

hual@itu.dk

Carlos Olarte
INRIA and LIX, École Polytechnique

colarte@lix.polytechnique.fr

Jorge A. Pérez
University of Bologna

perez@cs.unibo.it

In this paper we aim at describing a unified framework for the declarative analysis of structured
communications. By relying on a (timed) concurrent constraint programming language, we show
that in addition to the usual operational techniques from process calculi, the analysis of structured
communications can elegantly exploit logic-based reasoning techniques. In this work, we present
a concurrent constraint interpretation of the language for structured communications proposed by
Honda, Vasconcelos, and Kubo. Distinguishing features of our approach are: the possibility of
including partial information (constraints) in the session model; the use of explicit time for reasoning
about session duration and expiration; a tight correspondence with logic, which formally relates
session execution and linear-time temporal logic formulas.

1 Introduction

Motivation. From the viewpoint of reasoning techniques, two main trends in modeling in Service
Oriented Computing (SOC) can be singled out. On the one hand, an operational approach focuses on
how process interactions can lead to correct configurations. Typical representatives of this approach are
based on process calculi and Petri nets (see, e.g., [19, 3, 9, 10]), and count with behavioral equivalences
and type disciplines as main analytic tools. On the other hand, in a declarative approach the focus is
on the set of conditions components should fulfill in order to be considered correct, rather than on the
complete specification of the control flows within process activities (see, e.g., [20, 15]). Even if these
two trends address similar concerns, we find that they have evolved rather independently from each other.

The quest for a unified approach in which operational and declarative techniques can harmoniously
converge is therefore a legitimate research direction. In this paper we shall argue that Concurrent Con-
straint Programming (CCP) [18] can serve as a foundation for such an approach. Indeed, the unified
framework for operational and logic techniques that CCP provides can be fruitfully exploited for anal-
ysis in SOC, possibly in conjunction with other techniques such as type systems. Below we briefly
introduce the CCP model and then elaborate on how it can shed light on a particular issue: the analysis
of structured communications.

CCP [18] is a well-established model for concurrency where processes interact with each other by
telling and asking for pieces of information (constraints) in a shared medium, the store. While the former
operation simply adds a given constraint to the store (thus making it available for other processes), the
latter allows for rich, parameterizable forms of process synchronization. Interaction is thus inherently
asynchronous, and can be related to a broadcast-like communication discipline, as opposed to the point-
to-point discipline enforced by formalisms such as the π-calculus [16]. In CCP, the information in
the store grows monotonically, as constraints cannot be removed. This condition is relaxed in timed
extensions of CCP (e.g., [17, 12]), where processes evolve along a series of discrete time intervals.
Although each interval contains its own store, information is not automatically transferred from one
interval to another. In this paper we shall adopt a CCP process language that is timed in this sense.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Towards a Unified Framework for Declarative Structured Communications

In addition to the traditional operational view of process calculi, CCP enjoys a declarative nature
that distinguishes it from other models of concurrency: CCP programs can be seen, at the same time,
as computing agents and as logic formulas [18, 12, 13], i.e., they can be read and understood as logical
specifications. Hence, CCP-based languages are suitable for both the specification and verification of
programs. In the CCP language used in this paper processes can be interpreted as linear-time temporal
logic formulas; we shall exploit this correspondence to verify properties of our models.

This Work. We describe initial results on the definition of a formal framework for the declarative
analysis of structured communications. We shall exploit utcc, a timed CCP process calculus [14], to give
a declarative interpretation to the language defined by Honda, Vasconcelos, and Kubo in [8] (henceforth
referred to as HVK). This way, structured communications can be analyzed in a declarative framework
where time is defined explicitly. We begin by proposing an encoding of the HVK language into utcc and
studying its correctness. We then move to the timed setting, and propose HVKT, a timed extension of
the HVK language. The extended language explicitly includes information on session duration, allows
for declarative preconditions within session establishment constructs, and features a construct for session
abortion. We then show that the encoding of HVK into utcc straightforwardly extends to HVKT.

A Compelling Example. We now give intuitions on how a declarative approach could be useful in the
analysis of structured communications. Consider the ATM example from [8, Sect. 4.1]. There, an ATM
has established two sessions: the first one with a user, sharing session k over service a, and the second
one with the bank, sharing session h over service b. The ATM offers deposit, balance, and withdraw
operations. When executing a withdraw, if there is no enough money in the account, then an overdraft
message appears to the user. It is interesting to analyze what occurs when this scenario is extended to
consider a card reader that acts as an interface between the user and the ATM. Suppose the card reader
is malicious in that it keeps the user’s sensible information after a withdraw operation, and uses it to
continue withdrawing money without his/her authorization. A greedy card reader could even withdraw
repeatedly until causing an overdraft, as expressed below:

Reader = accept r(k′) in k′?(id) in

request a(k) in k![id]; k′�

withdraw : k′?(amt) in
k �withdraw;k![amt];

k �{dispense : k′�dispense;k![amt];R(k,amt) ‖ overdra f t : Q}

R(j,x) = def R′ in k �withdraw; j![x]; j �{dispense : j?(amt) in R′ ‖ overdra f t : Q}
User = request r(k′) in k′![myId];

k′�withdraw;k′![58]; k′�{dispense : k′?(amt) in P ‖ overdra f t : Q}

By creating sessions between them, the card reader Reader is able to receive the user’s information,
and to use it later to attempt session establishment with the bank. Following authentication steps (not
modeled above), the card reader allows the user to obtain the requested amount. Additional withdrawing
transactions between the reader and the bank are defined by the recursive process R. In the specification
above, process Q can be assumed to send a message (through a session with the bank) representing the
fact that the account has run out of money: Q = kbank![0]; inact.

Even in this simple scenario, the combination of operational and declarative reasoning techniques
may come in handy to reason about the possible states of the specification. Indeed, while an operational
approach can be used to describe an operational description of the compromised ATM above, the declara-
tive approach can complement such a description by offering declarative insights regarding its evolution.

López, Olarte, & Pérez 3

For instance, assuming Q as above, one could show that a utcc specification of the ATM example sat-
isfies the linear temporal logic formula 3out(kbank,0), which intuitively means that in presence of a
malicious card reader the user’s bank account will eventually reach an overdraft status.

Related Work. One approach to combine the declarative flavor of constraints and process calculi tech-
niques is represented by a number of works that have extended name-passing calculi with some form
of partial information (see, e.g., [21, 7]). The crucial difference between such a strand of work and
CCP-based calculi is that the latter offers a tight correspondence with logic, which greatly broadens the
spectrum of reasoning techniques at one’s disposal. Recent works similar to ours include CC-Pi [4] and
the calculus for structured communications in [5]. Such languages feature elements that resemble much
ideas underlying CCP (especially [4]). The main difference between our approach and such works is that
we adhere to the use of declarative reasoning techniques based on temporal logic as an effective way of
complementing operational reasoning techniques. In [4], the reasoning techniques associated to CC-Pi
are essentially operational, and used in the context of service-level agreement scenarios. In [5], the key
for analysis is represented by a type system which provides consistency for session execution, much as
in the original approach in [8].

2 Preliminaries

2.1 A Language for Structured Communication

We begin by introducing HVK, the language for structured communication proposed in [8]. We as-
sume the following conventions: names are ranged over by a,b, . . . ; channels are ranged over by k,k′;
variables are ranged over by x,y, . . . ; constants (names, integers, booleans) are ranged over by c,c′, . . . ;
expressions (including constants) are ranged over by e,e′, . . . ; labels are ranged over by l, l′, . . . ; pro-
cess variables are ranged over by X ,Y, Finally, u,u′, . . . denote names and channels. The sets of free
names/channels/variables/process variables of P, is defined in the standard way, and respectively denoted
by fn(·), fc(·), fv(·) and fpv(·). Processes without free variables or free channels are called programs.

Definition 1 (The HVK language [8]). Processes in HVK are built from:

P,Q ::= request a(k) in P Session Request | accept a(x) in P Session Acceptance
| k![~e]; P Data Sending | k?(x) in P Data Reception
| k � l;P Label Selection | k �{l1 : P1 ‖ · · · ‖ ln : Pn} Label Branching
| throw k[k′]; P Channel Sending | catch k(k′) in P Channel Reception
| ife then P else Q Conditional Statement | P | Q Parallel Composition
| inact Inaction | (νu)P Hiding
| def D in P Recursion | X [~e~k] Process Variables

D ::= X1(x1k1) = P1 and · · ·and Xn(xnkn) = Pn
Declaration for Recursion

Operational Semantics of HVK. The operational semantics of HVK is given by the reduction relation
−→h which is the smallest relation on processes generated by the rules in Figure 1. In Rule STR,
the structural congruence ≡h is the smallest relation satisfying : 1) P ≡h Q if they differ only by a
renaming of bound variables (alpha-conversion). 2) P | inact ≡h P, P | Q ≡h Q | P, (P | Q) | R ≡h
P | (Q | R). 3) (νu)inact≡h inact, (νuu)P≡h (νu)P, (νuu′)P≡h (νu′u)P, (νu)(P | Q)≡h (νu)P | Q if
x /∈ fv(Q), (νu)(def D in P)≡h (def D in ((νu)P)) if u /∈ fv(D). 4) (def D in P) | Q≡h def D in (P | Q)

4 Towards a Unified Framework for Declarative Structured Communications

if fpv(D)∩ fpv(Q) = /0. 5) def D in (def D′ in P)≡h def D and D′ in P if fpv(D)∩ fpv(D′) = /0.

LINK accept a(x) in P | request a(k) in Q−→h (νk)(P | Q)
COM (k![~e];P) | (k?(x) in Q)−→h P | Q[~c/~x] if e ↓~c
LABEL k � li;P | k �{l1 : P1 ‖ · · · ‖ ln : Pn} −→h P | Pi (1≤ i≤ n)
PASS throw k[k′];P | catch k(k′) in Q−→h P | Q
IF1 ife then P else Q −→h P (e ↓ true)
IF2 ife then P else Q −→h Q (e ↓ false)
DEF def D in (X [~e~k] | Q)−→h def D in (P[~c/~x] | Q) (e ↓~c,X(~x~k) = P ∈ D)
SCOP P−→h P′ implies (νu)P−→h (νu)P′

PAR P−→h P′ implies P | Q−→h P′ | Q
STR If P≡h P′ and P′ −→h Q′ and Q′ ≡h Q then P−→h Q

Figure 1: Reduction Relation for HVK (−→h)[8].

Let us give an intuition about the language constructs and of the rules in Figure 1. The central idea in
HVK is the notion of session, i.e., a series of reciprocal interactions between two parties, possibly with
branching and recursion, which serves as an abstraction unit for describing structured communication.
Each session has associated a specific port, or channel. Channels are generated at session initialization;
communications inside the session take place on the same channel.

More precisely, sessions are initialized by a process of the form accept a(x) in P | request a(k) in Q.
In this case, there is a request, on name a, for the initiation of a session and the generation of a fresh
channel. This request is matched by an accepting process on a, which generates a new channel k, thus
allowing P and Q to communicate each other. This is the intuition behind rule LINK. Three kinds
of atomic interactions are available in the language: sending (including name passing), branching, and
channel passing (also referred to as delegation). Those actions are described by rules COM, LABEL, and
PASS, respectively. In the case of COM, the expression~e is sent on the port (session channel) k. Process
k?(x) in Q then receives such a data and executes Q[~c/~x], where~c is the result of evaluating the expression
~e. The case of PASS is similar but considering that in the constructs throw k[k′];P and catch k(k′) in Q,
only session names can be transmitted. In the case of LABEL, the process k � li;P selects one label and
then the corresponding process Pi is executed. The other rules are self-explanatory.

For the sake of simplicity, and without loss of generality (due to rule 5 of ≡h), in the sequel we shall
assume programs of the form def D in P where there are not procedure definitions in P.

2.2 Timed Concurrent Constraint Programming

Timed concurrent constraint programming (tcc) [17] extends CCP for modeling reactive systems. In
tcc, time is conceptually divided into time units or time intervals. In a particular time interval, a tcc
process P gets an input (i.e. a constraint) c from the environment, it executes with this input as the initial
store, and when it reaches its resting point, it outputs the resulting store d to the environment. The resting
point determines also a residual process Q which is then executed in the next time interval. It is worth
noticing that the final store is not automatically transferred to the next time unit.

The utcc calculus [14] extends tcc for reactive systems featuring mobility. Here mobility is un-
derstood as the dynamic reconfiguration of system linkage through communication, much like in the
π-calculus [16]. utcc generalizes tcc by considering a parametric ask operator of the form (abs~x;c)P,
with the following intuitive meaning: process P[~t/~x] is executed for every term~t such that the current

López, Olarte, & Pérez 5

store entails c[~t/~x]. This process can be seen as an abstraction of the process P on the variables~x under
the constraint (or with the guard) c.

utcc provides a number of reasoning techniques: First, utcc processes can be represented as par-
tial closure operators (i.e. idempotent and extensive functions). Also, for a significant fragment of the
calculus, the input-output behavior of a process P can be retrieved from the set of fixed points of its
associated closure operator [13]. Second, utcc processes can be characterized as First-order Linear-time
Temporal Logic (FLTL) formulas [11]. This declarative view of the processes allows for the use of the
well-established verification techniques from FLTL to reason about utcc processes.

Syntax. Processes in utcc are parametric in a constraint system [18] which specifies the basic con-
straints that agents can tell or ask during execution. It also defines an entailment relation “`” specifying
interdependencies among constraints. Intuitively, c ` d means that the information in d can be deduced
from that in c (as in, e.g., x > 42 ` x > 0). The syntax of the language is as follows:

P,Q := skip | tell(c) | (abs~x;c)P | P ‖ Q | (local~x;c)P | nextP | unless c nextP | !P

with the variables in~x being pairwise distinct.
A process skip does nothing; process tell(c) adds c to the store in the current time interval. A process

Q = (abs~x;c)P binds the variables~x in P and c. It executes P[~t/~x] for every term~t s.t. the current store
entails c[~t/~x]. Furthermore, Q evolves into skip at the end of the time unit, i.e., abstractions are not
persistent when passing from one time unit to the next one. P ‖ Q denotes P and Q running in parallel
during the current time interval. A process (local~x;c)P binds the variables ~x in P by declaring them
private to P under a constraint c. The unit delay nextP executes P in the next time interval. The time-out
unless c nextP is also a unit delay, but P is executed in the next time unit iff c is not entailed by the
final store at the current time interval. Finally, the replication !P means P ‖ nextP ‖ next2P ‖ . . ., i.e.,
unboundedly many copies of P but one at a time. We shall use ! [n]P to denote bounded replication, i.e.,
P ‖ nextP ‖ ... ‖ next n−1P.

From a programming language perspective, variables ~x in (abs ~x;c)P can be seen as the formal
parameters of P. This way, recursive definitions of the form X(~x) def= P can be encoded in utcc as

R[[X(~x) def= P]] =!(abs~x;callx(~x)) P̂ (1)

where callx is an uninterpreted predicate (a constraint) of arity |~x|. Process P̂ is obtained from P by
replacing recursive calls of the form X(~t) with tell(callx(~t)). Similarly, calls of the form X(~t) in other
processes are replaced with tell(callx(~t)).

Operational Semantics. The operational semantics considers transitions between process-store con-
figurations 〈P,c〉 with stores represented as constraints and processes quotiented by the structural con-
gruence ≡u defined below. We shall use γ,γ ′, . . . to range over configurations.

The semantics is given in terms of an internal and an observable transition relation; both are given
in Figure 2. The internal transition 〈P,d〉 −→ 〈P′,d′〉 informally means “P with store d reduces, in one
internal step, to P′ with store d′ ”. We sometimes abuse of notation by writing P −→ P′ when d,d′ are

unimportant. The observable transition P
(c,d)

===⇒ R means “P on input c, reduces in one time unit to R
and outputs d”. The latter is obtained from a finite sequence of internal transitions.

In rule RS, the structural congruence≡u is the smallest congruence satisfying: 1) P≡u Q if they differ
only by a renaming of bound variables (alpha-conversion). 2) P ‖ skip≡u P. 3) P ‖Q≡u Q ‖ P, P ‖ (Q ‖

6 Towards a Unified Framework for Declarative Structured Communications

RT 〈tell(c),d〉 −→ 〈skip,d∧ c〉
RP

〈P,c〉 −→ 〈P′,d〉
〈P ‖ Q,c〉 −→ 〈P′ ‖ Q,d〉

RU
d ` c

〈unless c next P,d〉 −→ 〈skip,d〉

RL
〈P,c∧ (∃~xd)〉 −→ 〈P′,c′ ∧ (∃~xd)〉

〈(local~x;c)P,d〉 −→ 〈(local~x;c′)P′,d∧∃~xc′〉
RA

d ` c[~t/~x] |~t|= |~x|
〈(abs~x;c)P,d〉 −→

〈
P[~t/~x] ‖ (abs~x;c∧~x 6 .=~t)P,d

〉
RS

γ1 −→ γ2

γ ′1 −→ γ ′2

if γ1 ≡u γ ′1 and γ2 ≡u γ ′2
RR 〈!P,d〉 −→ 〈P ‖ next !P,d〉

RO
〈P,c〉 −→∗ 〈Q,d〉 6−→

P
(c,d)

===⇒ F(Q)
where F(P) =

skip if P = skip or P = (abs~x;c)Q
F(P1) ‖ F(P2) if P = P1 ‖ P2
(local~x)F(Q) if P = (local~x;c)Q
Q if P = nextQ or P = unless c nextQ

Figure 2: Operational Semantics for utcc. In RA, ~x 6 .=~t (~x syntactically different from ~t) denotes∨
1≤i≤|~x| xi 6

.= ti. If |~x|= 0,~x 6 .=~t is defined as false.

R)≡u (P ‖ Q) ‖ R. 4) P ‖ (local~x;c)Q≡u (local~x;c)(P ‖ Q) if~x 6∈ fv(P). 5) (local~x;c)(local~y;d)P≡u

(local~x;~y ;c∧d)P if~x∩~y = /0 and~y /∈ fv(c). Extend ≡u by decreeing that 〈P,c〉 ≡u 〈Q,c〉 iff P≡u Q.

Definition 2 (Output Behavior). Let s = c1.c2....cn be a sequence of constraints. If P = P1
(true,c1)===⇒

P2
(true,c2)===⇒ . . .Pn

(true,cn)===⇒ Pn+1 ≡u Q we shall write P s===⇒
∗

Q. The output behavior of P is defined as
o(P) = {s | P s===⇒

∗
}. If o(P) = o(Q) we shall write P ∼o Q. Furthermore, if P s===⇒ Q and s is

unimportant we simply write P ===⇒∗ Q.

Logic Correspondence. Remarkably, in addition to this operational view, utcc processes admit a
declarative interpretation based on temporal logic. This is formalized by encoding below, which maps
utcc processes into FLTL formulas.
Definition 3. Let TL[[·]] a map from utcc processes to FLTL formulas given by:

TL[[skip]] = true TL[[tell(c)]] = c
TL[[P ‖ Q]] = TL[[P]]∧TL[[Q]] TL[[(abs~y;c)P]] = ∀~y(c⇒ TL[[P]])
TL[[(local~x;c)P]] = ∃~x(c∧TL[[P]]) TL[[nextP]] = ◦TL[[P]]
TL[[unless c nextP]] = c∨◦TL[[P]] TL[[!P]] = 2TL[[P]]

Modalities ◦F and �F represent that F holds next and always, respectively. We use the eventual
modality 3F as an abbreviation of ¬�¬F .

The following theorem relates the operational view of processes with their logic interpretation.

Theorem 1 (Logic correspondence [14]). Let TL[[·]] be as in Definition 3 and s = c1.c2.c3.... s.t.
P s===⇒

∗
. For every constraint d, it holds that: TL[[P]] `3d iff there exists i≥ 1 s.t. ci ` d .

Derived Constructs. Let out be an uninterpreted predicate. One could attempt at representing the
actions of sending and receiving as in a name-passing calculus (say, k! [~e] and k?(x) in P, resp.) with the
utcc processes tell(out(k,~e)) and (abs~x;out(k,~x))P, respectively. Nevertheless, since these processes
are not automatically transferred from one time unit to the next one, they will disappear right after the
current time unit, even if they do not interact. To cope with this kind of behavior, we shall define

López, Olarte, & Pérez 7

versions of (abs ~x;c)P and tell(c) processes that are persistent in time. More precisely, we shall use
process (wait~x;c) do P, which transfers itself from one time unit to the next one until, for some~t, c[~t/~x]
is entailed by the current store. Intuitively, the process behaves like an input that is active until interacting
with an output. When this occurs, the process outputs the constraint c[~t/~x], as a way of acknowledging
the successful read of c. When |~x| = 0, we shall write whenever c do P instead of (wait ~x;c) do P.
Similarly, we define tell(c) for the persistent output of c until some process reads c. These processes can
be expressed in the basic utcc syntax as follows (in all cases, we assume stop,go /∈ fv(c)):

tell(c) def= (localgo,stop) tell(out′(go)) ‖!when out′(go) do tell(c) ‖
!unless out′(stop) nexttell(out′(go)) ‖
!when c do ! tell(out′(stop))

(wait~x;c) do P def= (localstop,go)(tell(out′(go))
‖!unless out′(stop) nexttell(out′(go))
‖!(abs~x;c∧out′(go))(P ‖! tell(out′(stop)))

(wait~x;c) do P def= (wait~x;c) do (P ‖ tell(c))

Notice that once a pair of processes tell and wait interact, their continuation in the next time unit is
a process able to output only a constraint of the form ∃x out′(x) (e.g., ∃stop(out′(stop))). We define the
following equivalence relation that allows us to abstract from these processes.
Definition 4 (Observables). Let ∼o be the output equivalent relation in Definition 2. We say that P and
Q are observable equivalent, notation P∼obs Q, if P ‖! tell(∃xout′(x))∼o Q ‖! tell(∃xout′(x)).

Using the previous equivalence relation, we can show the following.
Proposition 1. Assume that c(~x) is a predicate symbol of arity |~x|.

1. If d 6` c[~t/~x] for any~t then (wait~x;c) do P
(d,d)

===⇒ (wait~x;c) do P.

2. If P≡u tell(c(~t)) ‖ (wait~x;c(~x)) do nextQ then P ===⇒∼obs Q[~t/~x].

3 A Declarative Interpretation for Structured Communications

Here we present a compositional encoding of HVK into utcc. The encoding [[·]] from HVK into utcc is
defined in Table 3; let us briefly provide intuitions on it. Consider HVK processes P = request a(k) in P′

and Q = accept a(x) in Q′. The encoding of P declares a new variable session k and sends it through
the channel a by posting the constraint req(a,k). Upon reception of the session key (local variable)
generated by [[P]], process [[Q]] adds the constraint acc(a,k) to notify the acceptance of k. They can then
synchronize on this constraint, and execute their continuations in the next time unit. The encoding of
label selection and branching synchronize is similar, and uses constraint sel(k, l) for synchronization.
We use the parallel composition ∏

1≤i≤n
when l = li do next [[Pi]] to execute the selected choice. Notice

that we do not require a non-deterministic choice since the constraints l = li are mutually exclusive. As
in [8], in the encoding of ife then P else Q we assume an evaluation function on expressions. Once e is
evaluated, ↓ e is a constant boolean value. The encoding of def D in P exploits the scheme described in
Equation 1.

A noteworthy aspect to consider here is that HVK is a synchronous language, whereas utcc is asyn-
chronous. Moreover, there is a difference concerning determinacy: while utcc is a deterministic lan-
guage, HVK processes may exhibit non-deterministic behavior. Consider, for instance, the HVK process

P = k![~e];Q1 | k![~e′];Q2 | k?(~x) in Q3

8 Towards a Unified Framework for Declarative Structured Communications

[[request a(k) in P]] = (localk)(tell(req(a,k)) ‖ whenever acc(a,k) do next [[P]])
[[accept a(k) in P]] = (wait k;req(a,k)) do (tell(acc(a,k)) ‖ next [[P]])

[[k![~e];P]] = tell(out(k,~e)) ‖ whenever out(k,~e) do next [[P]]
[[k?(~x) in P]] = (wait~x;out(k,~x)) do next [[P]]

[[k � l;P]] = tell(sel(k, l)) ‖ whenever sel(k, l) do next [[P]]
[[k �{l1 : P1 ‖ . . . ‖ ln : Pn}]] = (wait l;sel(k, l)) do ∏

1≤i≤n
when l = li do next [[Pi]]

[[throw k[k′];P]] = tell(outk(k,k′)) ‖ whenever outk(k,k′) do next [[P]]
[[catch k(k′) in P]] = whenever outk(k,k′) do next [[P]]

[[ife then P else Q]] = when e ↓ true do next [[P]] ‖ when e ↓ false do next [[Q]]
[[P|Q]] = [[P]] ‖ [[Q]]

[[inact]] = skip
[[(νu)P]] = (localu) [[P]]

[[def D in P]] = ∏
Xi(xiki)∈D

R[[Xi(xiki)]]P̂

Table 3: An Encoding from HVK into utcc. R[[·]] and P̂ are defined in Equation 1.

Process P can have two possible transitions, and evolve into k![~e′];Q2 | Q3[~e/~x] or into k![~e];Q1 | Q3[~e′/~x].
In both cases, there is an output that cannot interact with the input k?(~x) in Q3. In utcc, inputs are repre-
sented by abstractions which are persistent during a time unit. As a result, in the encoding of P we shall
observe that both outputs react with the same input, i.e. that [[P]] ===⇒ [[Q3[~e/~x]]] ‖ [[Q3[~e′/~x]]].

Operational Correspondence. Here we study an operational correspondence property for our encod-
ing. The differences with respect to (a)synchrony and determinacy discussed above will have a direct
influence on the correspondence. Intuitively, the encoding falls short for HVK programs featuring the
kind of non-determinism that results from “uneven pairings” between session requesters/providers, label
selection/branching, and inputs/outputs as in the example above.

We thus find it convenient to appeal to the type system of HVK to obtain some basic determinacy
of the source terms. Roughly speaking, the type discipline in [8] ensures a correct pairing between
actions and co-actions once a session is established. Although the type system guarantees a correct
match between (the types of) session requesters and providers, it does not rule out the kind of non-
determinism induced by different orders in the pairing of requesters and providers. We shall then require
session providers to be always willing to engage into a session. This is, given a channel a, we require
that there is at most one accept process (possibly replicated) on a that is able to synchronize with every
process requesting a session on a. Notice that this requirement is in line with a meaningful class of
programs, namely those described by the type discipline developed in [2, 1].

Before presenting the operational correspondence, let us introduce some terminology and auxiliary
results.

Definition 5 (Processes in normal form). We say that a HVK process P is in normal form if takes the
form inact or def D in ν~u(Q1 | · · · | Qn) where neither the operators “ν” and “|” nor process variables
occur in the top level of Q1, . . . ,Qn.

The following proposition states that given a process P we can find a process P′ in normal form, such
that: either P′ is structurally congruent to P, or it results from replacing the process variables at the top

López, Olarte, & Pérez 9

level of P with their corresponding definition (using rule DEF).

Proposition 2. For all HVK process P there exists P′ in normal form s.t. P −→∗h≡h P′ only using the
rules DEF and STR in Figure 1.

Proof. Let P be a process of the form def D in Q where there are no procedure definitions in Q. By
repeated applications of the rule DEF, we can show that P −→∗h P′ where P′ does not have occurrences
of processes variables in the top level. Then, we use the rules of the structural congruence to move the
local variables to the outermost position and find P′′ ≡h P′ in the desired normal form.

Notice that the rules of the operational semantics of HVK are given for pairs of processes that can
interact with each other. We shall refer to each of those pairs as a redex.

Definition 6 (Redex). A redex is a pair of complementary processes composed in parallel as in

- request a(k) in P | accept a(k) in Q

- k![~e];P | k?(~x) in Q

- k � l;P | k �{l1 : P1 ‖ · · · ‖ ln : Pn}
- throw k[k′];P | catch k(k′) in Q.

Notice that a redex in HVK synchronizes and reduces in a single transition as in (k![~e];P) | (k?(x) in Q)
−→h P | Q[~e/~x]. Nevertheless, in utcc, the encoding of the processes above requires two internal tran-
sitions: one for adding the constraint out(k,~e) to the current store, and another one in which the process
(wait ~x;out(k,~x)) do next [[Q]] “reads” that constraint to later execute next [[Q[~e/~x]]]. We shall then es-
tablish the operational correspondence between an observable transition of utcc (obtained from a finite
number of internal transitions) and the following reduction relation over HVK processes:

Definition 7 (Outermost Reductions). Let P≡h def D in ν~x(Q1 | · · · |Qn) be an HVK program in normal
form. We define the outermost reduction relation P ===⇒h P′ as the maximal sequence of reductions
P−→∗h P′ ≡h def D in ν~x′(Q′1 | · · · |Q′n) such that for every i ∈ {1, ..n}, either

1. Qi = ife then R1 else R2 −→h R1/2 = Q′i;

2. for some j ∈ {1, ..n}, Qi|Q j is a redex such that Qi|Q j −→h ν~y(Q′i|Q′j), with~y⊆~x′;

3. there is no k ∈ {1, ..n} such that Qi |Qk is a redex and Qi ≡h Q′i.

In the sequel we shall thus consider only HVK processes P where for n ≥ 1, if P ≡h P1 ===⇒h
P2 ===⇒h · · · ===⇒h Pn and P≡h P′1 ===⇒h P′2 ===⇒h · · · ===⇒h P′n then Pi≡h P′i for all i∈ {1, ..,n}
, i.e., P is a deterministic process.

Theorem 2 (Operational Correspondence). Let P,Q be deterministic HVK processes in normal form and
R,S be utcc processes. It holds:
1) Soundness: If P ===⇒h Q then, for some R, [[P]] ===⇒ R∼obs [[Q]];
2) Completeness: If [[P]] ===⇒ S then, for some Q, P ===⇒h Q and [[Q]]∼obs S.

Proof. Assume that P≡h def D in ν~x(Q1 | · · · |Qn) and Q≡h def D in ν~x′(Q′1 | · · · |Q′n).

1. Soundness. Since P ===⇒h Q there must exist a sequence of derivations of the form P≡h P1 −→h
P2 −→h ...−→h Pn ≡h Q. The proof proceeds by induction on the length of this derivation, with a
case analysis on the last applied rule. We then have the following cases:

(a) Using the rule IF1. It must be the case that there exists Qi≡h ife then R1 else R2 and Qi−→h
R1 ≡h Q′i and e ↓ true. One can easily show that when e ↓ true do next [[Q′i]] ===⇒ [[Q′i]].

10 Towards a Unified Framework for Declarative Structured Communications

(b) Using the rule IF2 Similarly as for IF1.
(c) Using the rule LINK. It must be the case that there exist i, j such that Qi≡h request a(k) in Q′i

and Q j ≡h accept a(x) in Q′j and then Qi | Q j −→h (νk)(Q′i | Q′j). We then have a derivation
of the form

[[Qi]] ‖ [[Qk]] −→∗ (localk;c)(R′i ‖ whenever acc(a,k) do next [[Q′i]] ‖
(wait k′;req(a,k′)) do (tell(acc(a,k′)) ‖

next([[Q′j]]))
−→∗ (localk;c′)(R′i ‖ whenever acc(a,k) do next [[Q′i]] ‖

R′j ‖ tell(acc(a,k)) ‖ next([[Q′j[k/k′]]])
−→∗ (localk;c′′)(R′i ‖ R′j ‖ next [[Q′i]] ‖ next([[Q′j[k/k′]]]) 6−→

where c = req(a,k), c′ = c∧req(a,k), c′′ = c′∧acc(a,k)∧acc(a,k) and R′i, R′j are the pro-
cesses resulting after the interaction of the processes in the parallel composition tell(req(a,k)) ‖
(wait k′;req(a,k′)) do · · · , i.e.:

R′i ≡u (localgo,stop;out′(go)∧out′(stop)∧ c(~t))
next !unless out′(stop) nexttell(out′(go)) ‖
next ! tell(out′(stop))

R′j ≡u (localstop′,go′;out′(go′)∧ c(~t)∧out′(stop′))next ! tell(out′(stop′))
‖ next !unless out′(stop′) nexttell(out′(go′))
‖ (abs~x;c∧out′(go′)∧~x 6 .=~t)(Q ‖ tell(c(~t)) ‖! tell(out′(stop′))
‖ next !(abs~x;c∧out′(go′))(Q ‖ tell(c(~t)) ‖! tell(out′(stop′))

We notice that R′i ‖ R′j 6−→ and it is a process that can only output the constraint out′(x) where
x is a local variable. By appealing to Proposition 1 we conclude [[Qi]] ‖ [[Q j]] ===⇒∼obs

(localk)([[Q′i]] ‖ [[Q′j]]).
(d) The cases using the rules LABEL and PASS can be proven similarly as the case for the rule

LINK.

2. Completeness. Given the encoding and the structure of P, we have a utcc process R = [[P]] such
that

R≡u (local~x)([[Q1]] ‖ ... ‖ [[Qn]]) .

Let Ri = [[Qi]] for 1 ≤ i ≤ n. By an analysis on the structure of R, if Ri −→ R′i then it must be the
case that either (a) Ri = when e do next [[Q′i]] and R′i = next [[Q′i]] or (b) 〈Ri,c〉 −→ 〈R′i,c∧d〉where
d is a constraint of the form req(·), sel(·), out(·), or outk(·). In both cases we shall show that
there exists a R′′i such that Ri −→∗ R′′i 6−→ such that Qi −→h Q′i and R′′i = next [[Q′i]].

(a) Assume that Ri = when e ↓ true do next [[Q′i]] for some Q′i. Then it must be the case that
Qi = ife then Q′i else Q′′i . If e ↓ true we then have R′′i = next [[Q′i]]. The case when e ↓ false
is similar by considering Ri = when e ↓ false do Q′i.

(b) Assume now that 〈Ri,c〉 −→ 〈R′i,c∧ d〉 where d is of the form req(·), sel(·), out(·) or
outk(·). We proceed by case analysis of the constraint d. Let us consider only the case d =
∃k(req(a,k)); the cases in which d takes the form sel(·), out(·), or outk(·) are handled sim-
ilarly. If d = ∃k(req(a,k)) for some a, then we must have that Qi ≡h request a(k) in Q′i for
some i. If there exists j such that Q j ≡h accept a(x) in Q′j, one can show a derivation similar
to the case of the rule LINK in soundness to prove that Ri ‖ R j −→∗∼o (localk)(next [[Q′i]] ‖
next [[Q′j]]). If there is no Q j such that Qi |Q j forms a redex, then one can show that
Ri ===⇒∼obs Ri.

López, Olarte, & Pérez 11

4 A Timed Extension of HVK

We now propose an extension to HVK in which a bundled treatment of time is explicit and session closure
is considered. More precisely, the HVKT language arises as the extension of HVK processes (Def. 1) with
refined constructs for session request and acceptance, as well as with a construct for session abortion:

Definition 8 (A timed language for sessions). HVKT processes are given by the following syntax:

P ::= request a(k) during m in P Timed Session Request
| accept a(k) given c in P Declarative Session Acceptance
| · · · { the other constructs, as in Def. 1 }
| killck Session Abortion

The intuition behind these three operators is the following: request a(k) during m in P will request
a session k over the service name a during m time units. Its dual construct is accept a(k) given c in P:
it will grant the session key k when requested over the service name a provided by a session and a
successful check over the constraint c. Notice that c stands for a precondition for agreement between
session request and acceptance. In c, the duration m of the corresponding session key k can be referenced
by means of the variable durk. In the encoding we syntactically replace it by the variable corresponding
to m. Finally, killck will remove ck from the valid set of sessions.

[[request a(k) during m in P]] = (localk) tell(req(a,k,m)) ‖
whenever acc(a,k) do next(tell(act(k)) ‖ Gact(k)([[P]]) ‖

! [m]unless kill(k) nexttell(act(k)))
[[accept a(k) given c in P]] = (wait k;req(a,k,m)∧ c[m/durk]) do (tell(acc(a,k)) ‖ nextGact(k)([[P]]))

[[killk]] = ! tell(kill(k))

Table 4: The Extended Encoding. Gd(P) is in Definition 9.

Adapting the encoding in Table 3 to consider HVKT processes is remarkably simple (see Table 4).
Indeed, modifications to the encoding of session request and acceptance are straightforward. The most
evident change is the addition of the parameter m within the constraint req(a,k,m). The duration of the
requested session is suitably represented as a bounded replication of the process defining the activation
of the session k represented as the constraint act(k). The execution of the continuation [[P]] is guarded
by the constraint act(k) (i.e. P can be executed only when the session k is valid). In the encoding, we
use the function Gd(P) to denote the process behaving as P when the constraint d can be entailed from
the current store, doing nothing otherwise. More precisely:

Definition 9. Let G : C → Procs→ Procs be defined as

Gd(P) =

skip if P = skip
when d do tell(c) if P = tell(c)
(abs~x;c)Gd(Q) if P = (abs~x;c)Q and~x /∈ fv(d)
Gd(P1) ‖ Gd(P2) if P = P1 ‖ P2
(local~x;c)Gd(Q) if P = (local~x;c)Q and~x /∈ fv(d)
when d do nextGd(Q) if P = nextQ
when d do unless c nextGd(Q) if P = unless c nextQ
!Gd(Q) if P =!Q

On the side of session acceptance, the main novelty is the introduction of c[m/durk]. As explained
before, we syntactically replace the variable durk by the corresponding duration of the session m. This

12 Towards a Unified Framework for Declarative Structured Communications

is a generic way to represent the agreement that should exist between a service provider and a client; for
instance, it could be the case that the client is requesting a session longer than what the service provider
can or want to grant.

4.1 Case Study: Electronic booking

Here we present an example that makes use of the constructs introduced in HVKT.

Let us consider an electronic booking scenario. On one side, consider a company AC which offers
flights directly from its website. On the other side, there is a customer looking for the best offers. In this
scenario, the customer establishes a timed session with AC and asks for a flight proposal given a set of
constraints (dates allowed, destination, etc.). After receiving an offer from AC, the customer can refine
the selection further (e.g. by checking that the prices are below a given threshold) and loops until finding
a suitable option, that he will accept by starting the booking phase. One possible HVKT specification of
this scenario is described in Table 5.

Customer = request ob(k) during m in (k![bookingdata];Select(k))
Select(k) = k?(o f f er) in (if(o f f er.price≤ 1500) then k �Contract; else Select(k))
AC = accept ob(k) given durk ≤MAX T IME in (

k?(bookingData) in
(νu)k![u];k �

{
Contract : Accept ‖ Re ject : killk

}
)

Table 5: Online booking example with two agents.

In a second stage, the customer uses an online broker to mediate between him and a set of airlines
acting as service providers. Consider two vectors of fixed length: Offers, which contains the list of offers
received by a customer, and SP, which contains the list of trusted service providers. First, the customer
establishes a session with the broker for a given period m; later on, he/she starts requesting for a flight
by providing the details of his/her trip to the broker. On the other side, the broker will look into his pool
of trusted service providers for the ones that can supply flights that suit the customer’s requirements. All
possible offers are transferred back to the customer, who will invoke a local procedure Sel (not specified
here) that selects one of the offers by performing an output on name a. Once an offer is selected, the
broker will allow a final interaction between the customer and the selected service. He does so by
delegating to the customer the session key used previously between him and the chosen service provider.
Finally, the broker proceeds to cancel all those sessions concerning the discarded services. An HVKT

specification of this scenario is given in Table 6 where, for the sake of readability, processes denoting
post-processing activities are abstracted from the specification.

A notable advantage in using HVKT as a modeling language is the possibility of exploiting timed
constructs in the specification of service enactment and service cancellation. In the above scenario it is
possible to see how HVKT allows (i) to effectively take explicit account on the maximal times accepted
by the customer: the composition of nested services can take different speeds but the service broker
will ensure that customers with low speeds are ruled out of the communication; and (ii) to have a more
efficient use of the available resources: since there is not need to maintain interactions with discarded
services, the service broker will free those resources by sending kill signals.

López, Olarte, & Pérez 13

(a) Customer and Service Provider
Customer = request ob(k) during m in (k![bookingdata];

k?(Offers) in (
Sel(Offers);a?(x) in k![x];
catch k(k′) in
k′![PaymentDetails]; inact))

SP = accept SPi(k′i) given N ≤ 300ms in (
k′i?(bookingData) in
k′i![offer];
k′i?(paymentDetails) in inact)

(b) Online Broker
Broker = accept ob(k) given m≤ 500ms in (

k?(bookingData) in
(νu) ∏

i∈SP
(request SPi(k′i) during N in

k′i![bookingData];
k′i?(offeri) in (u![offeri]; inact ‖ S(u,k)))
k?(y) in def P in

if(y = offersi) then (throw k[k′i];PostProc) else
killk′i ‖ P)

S(u,k) = ∏
i∈SP

(u?(offeri) in inact ‖ k![offeri]; inact)

Table 6: Online booking example with online broker.

4.2 Exploiting the Logic Correspondence

To exploit the logic correspondence we can draw inspiration from the constraint templates put forward in
[15], a set of LTL formulas that represent desirable/undesirable situations in service management. Such
templates are divided in three types: existence constraints, that specify the number of executions of an
activity; relation constraints, that define the relation between two activities to be present in the system;
and negation constraints, which are essentially the negated versions of relation constraints.

By appealing to Theorem 1, our framework allows for the verification of existence and relation
constraints over HVKT programs. Assume a HVKT program P and let F = TL[[[[P]]]] (i.e., the FLTL
formula associated to the utcc representation of P). For existence constraints, assume that P defines a
service accepting requests on channel a. If the service is eventually active, then it must be the case that
F ` 3∃k(acc(a,k)) (recall that the encoding of accept adds the constraint acc(a,k) when the session
k is accepted). A slight modification to the encoding of accept would allow us to take into account the
number of accepted sessions and then support the verification of properties such as F `3(Nsessions(a) =
N), informally meaning that the service a has accepted N sessions. This kind of formulas correspond to
the existence constraints in [15, Figure 3.1.a–3.1.c]. Furthermore, making use of the guards associated
to ask statements, we can verify relation constraints as eventual consequences over the system. Take
for instance the specification in Table 5. Let Accept be a process that outputs “ok” through a session h.
We then may verify the formula F ` ∃u(u.price < 1.500⇒ out(h,ok)). This is a responded existence
constraint describing how the presence of an offer with price less or equal than 1.500 would lead to an
acceptance state.

5 Concluding Remarks

We have argued for a timed CCP language as a suitable foundation for analyzing structured communi-
cations. We have presented an encoding of the language for structured communication in [8] into utcc,
as well as an extension of such a language that considers explicitly elements of partial information and
session duration. To the best of our knowledge, a unified framework where behavioral and declarative
techniques converge for the analysis of structured communications has not been proposed before.

Languages for structured communication and CCP process calculi are conceptually very different.
We have dealt with some of these differences when stating an operational correspondence property for
the declarative interpretation of HVK processes. We believe there are at least two ways of achieving

14 Towards a Unified Framework for Declarative Structured Communications

more natural notions of operational correspondence. The first one involves considering a variant of utcc
extended with (forms of) non-determinism. This would allow to capture some scenarios of session estab-
lishment in which the operational correspondence presented here falls short. The main consequence of
adding non-determinism to utcc is that the correspondence with FLTL as stated in Theorem 1 would not
longer hold. This is mainly because non-deterministic choices cannot be faithfully represented as logical
disjunctions (see, e.g., [6]). While there is a non-deterministic extension to tcc with a tight connec-
tion with temporal logic (ntcc [12]), it does not provide for representations of mobile links. Exploring
whether there exists a CCP language between ntcc and utcc combining both non-determinism and mo-
bility while providing logic-based reasoning techniques is interesting on its own and appears challenging.
The second approach consists in defining a type system for HVK and HVKT processes better suited to the
nature of utcc processes. This would imply enriching the original type system in [8] with e.g., stronger
typing rules for dealing with session establishment. The definition of such a type system is delicate and
needs care, as one would not like to rule out too many processes as a result of too stringent typing rules.
An advantage of a type system “tuned” in this way is that one could aim at obtaining a correspondence
between well-typed processes and logic formulas, similarly as the given by Theorem 1. In these lines,
plans for future work include the investigation of effective mechanisms for the seamless integration of
new type disciplines and reasoning techniques based on temporal logic within the elegant framework of
(timed) CCP languages.

The timed extension to HVK presented here includes notions of time that involve only session en-
gagement processes. A further extension could involve the inclusion of time constraints over input/output
actions. Such an extension might be useful to realistically specify scenarios in which factors such as
network traffic and long-lived transactions (for instance) prevent interactions between services from oc-
curring instantaneously. Properties of interest in this case could include, for instance, the guarantee that a
given interaction has been fired at a valid time, or that the nested composition of services does not violate
a certain time frame. We plan to explore case studies of structured communications involving this kind
of timed behavior, and extend/adjust HVKT accordingly.

Acknowledgments. We are grateful to Marco Carbone and Thomas Hildebrandt for insightful discus-
sions on the topics of this paper, and for giving useful comments on previous versions of this document.
We are also grateful to the PLACES’09 attendees for their comments and remarks. The contribution of
Olarte and Pérez was initiated during short research visits to the IT University of Copenhagen. They are
most grateful to the IT University and to the FIRST PhD Graduate School for funding such visits.

References

[1] M. Berger, K. Honda, and N. Yoshida. Sequentiality and the pi-calculus. In Proc. of TLCA, volume 2044 of
LNCS, pages 29–45. Springer, 2001.

[2] M. Berger, K. Honda, and N. Yoshida. Completeness and logical full abstraction in modal logics for typed
mobile processes. In ICALP’08, Part II, volume 5126 of LNCS, pages 99–111. Springer, 2008.

[3] M. Boreale, R. Bruni, L. Caires, R. D. Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari, A. Ravara,
D. Sangiorgi, V. T. Vasconcelos, and G. Zavattaro. Scc: A service centered calculus. In Proc. of WS-FM,
volume 4184 of LNCS, pages 38–57. Springer, 2006.

[4] M. G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for specifying service level agree-
ments. In Proc. of ESOP, volume 4421 of LNCS, pages 18–32. Springer, 2007.

[5] M. Coppo and M. Dezani-Ciancaglini. Structured Communications with Concurrent Constraints. In Proc. of
TGC’08, LNCS, pages 104–125. Springer, 2009.

López, Olarte, & Pérez 15

[6] F. S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving concurrent constraint programs
correct. ACM Trans. Program. Lang. Syst., 19(5):685–725, 1997.

[7] J. F. Dı́az, C. Rueda, and F. D. Valencia. Pi+- calculus: A calculus for concurrent processes with constraints.
CLEI Electron. J., 1(2), 1998.

[8] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for structured
communication-based programming. In Proc. of ESOP, volume 1381 of LNCS. Springer, 1998.

[9] I. Lanese, F. Martins, V. T. Vasconcelos, and A. Ravara. Disciplining orchestration and conversation in
service-oriented computing. In Proc. of SEFM, pages 305–314. IEEE Computer Society, 2007.

[10] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. In Proc. of ESOP,
volume 4421 of LNCS, pages 33–47. Springer, 2007.

[11] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer,
1991.

[12] M. Nielsen, C. Palamidessi, and F. D. Valencia. Temporal concurrent constraint programming: Denotation,
logic and applications. Nord. J. Comput., 9(1):145–188, 2002.

[13] C. Olarte and F. D. Valencia. The expressivity of universal timed ccp: undecidability of monadic fltl and
closure operators for security. In Proc. of PPDP, pages 8–19. ACM, 2008.

[14] C. Olarte and F. D. Valencia. Universal concurrent constraint programing: symbolic semantics and applica-
tions to security. In Proc. of SAC, pages 145–150. ACM, 2008.

[15] M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible business processes management. In
BPM’06 Workshops, volume 4103 of LNCS, pages 169–180. Springer, 2006.

[16] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge University Press,
2001.

[17] V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed concurrent constraint programming. In
Proc. of LICS, pages 71–80. IEEE Computer Society, 1994.

[18] V. A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
[19] W. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal of Circuits, Systems

and Computers, 8(1):21–66, 1998.
[20] W. M. P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative Service Flow Language. In

Proc. of WS-FM, volume 4184 of LNCS, pages 1–23. Springer, 2006.
[21] B. Victor and J. Parrow. Concurrent constraints in the fusion calculus. In Proc. of ICALP, volume 1443 of

LNCS, pages 455–469. Springer, 1998.

	Introduction
	Preliminaries
	A Language for Structured Communication
	Timed Concurrent Constraint Programming

	A Declarative Interpretation for Structured Communications
	A Timed Extension of HVK
	Case Study: Electronic booking
	Exploiting the Logic Correspondence

	Concluding Remarks

