
NTCCRT: A CONCURRENT CONSTRAINT FRAMEWORK FOR
REAL-TIME INTERACTION (EXTENDED VERSION)

Mauricio Toro-Bermúdez

Pontificia Universidad Javeriana Cali

Camilo Rueda Carlos Agón

IRCAM

Gérard Assayag

IRCAM - CNRS UMR 9912

ABSTRACT

Writing multimedia interaction systems is not easy. Their
concurrent processes usually access shared resources in a
non-deterministic order, often leading to unpredictable be-
havior. Using Pure Data (Pd) and Max/MSP is possible to
program concurrency, however, it is difficult to synchronize
processes based on multiple criteria. Process calculi such as
the Non-deterministic Timed Concurrent Constraint (ntcc)
calculus, overcome that problem by representing multiple
criteria as constraints. We propose using our framework
Ntccrt to manage concurrency in Pd and Max. Ntccrt is a
real-time capable interpreter for ntcc. Using Ntccrt exter-
nals (binary plugins) in Pd we ran models for machine im-
provisation and signal processing.

1. INTRODUCTION

Multimedia interaction systems –inherently concurrent– can
be modeled using concurrent process calculi. Process cal-
culi are useful to describe formally the behavior of concur-
rent systems, and to prove properties about the systems.

For instance, using ntcc [9], we can model reactive
systems with synchronous, asynchronous and/or non-deter-
ministic behavior. Ntcc and extensions have been used
to model interactive systems such as: an audio processing
framework [18], machine improvisation [17], [12], [20], and
interactive scores [2], [20].

Although there are three interpreters for ntcc, they are
not suitable for real-time (RT) interaction. It means that they
are not able to interact with the user without letting him ex-
perience noticeable delays in the interaction.

On the other hand, we can program RT systems for mul-
timedia interaction and signal processing using C++. Un-
fortunately, using C++ requires long development time. To
overcome that problem, programming languages such as Pu-
re Data (Pd) [13] and Max/MSP [14], provide a graphical
interface to program RT systems and several APIs for con-
current programming.

1.1. The problem

Although Pd and Max support concurrency, it is a hard task
to trigger or halt the execution of a process based on multiple

criteria.
Using Pd or Max, it is hard to express: “process A is go-

ing to do an action B until a condition C is satisfied”, when
condition C is a complex condition resulting from many
other processes’ actions. Such condition would be hard to
express (and even harder to modify afterwards) using the
graphical patch paradigm. For instance, condition C can be
a conjunction of these criteria: (1) The user has played on a
certain tonality, (2) has played the chord G7, and (3) played
the note F# among the last four.

1.2. Our solution

Using ntcc, we can represent the complex condition C pre-
sented above as the conjunction of constraints (c1 ∧ c2 ∧
c3). Each constraint (i.e., mathematical condition) repre-
sents a criterion. In addition, each criterion can be repre-
sented declaratively. For instance, the criterion (2) can be
represented by the constraint “G7 is on the set of played
chords” (G7 ∈ PlayedChords).

For that reason, we propose using ntcc to manage con-
currency in Pd and Max, executing ntcc models on
Ntccrt1. On Ntccrt, ntccmodels can be automatically com-
piled as an external (i.e., a binary plugin) for Pd or Max.

Additionally, the externals can be specified textually us-
ing Common Lisp or graphically using OpenMusic [4]. We
argue that concurrent visual programming, usually based on
process calculi (such as Cordial [15]), makes the power of
concurrency available for a wider range of users.

1.3. Contributions

Our framework Ntccrt (http://ntccrt.sourceforge.net) is com-
posed by the following components. The ntcc interpreter
written in C++ and interfaces for both Common Lisp and
OpenMusic. In addition, we provide the implementation of
two real-life applications.

1.4. Structure of the paper

The remainder of this paper is structured as follows. Section
2 intuitively explains the semantic of ntcc agents and gives

1This research was partially founded by the REACT project, sponsored
by Colciencias.

some examples of simple ntcc processes modeling multi-
media interaction. Section 3 explains related work on ntcc
interpreters and threading APIs available for Pd and Max.
Section 4 discusses two applications of Ntccrt to model a
multimedia interaction and a signal processing system. Sec-
tion 5 explains our results. Finally, section 6 gives conclud-
ing remarks and proposes future works.

2. THE NTCC CALCULUS

A family of process calculi is Concurrent Constraint Pro-
gramming (CCP) [19], where a system is modeled in terms
of variables and constraints over some variables. Further-
more, there are agents reasoning about partial information
(by the means of constraints) about the system variables
contained on a common store.

CCP is based on the idea of a constraint system. A con-
straint system includes a set of (basic) constraints and a re-
lation (i.e., entailment relation |=) to deduce a constraint
based on the information supplied by other constraints. A
CCP system usually includes several constraint systems for
different variable types. There are constraint systems for
different variable types such as sets, trees, graphs and natu-
ral numbers. A constraint system providing arithmetic rela-
tions over natural numbers is known as Finite Domain (FD).
For instance, using a FD constraint system we can deduce
the constraint pitch 6= 60 from the constraints pitch > 40
and pitch < 59.

Although we can choose an appropriate constraint sys-
tem to model any problem, in CCP it is not possible to delete
nor change information accumulated in the store. For that
reason, it is difficult to perceive a notion of discrete time,
useful to model reactive systems (e.g., machine improvisa-
tion) communicating with an environment.

Ntcc introduces to CCP the notion of discrete time as
a sequence of time-units. Each time-unit starts with a store
(possibly empty) supplied by the environment, then ntcc
executes all processes scheduled for that time-unit. In con-
trast to CCP, in ntcc, variables changing values along time
can be modeled explicitly. In ntcc, we can have a variable
x taking different values on each time-unit. To model that in
CCP, we would have to create a new variable xi each time
we change the value of x.

For instance, a system that plays sequentially the notes
of the C major chord can be modeled in ntcc as “in the first
time-unit, let pitch = C; in the second time-unit, let pitch =
E; and in the third time-unit, let pitch = G”. Using CCP, we
would represent it as “let pitch1 = C, let pitch2 = E, and let
pitch3 = G”.

Following, we give some examples of how the compu-
tational agents of ntcc can be used with a FD constraint
system. A summary can be found in table 1.

Using the “tell”, it is possible to add constraints such as
tell(pitch1 = 60), meaning that pitch1 must be equal to 60

Agent Meaning
tell (c) Adds c to the current store
when (c) do A If c holds now run A
local (x) in P Runs P with local variable x
A ‖ B Parallel composition
next A Runs A at the next time-unit
unless (c) next A Unless c can be inferred now, run A
∑
i∈I

when (ci) do Pi Chooses Pi s.t. (ci) holds

*P Delays P indefinitely (not forever)
!P Executes P each time-unit

Table 1. Ntcc agents

or tell(60 < pitch2 < 100), meaning that pitch2 is an integer
between 60 and 100.

The “when” can be used to describe how the system re-
acts to different events. For instance, when pitch1 = C ∧
pitch2 = E ∧ pitch3 = G do tell(CMayor = true) is a pro-
cess reacting as soon as the pitch sequence C, E, G has been
played, adding the constraint CMayor = true to the store in
the current time-unit.

Parallel composition allows us to represent concurrent
processes. For instance, tell (pitch1 = 62) ‖ when 60 ≤
pitch1 < 72 do tell (Instrument = 1) is a process telling
the store that pitch1 is 62 and concurrently assigning the
instrument to one, since pitch1 is in first octave.

The “next” is useful when we want to model variables
changing through time. For instance, when (pitch1 = 60)
do next tell (pitch1 <> 60), means that if pitch1 is equal to
60 in the current time-unit, it will be different from 60 in the
next time-unit.

The “unless” is useful to model systems reacting when
a condition is not satisfied or it cannot be deduced from the
store. For instance, unless (pitch1 = 60) next tell (last pitch
<> 60) reacts when pitch1 = 60 is false or when pitch1 =
60 cannot be deduced from the store (e.g., pitch1 was not
played in the current time-unit), telling the store in the next
time-unit that last pitch is not 60.

The “star” (*) may be used to delay the end of a pro-
cess indefinitely, but not forever. For instance, ∗tell (End =
true).

The “bang” (!) executes a certain process in every time-
unit after its execution. For instance, !tell (C4 = 60).

The ∑ is used to model non-deterministic choices. For
instance, ! ∑i∈{48,52,55} when i ∈ PlayedPitches do tell
(pitch = i) models a system where each time-unit, it chooses
a note among the notes played previously that belongs to the
C major chord.

Finally, a basic recursion can be defined in ntcc with

the form q(x)
de f
= Pq, where q is the process name and Pq is

restricted to call q at most once and such call must be within
the scope of a “next”. The reason of using “next” is that

ntcc does not allow recursion within a time-unit. Recur-
sion is used to model iteration and recursive definitions. For
instance, using this basic recursion, it is possible to write a
function to compute the factorial function.

3. RELATED WORK

In this section, we present related work about concurrency
support for Pd and Max, and available ntcc interpreters.

3.1. Writing concurrent programs on Pd and Max

To program concurrent applications on Max and Pd, we can
use their message passing APIs. We can also create exter-
nals in C++. In fact, we can use any existing threading API
for C++ to write externals for both, Pd and Max. There is
also a native API for Max 5 SDK. Another way to write an
external is using the Flext library. Flext provides a unique
interface to write, in the C++ language, externals dealing
with both, Pd and Max.

3.2. Ntcc interpreters

There are three interpreters available for ntcc: Lman [8]
used as a framework to program LegoT M robots, NtccSim
[3] used to model and verify properties of biological sys-
tems, and Rueda’s interpreter [17] for multimedia interac-
tion.

The first attempt to execute a multimedia interaction
ntcc model was made by the authors of Lman in 2003.
They ran a ntcc model to play a sequence of pitches with
fixed durations in Lman. Recently, in 2006, Rueda et al. ran
“A Concurrent Constraint Factor Oracle Model for Music
Improvisation” (Cc f omi) on Rueda’s interpreter [17].

Both, Lman and Rueda’s interpreter ran the model giv-
ing the expected output. However, they were not capable of
executing multimedia interaction systems in real-time.

4. OUR FRAMEWORK: NTCCRT

Ntccrt is our framework to specify and execute ntcc mod-
els.

4.1. Design of Ntccrt

Our first version of Ntccrt allowed us to specify ntcc mod-
els in C++ and execute them as stand-alone programs. Cur-
rent version offers the possibility to specify a ntcc model
on either Lisp, Openmusic or C++. It is also possible to
execute ntcc models as a stand-alone program or as an ex-
ternal object for Pd or Max.

In addition to its portability, Ntccrt was carefully de-
signed to support Finite Domain, Finite Sets and Rational
Trees constraint systems. Those constraint systems can be

used to represents complex data structures (e.g., automata
and graphs) commonly used in computer music.

Ntccrt works on two modes, one for writing the models
and another one for executing those models.

4.1.1. Developing mode

In order to write a ntcc model in Ntccrt, the users may
write them directly in C++, using a parser that takes Com-
mon Lisp macros or writing a graphical “patch” in Open-
Music. Using either of these representations, it is possible
to generate a stand-alone program or an external (fig 1).

OpenMusic
interface

Ntccrt
compiler

Pure Data
external

Max/Msp
external

Common Lisp
interface

C++
interface Stand-alone

program

User

Programmer

Figure 1. Ntccrt: Developing mode

4.1.2. Execution mode

To execute a Ntccrt program, we can proceed in two differ-
ent ways. We can create a stand-alone program or we can
create an external for either Pd or Max. An advantage of us-
ing the externals lies on using control signals and the mes-
sage passing API provided by Pd and Max to synchronize
any graphical object with the Ntccrt external.

To handle Musical Instrument Digital Interface (MIDI)
streams we use the predefined functions in Pd or Max to
process MIDI. Then, we connect the output of those func-
tions to the Ntccrt external. We also provide an interface for
Midishare [5], useful when running stand-alone programs.

4.2. Implementation of Ntccrt

Ntccrt is written in C++ and it uses Flext to generate the
externals for either Max or Pd, and Gecode [21] for con-
straint solving and concurrency control. Gecode is an effi-
cient constraint solving library, providing efficient propaga-
tors (narrowing operators reducing the set of possible values
for some variables). The basic principle of Ntccrt is encod-
ing the “when”, ∑ and “tell” processes as Gecode propaga-
tors. The other processes are simulated by storing them into
queues for each time-unit.

Although Gecode was designed to solve combinatorial
problems, Toro found out in [22] that writing the “when”
and the ∑ processes as propagators, Gecode can manage all
the concurrency needed to represent ntcc. Following, we
explain the encoding of the “tell” and the “when”.

To represent the “tell”, we define a super class Tell. For
Ntccrt, we provide three subclasses to represent these pro-
cesses: tell (a = b), tell (a ∈ B), and tell (a > b). Other kind
of “tells” can be easily defined by inheriting from the Tell
superclass and declaring an Execute method.

We have a When propagator for the “when” and a When
class for calling the propagator. A process when C do P is
represented by two propagators: C↔ b (a reified propagator
for the constraint C) and if b then P else skip (the When
propagator). The When propagator checks the value of b.
If the value of b is true, it calls the Execute method of P.
Otherwise, it does not take any action. Figure 2 shows how
to encode the process when a = c do P using our When
propagator.

when a=c do P

STORE STORE

a=c ↔ b

b

if b then P
else skip

Figure 2. Example of the When propagator

5. APPLICATIONS

We selected two real-life applications to show the relevance
of using Ntccrt externals in Pd. Ccfomi shows us how we
can use Ntccrt to interact in real-time with a human player.
Finally, a signal processing application shows us how a Ntc-
crt external can send control signals to trigger signal pro-
cessing filters.

5.1. Machine Improvisation

Machine improvisation usually consider building represen-
tations of music, either by explicit coding of rules or apply-
ing machine learning methods.An interactive machine im-
provisation system capable of real-time perform two activi-
ties concurrently: Stylistic learning and Stylistic simulation.

Rueda et al. define in [17], Stylistic learning as the
process of applying machine learning methods to musical
sequences in order to capture salient musical features and
organize these features into a model. On the other hand,
Stylistic simulation as the process of producing musical se-
quences stylistically consistent with the learned material.

A machine improvisation system using ntcc is Ccfomi.
Ccfomi executes both phases concurrently, uses ntcc to
synchronize both phases of the improvisation, and uses the
Factor Oracle (FO) to store the information of the learned
sequences.

FO is a finite state automaton constructed in linear time
and space. It has two kind of transitions (links). Factor
links are going forward and following them is possible to
recognize at least all the factors from a sequence. Suffix links
are going backwards and they connect repeated patterns of
the sequence. Further formal definitions about FO can be
found in [1].

Following, we give a brief description of Ccfomi taken
from [17]. Ccfomi is divided in three subsystems: learning
(ADD), improvisation (IMPROV) and playing (PLAYER)
running concurrently. In addition, there is a synchronization
process (SYNC) in charge of synchronization.

Ccfomi has three kind of variables to represent the par-
tially built FO automaton: Variables f romk are the set of la-
bels of all currently existing factor links going forward from
k. Variables Si are suffix links from each state i and variable
δk,σi give the state reached from k by following a factor link
labeled σi.

In our implementation of Ccfomi, the variables f romk
and δk,σi are modeled as infinite rational trees [16] with
unary branching. That way, we can add new elements to
f rom and δ dynamically.

Rational trees have been subject of multiple researches
to construct a constraint system based on them. Using this
constraint system is possible to post the constraints
cons(c,nil,B), cons(b,B,C), cons(a,C,D) to model a list of
three elements [a,b,c].

Following, we explain some Ccfomi processes. The ADD
process (specified in [17]) is in charge of building the FO
by creating the factor links and the suffix links. This process
models the learning phase.

The learning and the simulation phase must work con-
currently. In order to achieve that, it is required that the sim-
ulation phase only takes place once the subgraph is com-
pletely built. The SY NC process is in charge of doing the
synchronization between the simulation and the learning
phase to preserve that property.

Synchronizing both phases is greatly simplified by the
use of constraints. When a variable has no value, the “when”
processes depending on it are blocked. Therefore, the SY NC
process is “waiting” until go is greater or equal than one. It
means that the PLAY ER process has played the note i and
the ADD process can add a new symbol to the FO. The
condition Si−1 ≥ 0 is because the first suffix link of the FO is
equal to -1 and it cannot be followed in the simulation phase.

SY NCi
de f
=

when Si−1 ≥−1∧go≥ i do
(ADDi ‖ next SY NCi+1)

‖ unless Si−1 ≥−1∧go≥ i next SY NCi)

The PLAY ER (specified in [17]) process simulates a hu-
man player. It decides, non-deterministically, each time-unit
between playing a note or not. When running this model in
Pd, we replace this process by receiving an input (e.g., a
MIDI input) from the environment.

The improvisation process IMPROV starts from state k
and probabilistically, chooses whether to output the symbol
σk or to follow a backward link Sk. Another probabilistic
version of this process can be found in [12].

For this work, we have modeled IMPROV as a simpler
improvisation process. We are more interested in showing
the synchronization between the improvisation phases, than
showing how we can control the choice among suffix links
and factor links based on a probabilistic distribution. For
that reason, choices in our IMPROV process are made non-
deterministically.

IMPROV (k)
de f
=

when Sk =−1 do next
(tell (out = σk+1) ‖ IMPROV (k +1))

‖ when Sk ≥ 0 do next
((tell (out = σk+1) ‖ IMPROV (k +1)) +
∑

σ∈Σ

when σ ∈ f romsk do

(tell (out = σ)‖ IMPROV (δsk ,σ)))
‖ unless Sk ≥−1 next IMPROV (k)

The system is modeled as the PLAY ER and the SY NC
process running in parallel with a process waiting until n
symbols have been played to launch the IMPROV process.

SY ST EMn
de f
= !tell(S0 =−1) ‖ PLAY ER1
‖ SY NC1 ‖Waitn

5.2. Signal processing

Ntcc was used in the past as an audio processing frame-
work [18]. In that work, Valencia and Rueda showed how
this modeling formalism gives a compact and precise defini-
tion of audio stream systems. They argued that it is possible
to model an audio system and prove temporal properties us-
ing the temporal logic associated to ntcc. They proposed
that a ntcc model, where each time-unit can be associated
to processing the current sample of a sequential stream.

Unfortunately, in practice it is difficult to implement that
model because it will require to execute 44100 time-units
per second to process a 44.1 kHz audio stream. This is not
possible using our interpreter and using the other ntcc in-
terpreters neither.

Another approach to give formal semantics to audio pro-
cessing is the visual audio processing language Faust [10].
Faust semantics are based on an algebra of block diagrams.

This gives a formal and precise meaning to the operation
programed there.

Our approach is different, we use a Ntccrt external for
Pd or Max to synchronize the graphical objects in charge of
audio, video or MIDI processing in Pd. For instance, the
ntcc external decides when triggering a graphical object
in charge of applying a delay filter to an audio stream and
it will not allow other graphical objects to apply a filter on
that audio stream, until the delay filter finishes its work.

Our system is composed by a collection of n filters and
m objects (MIDI, audio or video streams). When a filter Pi
is working on an object m j, another filter cannot work on
m j until Pi is done. A filter Pi is activated when a condition
over its input is true. That condition is easily represented by
a constraint.

Our system is composed by the infinite rational tree vari-
ables work, end and input representing lists. Work j repre-
sents the identifiers of the filter working on the object j.
End j represents when the object j has finished its work.
Values for end j are updated each time-unit with informa-
tion from the environment. Inputi represents the conditions
necessary to launch filter Pi, based on information received
from the environment. Finally, wait j represents the set of
filters waiting to work on the object m j. Note that work j is
a reference to the position j of the list work (same with end
and input).

Next, we explain the definitions of our system. Objects
are represented by IdleObject and BusyObject. An object
is idle until it non-deterministically chooses a filter from
the wait j variable. After that, it will remain busy until the
end j = true constraint can be deduced from the store.

IdleOb ject(j)
de f
=

when work j > 0 do next BusyOb ject(j)
‖ unless work j > 0 next IdleOb ject(j)
‖ ∑

x∈P
when x ∈ wait j do tell work j = x

BusyOb ject(j)
de f
=

when end j = true do IdleOb ject(j)
‖ unless end j = true next BusyOb ject(j)

Filters are represented by the definitions IdleFilter, Wait-
ingFilter and BusyFilter. A filter is idle until it can deduce
that inputi = true. Inputi can be a condition based on mul-
tiple criteria.

IdleFilter(i, j)
de f
=

when inputi = true do WaitFilter(i, j)
‖ unless inputi = true next IdleFilter(i, j)

A filter is waiting when the information for launching
it can be deduced from the store, but it has not yet control
over the object m j. When it can control the object, it calls
the definition BusyFilter.

WaitingFilter(i, j)
de f
=

when work j = i do BusyFilter(i, j)
‖ unless work j = i next

WaitingFilter(i, j) ‖ tell i ∈ wait j

A filter is busy until it can deduce that the filter finished
working on the object associated to it.

BusyFilter(i, j)
de f
=

when end j = true do IdleFilter(i, j)
‖ unless end j = true next BusyFilter(i, j)

Filter definitions can be written in OpenMusic using a
graphical “patch” (fig 3).

Figure 3. Specifying a Ntccrt external in OpenMusic.

The following definition models a situation with two ob-
jects and four filters. The external generated for this model
can control all kind of objects and filters, represented by
graphical objects in Pd.

System()
de f
=

IdleOb ject(1) ‖ IdleOb ject(2) ‖ IdleFilter(1,1)
‖ IdleFilter(1,2) ‖ IdleFilter(2,1) ‖ IdleFilter(2,2)

6. RESULTS

We ran Cc f omi as an stand-alone application over an Intel
2.8 GHz iMac using Mac OS 10.5.2 and Gecode 2.2.0. Each
time-unit took an average of 20 ms, scheduling around 880
processes per time-unit. We simulated 300 time-units and
we ran each simulation 100 times in our tests.

Pachet argues in [11] that an improvisation system able
to learn and produce sequences in less than 30ms is appro-
priate for real-time interaction. Since our implementation of
Ccfomi has a response time of 20ms in average, we conclude
that it is capable of real-time interaction for a 300 (or less)
time-units simulation.

For this work, we made all the test under Mac OS X us-
ing Pd. Since we are using Gecode and Flext to generate the

externals, they could be easily compiled to other platforms
and for Max. This is due to Gecode and Flext portability.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we present Ntccrt as a framework to manage
concurrency in Max and Pd. In addition, we present two
real-life applications, a machine improvisation system and a
signal processing system. We ran both applications creating
Ntccrt external objects for Pd.

We want to encourage the use of process calculi to de-
velop reactive systems. For that reason, this research fo-
cuses on developing real-life applications with ntcc and
showing that our interpreter Ntccrt is a user-friend-ly tool,
providing a graphical interface to specify ntcc models and
compiling them to efficient C++ programs capable of real-
time interaction in Pd.

We argue that using process calculi (such as ntcc) to
model, verify and execute reactive systems decreases the de-
velopment time and guarantees correct process synchroniza-
tion, in contrast to the graphical patch para-digm of Max or
Pd. We argue that using that paradigm is difficult and time-
demanding to synchronize processes depending on complex
conditions. On the other hand, using Ntccrt, we can model
such systems with a few graphical boxes in OpenMusic or
with a few lines in Common Lisp, representing complex
conditions by constraints.

One may argue that although we can synchronize Ntccrt
with an external clock (e.g., a metronome object) provided
by Max or Pd, this does not solve the problem of simulating
models when the clock step is shorter than the time neces-
sary to compute a time-unit. To solve this problem, Sarria
proposed to develop an interpreter for the Real Time Con-
current Constraint (rtcc [20]) calculus, which is an exten-
sion of ntcc capable of modeling time-units with fixed du-
ration.

One may also argue that we encourage formal verifica-
tion for ntcc, but there is not an existing tool to verify
these models automatically, not even semi-automatically. To
solve this problem, Pérez and Rueda proposed to develop
a verification tool for the Probabilistic Timed Concurrent
Constraint (pntcc [12]) calculus. Currently, they are able
to generate an input for Prism [7] based on a pntcc model.

In the future, we would like to explore the ideas pro-
posed by Sarria, Pérez and Rueda. Moreover, we want to ex-
tend our implementation to support pntcc and rtcc, and
to generate an input for Spin [6] based on a ntcc model.

8. ACKNOWLEDGMENTS

We want to thank to Arshia Cont for giving us this idea of
using Ntccrt in Pd and Max; Fivos Maniatakos, Jorge Pérez
and Carlos Toro-Bermúdez for their valuable reviews on this

paper; and Jean Bresson, Gustavo Gutiérrez, and the Gecode
developers for their help during the development of Ntccrt.

9. REFERENCES

[1] C. Allauzen, M. Crochemore, and M. Raffinot, “Fac-
tor oracle: A new structure for pattern matching,” in
Conference on Current Trends in Theory and Practice
of Informatics, 1999, pp. 295–310.

[2] A. Allomber, G. Assayag, M. Desainte-Catherine, and
C. Rueda, “Concurrent constraint models for inter-
active scores,” in Proc. of the 3rd Sound and Mu-
sic Computing Conference (SMC), GMEM, Marseille,
may 2006.

[3] AVISPA. (2008) Ntccsim: A simulation tool for timed
concurrent processes. [Online]. Available: http://cic.
puj.edu.co/wiki/doku.php?id=grupos:avispa:ntccsim.

[4] J. Bresson, C. Agon, and G. Assayag, “Openmusic
5: A cross-platform release of the computer-assisted
composition environment,” in 10th Brazilian Sympo-
sium on Computer Music, Belo Horizonte, MG, Brésil,
2005.

[5] S. L. D. Fober, Y. Orlarey, Midishare: une architecture
logicielle pour la musique. Hermes, 2004, pp. 175–
194.

[6] G. J. Holzmann, The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley Professional,
September 2003.

[7] M. Kwiatkowska, G. Norman, D. Parker, and J. Spros-
ton, Modeling and Verification of Real-Time Systems:
Formalisms and Software Tools. John Wiley & Sons,
2008, ch. Verification of Real-Time Probabilistic Sys-
tems, pp. 249–288.

[8] P. Muñoz and A. Hurtado, “Programming robot de-
vices with a timed concurrent constraint program-
ming,” in Principles and Practice of Constraint Pro-
gramming - CP2004. LNCS 3258, page 803.Springer,
2004.

[9] M. Nielsen, C. Palamidessi, and F. Valencia, “Tem-
poral concurrent constraint programming: Denotation,
logic and applications,” Nordic Journal of Computing,
vol. 1, 2002.

[10] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and se-
mantical aspects of faust,” Soft Comput., vol. 8, no. 9,
pp. 623–632, 2004.

[11] F. Pachet, “Playing with virtual musicians: the contin-
uator in practice,” IEEE Multimedia, vol. 9, pp. 77–82,
2002.

[12] J. Pérez and C. Rueda, “Non-determinism and proba-
bilities in timed concurrent constraint programming,”
in ICLP, ser. Lecture Notes in Computer Science, vol.
5366. Springer, 2008, pp. 677–681.

[13] M. Puckette, “Pure data,” in Proceedings of the Inter-
national Computer Music Conference. San Francisco
1996, 1996.

[14] M. Puckette, T. Apel, and D. Zicarelli, “Real-time au-
dio analysis tools for Pd and MSP,” in Proceedings of
the International Computer Music Conference., 1998.

[15] L. Quesada, C. Rueda, , and G. Tamura, “The visual
model of cordial,” in Proceedings of the CLEI97. Val-
paraiso, Chile., 1997.

[16] V. Ramachandran and P. V. Hentenryck, “Incremental
algorithms for constraint solving and entailment over
rational trees,” in Proceedings of the 13th Conference
on Foundations of Software Technology and Theoreti-
cal Computer Science. London, UK: Springer-Verlag,
1993, pp. 205–217.

[17] C. Rueda, G. Assayag, and S. Dubnov, “A concurrent
constraints factor oracle model for music improvisa-
tion,” in XXXII CLEI 2006, 2006.

[18] C. Rueda and F. Valencia, “A temporal concurrent con-
straint calculus as an audio processing framework,” in
SMC 05, 2005.

[19] V. A. Saraswat, Concurrent Constraint Programming.
MIT Press, 1992.

[20] G. Sarria, “Formal models of timed musical pro-
cesses,” Ph.D. dissertation, Universidad del Valle,
Colombia, 2008.

[21] C. Schulte and P. J. Stuckey, “Efficient constraint prop-
agation engines,” CoRR, vol. abs/cs/0611009, 2006.

[22] M. Toro-Bermúdez, “Exploring the possibilities and
limitations of concurrent programming for multimedia
interaction and graphical representations to solve mu-
sical csp’s,” IRCAM, Paris, Tech. Rep. 2008-3, 2008.

http://cic.puj.edu.co/wiki/doku.php?id= grupos:avispa:ntccsim.
http://cic.puj.edu.co/wiki/doku.php?id= grupos:avispa:ntccsim.

	1 Introduction
	1.1 The problem
	1.2 Our solution
	1.3 Contributions
	1.4 Structure of the paper

	2 The ntcc calculus
	3 Related work
	3.1 Writing concurrent programs on Pd and Max
	3.2 Ntcc interpreters

	4 Our framework: Ntccrt
	4.1 Design of Ntccrt
	4.1.1 Developing mode
	4.1.2 Execution mode

	4.2 Implementation of Ntccrt

	5 Applications
	5.1 Machine Improvisation
	5.2 Signal processing

	6 Results
	7 Conclusions and Future work
	8 Acknowledgments
	9 References

