
GELISP: A LIBRARY TO REPRESENT MUSICAL CSPS AND
SEARCH STRATEGIES

Mauricio Toro B.
Universidad Javeriana Cali
mauriciotorob@gmail.com

Camilo Rueda

crueda@cic.puj.edu.co

Carlos Agón
IRCAM

agon@ircam.fr.

Gérard Assayag

assayag@ircam.fr

ABSTRACT

In this paper we present Gelisp, a new library to
represent musical Constraint Satisfaction Problems
and search strategies intuitively. Gelisp has two
interfaces, a command-line one for Common Lisp
and a graphical one for OpenMusic. Using Gelisp,
we solved a problem of automatic music genera-
tion proposed by composer Michael Jarrell and we
found solutions for the All-interval series.

1 INTRODUCTION

A Constraint Satisfaction Problem (CSP) is a for-
malism to represent combinatorial problems. To
solve a CSP we need to find objects that satisfy
a number of constraints (i.e., criteria over those
variables). CSPs provide a declarative way to rep-
resent combinatorial problems, specifying cons-
traints instead of a sequence of steps to find the so-
lution (as used in imperative programming). Ad-
ditionally, it is possible to specify strategies to choo-
se between branches during search.

CSPs in computer music can be used to solve
harmonic, rhythmic or melodic problems. In ad-
dition, they can be used for automatic generation
of musical structures satisfying a set of rules. For
instance, we can find solutions for the All-interval
series [4], where we need to find a sequence of 12
different pitches with 12 different intervals.

In order to solve a CSP, we can use constraint
programming languages such as Prolog or Mozart-
Oz [10]. In order to solve a CSP, those languages
use a Constraint Solving Library (CSL) such as
Gecode [7]. CLSs are usually written in C++.

1.1 The problem

Using traditional CSL’s or programming languages
to solve CSPs is time-demanding and it is intended
for specialized users because they usually require

SMC 2009, July 23-25, Porto, Portugal
Copyrights remain with the authors

deep knowledge on C++ or logic programming.
This makes these tools often unpractical to spec-
ify musical CSPs. Furthermore, these tools do not
provide a representation for musical data struc-
tures.

1.2 Our solution

Gelisp 1 is a wrapper for Gecode to Common
Lisp. Gelisp was originally developed by Rueda
in 2006 and we modified it to work with current
version of Gecode. Furthermore, we added sup-
port to model CSPs and search strategies graphi-
cally on OpenMusic (OM) [1]. In addition, Gelisp
can take advantage of the musical data structures
and functions defined for OM.

The novelty of Gelisp is to provide a graphical
representation for search strategies (e.g., Depth
First Search) and global constraints (e.g., “all the
intervals of a sequence must be different”), based
on an efficient CSL.

1.3 Related Work

Several graphical CSLs for OM have been devel-
oped in the last decade. Situation [5] generates
music based on constraints, OmRc [6] finds struc-
tures corresponding to rhythmical constraints, Om-
Clouds [9] finds approximated solutions to a CSP,
and OMBacktrack (http://www.ircam.fr/
equipes/repmus/) is a wrapper for the CSL
Screamer [8] (a CSL written on Lisp).

A graphical CSL to solve musical CSPs should
be able to setup search strategies in a graphical
way, post multiple kinds of constraints graphically
without declaring explicitly loops and recursion,
and solve the problem using state-of-art algorithms.

Unfortunately, OmRC and OmSituation are de-
signed to solve specific problems. OmBacktrack
is no longer available for current versions of OM.
Finally, OmClouds does not guarantee a solution
satisfying all the constraints (i.e., a complete solu-
tion).

1 http://gelisp.sourceforge.net/

http://www.ircam.fr/
file://localhost/Users/mauricio/Downloads/equipes/repmus/


2 GECODE

Gecode is a Constraint Solving Library (CSL) writ-
ten in C++. Gecode provides a propagator for
each type of constraint. Propagators translate a
constraint into basic constraints supplying the same
information. Basic (finite domain) constraints have
the form x ∈ [a..b]. For instance, in a store (i.e.,
a set with all the constraints asserted) containing
pitch1 ∈ [36..72] and pitch2 ∈ [60..80], a propa-
gator for the constraint pitch1 > pitch2+2 would
add constraints pitch1 ∈ [63..72] and pitch2 ∈
[60..69].

As described in the above example, the action
of propagators ends up narrowing down the set of
possible values for each variable. This, however,
does not guarantee that it will eventually be in-
ferred a single value for each variable. Gecode
thus include search engines. The purpose of a
search engine is to choose additional basic con-
straints to add into the store until all variables have
reduced their domain to a single value. Using them
we can find one, many, or all the solutions for a
CSP.

Gecode works on different operating systems
and it will be used as the CSL for Mozart-Oz,
therefore it is very likely to be maintained for a
long time. Furthermore, it provides an extensi-
ble API, allowing the user to create new propaga-
tors and user-defined search engines. For instance,
we can extend Gecode to reason about trees and
graphs, which are useful in musical CSPs.

3 GELISP

Gelisp provides an interface for Common Lisp and
another for OM. In Gelisp, sequences of variables
are represented by lists, as opposed to Gecode,
where they are represented by arrays. This makes
the power of list processing (provided by Lisp and
OM) available for Gelisp users.

3.1 Interface for Common Lisp

To solve a problem using this interface, we need
to write a script. A script is a function to define the
problem variables and their domains (the possible
values that a variable can take), post constraints
over the variables, and setup a search strategy.

This interface allows the user to call most of
Gecode propagators for both, Finite Domain (FD)
and Finite Set (FS) constraints. Basic FD con-
straints deal with expressions of the form x ∈ R,
where R is a range or a set of ranges of integers.
On the other hand, FS constraints deal with ex-
pressions among sets of FD variables. In what

follows, we present some propagators that Gelisp
provides for FD and FS.

Gelisp provides FD propagators for defining do-
mains (e.g., Domain(X) = [2, 5]), equalities and
inequalities (e.g., X +Y < Z), cardinality (e.g., 1
occurs two times in [XY Z]), boolean constraints,
regular expression constraints and the all-distinct
constraint. The all-distinct constraint makes the
elements of a sequence pairwise different.

On the other hand, for FS we provide constraints
for defining domains (e.g., V ⊆ {1, 2, 3}) and set
relations (e.g., X ⊂ A ∪B).

In addition, Gelisp includes two search engines,
Depth Search First (DSF) and Branch-and-bound
(BAB). The DFS engine works by choosing some
variable, then a value for that variable, if this does
not succeed (a constraint does not hold) then choo-
ses another value. If the value succeed, then choo-
ses another variable, then a value for it, etc.

The BAB engine works in a similar way, but so-
lutions are computed in such a way that each sub-
sequent solution increases or decreases the value
of some user specified FD variable. Both engines
can be used for both FS and FD. In addition, we
can define search heuristics for value (i.e., the or-
der to assign a value to a variable) and variable
order (i.e., the order to choose a variable). These
heuristics are parameters for the search engines.

3.2 Graphical Interface for OpenMusic

Instead of writing a script, in the graphical inter-
face we represent a program with a special patch,
called CSP patch. A patch is a visual algorithm,
in which boxes represent functional calls, and con-
nections are functional compositions. Inside a CSP
patch, we can place special boxes to define a con-
straint in the CSP, variable and value heuristics,
the variable to be optimized during the search, and
a time limit in the search.

For instance, we provide a variety of boxes to
represent simple constraints (e.g., a = 2) and global
constraints (e.g., “all the intervals from a sequence
must be different”).

Using the graphical interface we can express a
variety of problems declaratively with global con-
straints. Global constraints have parameters. For
instance, the graphical box to find the intervals of
a list “x → dx” has a parameter to choose among
absolute, non-absolute, or modulo n intervals (cal-
culated as (Vi+1 − Vi)%n). Additionally, it has
a parameter to post an all-distinct constraint over
the intervals.

Moreover, the output of a CSP patch can be
connected to a box to find one solution or a box
to find n the solutions



4 APPLICATIONS

In this section, we describe both, an intuitive and
formal definition of two CSPs and we explain how
to solve them with Gelisp. Formally, a CSP is
triple < X,D, C >, where X is a set of variables,
D is the domain for each variable, and C is a set
of constraints (read as conjunction) over the vari-
ables.

4.1 All-interval series

In this problem, we need to find a sequence of 12
different pitches with 12 different intervals (fig.
1). This problem can be generalized to find n dif-
ferent pitches with n different intervals equivalent
under inversion 2 . For instance, a value of n = 24
represents the all-interval series for microtones.

Figure 1. An all-interval serie for n = 12

Therefore, a solution to this CSP is a sequence
of n pairwise different variables with domain [1..n],
where all modulo n intervals of the sequence are
pairwise different. We give bellow a formalization
of this problem

Variables: V1 ... Vn

Domains: [1..n] ... [1..n]
Constraints:

• C1 alldiff(V )

• C2 alldiff((Vi+1 − Vi)%n, i ≤ n)

There is not a constraint over the interval (Vn−
V0) because that interval is always six, according
to the literature. Furthermore, it is enough to cal-
culate the series where V0 = 0 because the other
ones can be obtained from that one using transpo-
sition. In addition, we know that if V1..Vn is an
all-interval serie, Vn...V1 is also one. For those
reasons, we include these two constraints to avoid
symmetrical solutions:

• C3 V0 = 0

• C4 V0 < Vn

We represent graphically this CSP (fig. 2) with
a box to create n all-different variables with do-
main [1..n], an x → dx box for C2 with an all-
different parameter , an equality box for C3, and
an inequality box for C4.

2 For instance, an interval C-E is equivalent to E-C.

Figure 2. All-interval Series CSP on OM

4.2 Jarrell CSP

Composer Michael Jarrell proposed an idea for
automatic music generation [2]. The goal is to
generate a sequence of n notes. There is a fix
number of occurrences OM1...OMA for each se-
quences of intervals (called motives) M1...MA over
the sequence of non-absolute intervals of the out-
put sequence. In addition, each note of the output
sequence belongs to a Chord Ch. Moreover, the
first L1 and the last note L2 of the output sequence
are fixed. We give bellow a formalization of this
problem

Inputs:

• Motives [M1...MA], Limits L1 and L2,
Occurrences [OM1...OMA], Chord Ch

Variables: V1 ... Vn

Domains: [0..127] ... [0..127]
Constraints:

• C1 ∀1<i<A |{j,Mi is a subsequence of the
variables’ intervals that starts on j}| = OMi

• C2 ∀1<i<n Vi ∈ Ch

• C3 V1 = L1 ∧ Vn = L2

We represent graphically (fig.3) the constraint
C1. We use the x→dx and motives-occurs= boxes
to fix the number of occurrences of each motive
over the intervals of the output sequence.

Jarrell also proposes in [2] to consider absolute
intervals and octaviation for the chords, the limits
and the motives. For instance, using absolute in-
tervals, an interval Vi+1−Vi is equal to Vi−Vi+1

and using octaviation, a pitch G4 is equivalent to
G1,G2,G5, etc. Finally, he also proposes to have



Figure 3. Constraint C1 for Jarrell’s CSP on OM

specific motives and chords for each segment of
the output sequence, according to a user-defined
segmentation. For simplicity, we do not present
those constraints in this paper. However, a com-
plete model of this problem can be found at Gelisp
website.

5 CONCLUDING REMARKS AND
FUTURE WORK

We presented a library for Common Lisp and OM
providing a variety of constraints and search en-
gines. Gelisp provides graphical boxes to repre-
sent some constraints and search strategies. Ge-
lisp abstracts minor details that are not necessary
for musicians and mathematicians.

It would be pretentious to conclude that we can
easily model any musical CSP using Gelisp graph-
ical interface, or using the command-line inter-
face. However, we can model a variety of prob-
lems using Gelisp in a simple way taking advan-
tage of the state-of-the-art propagators and search
engines provided by Gecode.

In future works, we will explore a bigger sam-
ple of musical CSPs and their representation using
global constraints. In addition, the idea of repre-
senting CSPs and their search strategies with busi-
ness rules from Rules2Cp [3] can be extended to
generate a musical CSP based on musical rules.

6 ACKNOWLEDGMENTS

Thanks to Moreno Andreatta, Jean Bresson, Serge
Lemouton, Killian Sprotte, and Guido Tack for
their valuable comments when developing Gelisp.

Thanks to Carlos Toro and Jorge Pérez for their
remarks on this paper.

7 REFERENCES

[1] C. Agón, G. Assayag, O. Delerue, and
C. Rueda. Objects, Time and Constraints in
OpenMusic. In Proceedings of the Interna-
tional Computer Music Conference (ICMC),
Ann Arbor, Michigan, October 1998.

[2] F. Courtot and M. Jarrell. L’utilisation
de la CAO dans Congruences. Cahiers
d’exploitation Ircam, 1990.

[3] F. Fages and J. Martin. From rules to con-
straint programs with the rules2cp mod-
elling language. 13th Worshop on Constraint
Solving and Constraint Logic Programming,
CSCLP’08, 2008.

[4] R. Morris and D. Starr. The structure of the
all-interval series. Journal of Music Theory,
2(13), 1974.

[5] C. Rueda, M. Lindberg, M. Laurson, G. Block,
and G. Assayag. Integrating constraint pro-
gramming in visual musical composition lan-
guages. In ECAI 98 Workshop on Constraints
for Artistic Applications, Brighton, 1998.

[6] O. Sandred. Searching for a rhythmical lan-
guage. In PRISMA 01 Review. EuresisEdi-
zioni, Milano, 2003.

[7] C. Schulte and P. J. Stuckey. Efficient
constraint propagation engines. CoRR, ab-
s/cs/0611009, 2006.

[8] J. M. Siskind and D. A. Mcallester. Nonde-
terministic lisp as a substrate for constraint
logic programming. In proceedings of AAAI-
93, pages 133–138. AAAI Press, 1993.

[9] C. Truchet, G. Assayag, and P. Codognet. Om-
clouds, a heuristic solver for musical con-
straints. In MIC03, Metaheuristics Interna-
tional Conference, Kyoto, 2003.

[10] P. Van Roy and S. Haridi. Concepts, Tech-
niques, and Models of Computer Program-
ming. MIT Press, Mar. 2004.


	 Introduction
	 The problem
	 Our solution
	 Related Work

	 Gecode
	 Gelisp
	 Interface for Common Lisp
	 Graphical Interface for OpenMusic

	 Applications
	 All-interval series
	 Jarrell CSP

	 Concluding Remarks and Future Work
	 ACKNOWLEDGMENTS
	 References

