
Technical Report

NTCC Semantics based on Chu Spaces

Andrés A. Aristizábal P. Camilo Rueda∗

Frank D. Valencia†

August, 2009

Abstract

By analyzing several extant models of concurrency and overviewing
the most general and important concepts in the NTCC calculus, a timed
extension of the CCP model, we explore the possibility of using Event
Structures, a popular model for representing concurrency, so we can give
an adequate semantics for each NTCC construct in a straightforward
and understandable way. To give a precise representation by means of
event structures we had to take into account several conditions such as
guaranteeing true concurrency and establishing adequate representations
for specific constructs. Finally, borrowing some concepts from Pratt, we
construct a triadic event structure which could fulfill our requirements.
Throughout the article we use an appropriate and compact representa-
tion of event structures such as Chu Spaces, since it is a more comfortable
model to work with.

1 Introduction

1.1 Modeling Concurrency

Sequential and Concurrent composition, two very different but both well studied
concepts, the first deals with events happening just one after the other, mean-
while the second one tries to represent multiple events executing at the same
time. Since development of technology first dealt with procceses happening one
after the other, the theory of sequentiallity appeared earlier and such theories
as Automota became very popular. But, since the arrive of parallelism and new
technolgy such as multi processors whom could deal with multiple processes,
concurrency exploded and lots of models were developed to learn about this
particular behavior. So, just as the sequential compositon in the earlier years of
computer science, concurrency composition has achieved a great notority and a
∗Pontificia Universidad Javeriana - Cali
†LIX Ecole Polythecnique

1

vast diversity of extant models started appearing, in such a way that this kind
of behavior could be represented in a more precise way. There are lots of easily
recognized models for representing sequential behavior such as Automata The-
ory and its formal languages which abstract them, but there are also different
kinds of models which try to approach concurrency in a more desirable way.

1.1.1 Petri Nets and Mazurkiewicz traces

A petri net is a directed bipartite graph, where its nodes represent transitions,
places its statements or so called conditions, and its directed arcs (which run
between statementes and transtions) the way in which ecah place is a pre or
post condition of a different transition. It is said that each place in a petri net
may contain any non negative number of tokens which represent the truth value
of the condition. A marking or state is the distribution of tokens over the places
of the net. In this way, it can be said that a petri net can fire whenever there
is a token at the end of all its input arcs (preconditions). And a firing results
when all this tokens at the end of its input arcs are consumed and immediately
placed at the end of its output arcs (postconditions). While a sequential run of
a petri net is a sequence of firings, a concurrent run is a causal net, an acyclic
petri net where every statement is a precondition of at most one transition and
a postcondition of at most one transition, and every transition has at least one
precondition and at least one postcondition.

Mazurkiewicz traces deal directly with Petri nets and its way of representing
concurrency notions. They work in a very similar way with Petri nets as for-
mal languages with state automata. The latter ones abstract state automata
by means of strings and so do the first ones with petri nets by modeling their
runs as equivalence classes of strings. Mazurkiewicz traces works identifying
different transitions in an acyclic petri net by means of an important concept
called action independence, indicating that both transitions fired independently.
Even though Mazurkiewicz traces identify concurrency, it has a major problem,
independence is global.

1.1.2 Posets and Pomsets

A poset is a set among with a binary relation which describes for certain pairs,
that one of them precedes the other, that in such a way that the set can be
partially ordered.
A pomset or partially ordered multiset is a Σ-labelled poset (A,≤,Σ,). That
is, that for every event a ∈ A there is a label λ(a) ∈ Σ. A pomset identifies
concurrency by means of independence of events and not of actions.

1.1.3 Event Structures

As a simple and general approach we can say that an event structure is a pair
(E,F) where E is the set of possible event occurrences and F is a family of

2

configurations, where a configuration is a set of events which occur at some
stage of the process. An event structure must fulfill four axioms, they must be
coherent, stable, coincidence-free and finitary.
A more precise and complete definition is the following:

Definition 1.1. An event structure (A, con,`) consists of three elements where:

• a set A of events

• Con, the consistency predicate, a non empty subset of fA (finite subsets
of A) satisfying

X ∈ Con ∧ Y ⊆ X ⇒ Y ∈ Con

• The enabling relation `, a subset of Con×A satisfying

X ` a ∧X ⊆ Y ⇒ Y ` a

According to this definition we can state that a configuration F is a subset
of events x ∈ E which is consistent in the sense that any finite subset should be
in the consistency predicate and it should be enabled by a set of events which
had occurred previously in the process.

Definition 1.2. A prime event structure (A,≤,#) consists of a partial order
(A,≤) and a symmetric irreflexive binary relation # of conflict, satisfying the
following condition: for all events a, b, c ∈ A, a#b and b ≤ c implies a#c

Definition 1.3. A configuration of a prime event structure is a conflict-free
downset i.e. given a ∈ s, if b ≤ a then b ∈ s (downset), and if a#b then b 6∈ s

1.2 Constraint Systems

Definition 1.4. A simple constraint system is a structure 〈D,`〉 where D is
a non-empty set of tokens (which represents the constraints) and `⊆ pD × D
(where pD is the set of finite subsets of D) an entailment relation satisfying the
following:

• u ` P whenever P ∈ u

• u ` Q whenever u ` P for all P ∈ v, and v ` Q

1.2.1 The CCP Model

CCP as well described by Saraswat [Sar93], is a powerful model of concurrent
computation based on the notions of a store as a set of constraints and processes
as information traducers.

The concurrent system in this model is composed by a collection of agents

3

which interact one with each other by means of shared variables. These concur-
rent agents compute partial information about the values of these variables, by
means of constraints, which consequently are recorded in a store. This store is
where all information or constraints over the variables reside. It monotonically
grows in time. The store is considered the medium by which agents interact.
There are two kinds of agents, the ones that change the state of the system by
adding or telling information to the store via a new constraint and the ones that
deduce or ask information from the store.

1.2.2 The NTCC calculus

A a general approach, we must say that a temporal CCP works as an extension
of CCP by allowing agents to be constrained by time conditions. Specifically
we define NTCC as a process calculus which studies temporal CCP as a model
of concurrency for discrete-timed systems. This calculus generalizes the TCC
calculus, which is a temporal CCP model for deterministic and synchronous
timed reactive systems. It captures several aspects of timed systems. As tcc, it
can model unit delays, time-outs, pre-emption and synchrony. Additionally it
allows modeling unbounded but finite delays, bounded eventuality, asynchrony
and nondeterminism.

2 Event Structures as Chu Spaces

2.1 A compact representation of an Event Structure

A Chu space is said to be a very nice and compact representation of an event
structure. Since the most obvious and explicit way to write a Chu Space
(A,X,Σ) is as binary matrix (Σ : A × X → 2 where 2 = {0, 1}) of dimen-
sion |A| × |X| where A is the set of events and X is the set of states of the
process represented by the Chu space, we can easily depict an event structure
〈A,≤,#〉 as that matrix. Of course the entries for that matrix come from the
set Σ. An event e ∈ A can be seen as a function e : S → Σ giving a value
to that event in each state. Reciprocally, a state s can be seen as a function
s : A → Σ giving a value for each event in that state. Obviously, e(s) = s(e).
For representing prime event structures the binary set Σ = {0, 1} suffices, with
1 meaning that the event has occurred and with 0 just the opposite. In this
way, each state corresponds to a configuration of the event structure (i.e. events
e that occur in configuration s are all of those such that s(e) = 1)

Definition 2.1. A Chu space (A,S,Σ) consists of:

• a set A of events, a ∈ A is a function a : S → Σ

• a set S of states, s ∈ S is a function s : A→ Σ

together with the condition

∀a∈A,s∈S .a(s) = s(a)

4

A distinction is usually made in event structures between events and actions.
The occurrence of an event performs an action. An event is an instance of an
action, so, in this way, two different events might perform the same action. In
NTCC for instance, an event could be thought of as the addition of information
while its action as the actual information it adds. The table below shows some
processes, their events and their actions and how they differ in number according
to its respective process:

process events and actions
tell(c) ‖ tell(c) two events, one action
(when a then do tell(c)) ‖ (when b then do tell(d)) four events, four actions
when a then do (tell(c) ‖ when b then do tell(d)) + when b then do (tell(d) ‖ when a then do tell(c)) four events, four actions

2.1.1 Representing NTCC constructs

Here we present the event structures and Chu spaces for some NTCC constructs
which are straightforward to model using ordinary event structures and Chu
spaces. (Note that arrows represent causal dependency ≤ and dotted arcs the
conflict relation #):

c1tell(c)

c 0 1

c

tell(c)

c1 0 1 0 1
c2 0 0 1 1

c1 c2

tell(c1) + tell(c2)

c1 0 1 0
c2 0 0 1

c1 c2

tell(c1)|tell(c2)

c1 0 1 1
c2 0 0 1

The set of all configurations determine the event structure. These are the
set of configurations according to the event structures mentioned before:

5

c 0 1 {{}, {c}}

c1 0 1 0 1
c2 0 0 1 1

{{}, {c1}, {c2}, {c1, c2}}

c1 0 1 0
c2 0 0 1

{{}, {c1}, {c2}}, c1#c2

c1 0 1 1
c2 0 0 1

{{}, {c1}, {c1, c2}}, c1 ≤ c2

In the above we assume that events and actions are just the same. We say
that what is observed of an event is the fact that the constraint involved in it
has occurred (value 1 in some matrix entry). Here there is a major problem
since a constraint cannot be an event. In the following section we will see how
this difficulty can be overcomed.
Semantics for the ask operation seems to suggest that the constraint in the
guard is actually posted, but the intended interpretation of a state is different.
It refers to the fact that any information consistent with a state s should contain
information of all actions of events e such that s(e) = 1

2.2 A labelled Approach

Since events produce observations other than themselves (actions), event struc-
tures has to be extended in order to cope with the extra information.

Definition 2.2. A labelled event structure (A,≤,#, λ, V) consists of an event
structure (A,≤,#),and an event labelling function λ : A→ V

A labelled Chu space is defined smilarly. Let us now denote a the event
posting any constraint c and the action λ(a) associated to the event a equals
to the particular post of constraint c. Let a A be the set of events and c a
constraint, then ∃a∈A.λ(a) = c

2.2.1 Our particular labels

• λ : events→ actions ∪ {⊥} (Relates each event with an action)

• φ : events→ ρ((actions, i))∪{⊥} (Relates each event to the set of actions
in which it depends (ask) or not (unless) and the time unit in which the
event associated to the action occurs)

• ψ : events→ N ∪ {⊥} (Relates each event with the instant of time when
that event should be executed)

• β : events→ (events, i) ∪ {⊥} (Relates each copy of an event to its seed
and the number of that particular copy)

• ω : events→ ρ(events) ∪ {⊥} (Relates each event with the set of events
which cannot be executed while that event is being executed (or))

6

2.2.2 Representing NTCC constructs

tell(c):
∃a∈A.λ(a) ` c a 0 1 λ : a 7→ c, φ : a 7→ {},

ψ : a 7→ 1, β : a 7→ ⊥,
ω : a 7→ {}

when c1 then do tell(c2):

∃a,b∈A.λ(a) ` c1 ∧ λ(b) ` c2
a 0 1 1
b 0 0 1

λ : b 7→ c2, a 7→ ⊥

φ : b 7→ (c1, 1), a 7→ ⊥
ψ : b 7→ 1, a 7→ ⊥
β : b 7→ ⊥, a 7→ ⊥
ω : b 7→ {}, a 7→ ⊥

tell(c1)‖tell(c2):

∃a,b∈A.λ(a) ` c1 ∧ λ(b) ` c2
a 0 1 0 1
b 0 0 1 1

λ : b 7→ c2, a 7→ c1

φ : b 7→ {}, a 7→ {}
ψ : b 7→ 1, a 7→ 1
β : b 7→ ⊥, a 7→ ⊥
ω : b 7→ {}, a 7→ {}

tell(c1) + tell(c2):

∃a,b∈A.λ(a) ` c1 ∧ λ(b) ` c2
a 0 1 0
b 0 0 1

λ : b 7→ c2, a 7→ c1

φ : b 7→ {}, a 7→ {}
ψ : b 7→ 1, a 7→ 1
β : b 7→ ⊥, a 7→ ⊥
ω : b 7→ {a}, a 7→ {b}

2.3 A Triadic solution for true concurrency

According to a very popular assumption such as fixed granularity, which states
that actions in a system are built up from atomic actions which are only ob-
servable at the begining and at the end, but not in the period between, the
interleaving law (a‖b = ab+ ba) holds.
True concurrent NTCC models aim at invalidating this interleaving law.

(a→ P)‖(b→ Q) = (a→ (P‖(b→ Q))) + (b→ (Q‖(a→ P)))

It is easy to show that in the ordinary Chu space and Event structure model
of NTCC, this law still holds. Since simple event structures do not have the
capacity to cope with extra information which may invalidate the interleaving
law, the first option is to introduce extra events whose relation to the actual
events are kept track via labels. For instance tell(c1)‖tell(c2)st.∃a,b∈Aλ(a) `
c1 ∧ λ(b) ` c2 would involve three events, the third one modelling the fact that
a and b could occur simultaneously. The problem with this approach is just
that it obscures the notion of what is indeed an event in a system. Moreover, it
makes it unnecesarily complex the definition of some constructs, in particular
the parallel composition.
A much more adequate alternative is proposed by Pratt [Pra03], which intends
to consider event occurrence not as a two valued fact but as a more nuanced

7

three-valued affair. Instead of having the two usual possibilities for an event such
as done or not done, it adds a most important one, the transition which stays in
between the ordinary ones. In that way, an event may be in one of three states:
not yet occurred, already occurred and occurring now. Configurations would not
be a set of events but a set of events together with their degree of occurence,
(for instance, 1 or 2). In the Chu Space representation this simply amounts to
consider Σ = {0, 1, 2}, with value 1 for occurring and 2 for already occurred.

2.3.1 Representing NTCC Constructs

Taking into account these new triadic Chu spaces, we have the semantics for
some processes:

tell(c):

∃a∈A.λ(a) ` c a 0 1 2 2 2
b 0 0 0 1 2

λ : a 7→ c, φ : a 7→ {},

ψ : a 7→ 1, β : a 7→ ⊥,
ω : a 7→ {}

when c1 then do tell(c2):

∃a,b∈A.λ(a) ` c1 ∧ λ(b) ` c2
a 0 1 2 2 2
b 0 0 0 1 2

λ : b 7→ c2, a 7→ ⊥

φ : b 7→ (c1, 1), a 7→ ⊥
ψ : b 7→ 1, a 7→ ⊥
β : b 7→ ⊥, a 7→ ⊥
ω : b 7→ {}, a 7→ ⊥

tell(c1)‖tell(c2):

∃a,b∈A.λ(a) ` c1 ∧ λ(b) ` c2
a 0 1 2 0 1 2 0 1 2
a 0 0 0 1 1 1 2 2 2

λ : b 7→ c2, a 7→ c1

φ : b 7→ {}, a 7→ {}
ψ : b 7→ 1, a 7→ 1
β : b 7→ ⊥, a 7→ ⊥
ω : b 7→ {}, a 7→ {}

tell(c1) + tell(c2):

∃a,b∈A.λ(a) ` c1 ∧ λ(b) ` c2
a 0 1 2 0 0
b 0 0 0 1 2

λ : b 7→ c2, a 7→ c1

φ : b 7→ {}, a 7→ {}
ψ : b 7→ 1, a 7→ 1
β : b 7→ ⊥, a 7→ ⊥
ω : b 7→ {a}, a 7→ {b}

Notice how the fifth state in the parallel composition reflects the fact that
both events a and b can be occuring at the same time.
For the whole proof see A

3 Our Chu Spaces semantics for NTCC

3.1 Some important definitions

• 1..n is the set of numbers where its elements go from 1 to n

8

• neg(c) we use this as a function applied to a constraint c to know if it has
a negation or not. This is used to differentiate between a dependence of
an action by an ask and a one from an unless.

• 3C means the possible states of a Chu space where the events belong to
the set of events C and the valuations to the triadic set Σ = {0, 1, 2}

3.2 Skip

JskipK , (C,W, λ, φ, ψ, β, ω) where:

C = E

λ(e) = ⊥

φ(e) = ⊥

ψ(e) = ⊥

β(e) = ⊥

ω(e) = ⊥

W = {w ∈ {0}C}

3.3 Tell

Jtell(c)K , (A,X, λ, φ, ψ, β, ω) where:

A = E

∃a∈A.λ(a) ` c ∧ ∀e∈A−{a}.λ(e) = ⊥

φ(e) =
{
{} if e = a
⊥ otherwise

ψ(e) =
{

1 if e = a
⊥ otherwise

β(e) = ⊥

ω(e) =
{
{} if e = a
⊥ otherwise

X = {x ∈ 3A|∀a′∈A−{a}.x(a′) 6= 0⇒ x(a) = 2}

9

3.4 Ask

Jwhen c then do P K , (C,W, λ, φ, ψ, β, ω) JP K = (A,X, λ1, φ1, ψ1, β1, ω1) where:

C = E

Let Λ be the set of all possible λ labels of each possible Chu Space, then
∃a∈C .λ(a) = ⊥ ∧ ∃λ′∈Λ−{λ}.λ

′(a) ` c ∧ ∀e∈C .λ(e) = λ1(e)

φ(e) =
{
φ1(e) ∪ {(c, 1)} if λ1(e) 6= ⊥
⊥ otherwise

ψ(e) =
{
⊥ if e = a
ψ1(e) otherwise

β(e) =
{
⊥ if e = a
β1(e) otherwise

ω(e) =
{
⊥ if e = a
ω1(e) otherwise

W = {w ∈ 3C |∃a′∈A.λ(a′) 6= ⊥ ∧ w(a′) 6= 0⇒ w(a) = 2}

3.5 Choice

JP+QK , (C,W, λ, φ, ψ, β, ω) JP K = (A,X, λ1, φ1, ψ1, β1, ω1) JQK = (B, Y, λ2, φ2, ψ2, β2, ω2)
where:

C = E

W = {w ∈ 3C |w ↓A∈ X ∨ w ↓B∈ Y }

λ(e) =

 λ1(e) if λ1(e) 6= ⊥
λ2(e) if λ2(e) 6= ⊥
⊥ otherwise

φ(e) =

 φ1(e) if λ1(e) 6= ⊥
φ2(e) if λ2(e) 6= ⊥
⊥ otherwise

ψ(e) =

 ψ1(e) if λ1(e) 6= ⊥
ψ2(e) if λ2(e) 6= ⊥
⊥ otherwise

β(e) =

 β1(e) if λ1(e) 6= ⊥
β2(e) if λ2(e) 6= ⊥
⊥ otherwise

ω(e) =

 ω1(e) ∪ {e ∈ B|λ2(e) 6= ⊥} if λ1(e) 6= ⊥
ω2(e) ∪ {e ∈ A|λ1(e) 6= ⊥} if λ2(e) 6= ⊥
⊥ otherwise

10

3.6 Parallel composition

JP‖QK , (C,W, λ, φ, ψ, β, ω) JP K = (A,X, λ1, φ1, ψ1, β1, ω1) JQK = (B, Y, λ2, φ2, ψ2, β2, ω2)

C = E

W = (
⋃
i∈{i∈N|(e∈{e∈A|λ1(e) 6=⊥}∧i=ψ1(e))∨(e∈{e∈B|λ2(e)6=⊥}∧i=ψ2(e))}{w = w1 ∪ w2 ∪

w3 ∪ w4|w1 ∈ presentpast(P, i) ∧ w2 ∈ presentpast(Q, i) ∧ w3 = future(P, i) ∧
w4 = future(Q, i)∧ ask(P,Q,w)∧ ask(Q,P,w)∧ unless(P,Q,w)∧ unless(Q,P,w)∧
or(P,w)∧or(Q,w)∧finalstates(P,Q,w,w1, w2, w3, w4)})∪{e ∈ A|λ1(e) = ⊥}∩{e ∈
B|λ2(e) = ⊥}

where the set of states W is the union of states from X and Y from chu spaces P
and Q ordered by time and restricted to several conditions. Each time unit i deter-
mines a set of states from X and Y which had happened before or at that particular
time. (this states are determined by function presentpast) and a set of states which
happens after time unit i (future). All these states are restricted by other functions
(ask,unless,or and finalstates).

• Ask: Guarantees that if an event has happened then each constraint in which
it depends has associated an event that has happened at the established time
unit.

• Unless: Guarantees that if an event has happened then each constraint in which
it depends (which comes with a negation) has every event associated to it in 0
at the established time unit.

• Or: Guarantees that if an event has started its execution every event associated
to in its Or set (ω) must be in 0.

• Finalstates: Guarantees that the the events which have a time unit less than i
have reached a final state, which means the maximum amount of events, with
ψ less than i, executed with all the restrictions stated before.
For technical definitions see B.1

λ(e) =

 λ1(e) if λ1(e) 6= ⊥
λ2(e) if λ2(e) 6= ⊥
⊥ otherwise

φ(e) =

 φ1(e) if λ1(e) 6= ⊥
φ2(e) if λ2(e) 6= ⊥
⊥ otherwise

ψ(e) =

 ψ1(e) if λ1(e) 6= ⊥
ψ2(e) if λ2(e) 6= ⊥
⊥ otherwise

β(e) =

 β1(e) if λ1(e) 6= ⊥
β2(e) if λ2(e) 6= ⊥
⊥ otherwise

ω(e) =

 ω1(e) if λ1(e) 6= ⊥
ω2(e) if λ2(e) 6= ⊥
⊥ otherwise

11

3.7 Unless

Junless c NextP K , (C,W, λ, φ, ψ, β, ω) JP K = (A,X, λ1, φ1, ψ1, β1, ω1)

C = E

Let Λ be the set of all possible λ labels of each possible Chu Space, then
∃a∈C .λ(a) = ⊥ ∧ ∀λ′∈Λ−{λ}.λ

′(a) 6` c ∧ ∀e∈C .λ(e) = λ1(e)

φ(e) =
{
φ1(e) ∪ {(¬c, 1)} if λ1(e) 6= ⊥
⊥ otherwise

ψ(e) =
{
⊥ if e = a or if λ1(e) = ⊥
ψ1(e) otherwise

β(e) =
{
⊥ if e = a
β1(e) otherwise

ω(e) =
{
⊥ if e = a
ω1(e) otherwise

W = {w ∈ 3C |∃a′∈C−{a}.w(a′) 6= 0⇒ w(a) 6= 2}

3.8 Unbounded finite delay

J?P K , (C,W, λ, φ, ψ, β, ω) JP K = (A,X, λ1, φ1, ψ1, β1, ω1)

C = E

W = X

Let e′ij be events non obsevable in A and several clones of ej which belongs
to A. Then:

λ(e) = λ1(e)

φ(e) = φ1(e)

ψ(e) = ψ1(e)

β(e) = β1(e)

ω(e) = ω1(e)∪{e′jh ∈ {e ∈ A|λ1(e) = ⊥}|h ∈ 1..∞∧j ∈ 1..|{e ∈ A|λ1(e) 6= ⊥}|}

λ(e′ij) = λ1(ej)

φ(e′ij) = φ1(ej)

12

ψ(e′ij) = ψ1(ej)

β(e′ij) = (ej , i)

ω(e′ij) = β−1(ω1(ej), i) ∪ {e′jh ∈ {e ∈ A|λ1(e) = ⊥}|h ∈ 1..∞ − {i} ∧ j ∈
1..|{e ∈ A|λ1(e) 6= ⊥}|} ∪ {e ∈ A|λ1(e) 6= ⊥}

For technical definitions see B.2

3.9 Replication

J!P K , (C,W.λ, φ, ψ, β, ω) JP K = (A,X, λ1φ1, ψ1, β1, ω1)

C = E

Let e′ij be events non obsevable in A and several clones of ej which belongs
to A. Then:

λ(e) = λ1(e)

φ(e) = φ1(e)

ψ(e) = ψ1(e)

β(e) = β1(e)

ω(e) = ω1(e)

λ(e′ij) = λ1(ej)

φ(e′ij) = φ1(ej)

ψ(e′ij) = ψ1(ej)

β(e′ij) = (ej , i)

ω(e′ij) = β−1(ω1(e), i)

W = (
⋃
i∈{i∈N|(e∈{e∈A|λ1(e)6=⊥}∧i=ψ1(e))∨(e∈{e∈B|λ2(e)6=⊥}∧i=ψ2(e))}{w = w1 ∪

w2|w1 ∈ presentpast(i)∧w2 = future(i)∧ask(w)∧ask(w)∧or(w)∧finalstates(w,w1, w2)})∪
{e ∈ A|λ1(e) = ⊥}}

where the set of states W is the union of states from X from chu space P
and its copies ordered by time and restricted to several conditions. Each time
unit i determines a set of states from X and Y which had happened before or

13

at that particular time. (this states are determined by function presentpast)
and a set of states which happens after time unit i (future). All these states are
restricted by other functions (ask,unless,or and finalstates).

• Ask: Guarantees that if an event has happened then each constraint in
which it depends has associated an event that has happened at the estab-
lished time unit.

• Unless: Guarantees that if an event has happened then each constraint in
which it depends (which comes with a negation) has every event associated
to it in 0 at the established time unit.

• Or: Guarantees that if an event has started its execution every event
associated to in its Or set (ω) must be in 0.

• Finalstates: Guarantees that the the events which have a time unit less
than i have reached a final state, which means the maximum amount of
events, with ψ less than i, executed with all the restrictions stated before.
For technical definitions see B.3

3.10 Next

JNextP K , (C,W, λ, φ, ψ, β, ω) JP K = (A,X, λ1φ1, ψ1, β1, ω1)

C = E

W = X

λ(e) = λ1(e)

φ(e) =
{
⊥ if λ1(e) = ⊥
{(c, i′′)|(c, i′) ∈ φ1(e) ∧ i′′ = i′ + 1} otherwise

ψ(e) =
{
⊥ if λ1(e) = ⊥
ψ1(e) + 1 otherwise

β(e) = β1(e)

ω(e) = ω1(e)

3.11 Local

Jlocal x in P K , (C,W, λ, φ, ψ, β, ω) JP K = (A,X, λ1, φ1, ψ1, β1, ω1) where:

C = E

W = X

14

For all events e ∈ A λ(e) = ∃xλ(e)

φ(e) = φ1(e)

ψ(e) = ψ1(e)

β(e) = β1(e)

ω(e) = ω1(e)

4 Algorithm for recovering the store

i = max({i ∈ N |e ∈ {e ∈ A|λ(e) 6= ⊥ ∧ s(e) = 2} ∧ ψ(e) = i})
store = {}
for e ∈ {e ∈ A|λ(e) 6= ⊥ ∧ ψ(e) = i} do

if s(e) = 2 then
store = store ∪ {λ(e)}

else
store = store

end if
end for

5 Concluding Remarks and Future Work

The use of a new denotational semantics for NTCC based on Chu Spaces allows
us to give an alternative mathematical meaning to such a relevant language for
such important fields as biology, security, concurrency, constraint problems, etc.

Specifically, the use of Chu Spaces for representing each NTCC constructor
allows us to guarantee several intrinsic properties from the calculus as well as
another properties outside the language.

One of the essential features about using Chu Spaces for representing each con-
structor in NTCC is its versatily. We can use binary Chu Spaces and triadic
Chu Spaces for different porpuses and to vefiry different properties. By using
Chu Spaces with an arity of two we can guarantee interleaving and by using an
arity of three we can represent true concurrency.

The use of Chu Spaces gives NTCC another important benefit, its general-
ity, popularity and, of course, the amount of people who uses this particular
structure as the mathematical basis for different languages.

As a future work we propose several improvements.
As a short term aim we propound the possibility of establishing an equiva-

15

lence between our semantics based on Chu Spaces proposed in this report, with
NTCC’s own denotational semantics in such a way that we can guaratee the
importance and value of our work.

As mid term objectives we expect to use our same idea for representing a broader
language such as CPP.

References

[BHMR94] Francisco Bueno, Manuel V. Hermenegildo, Ugo Montanari, and
Francesca Rossi. From eventual to atomic locally atomic cc pro-
grams: A concurrent semantics. In ALP ’94: Proceedings of the
4th International Conference on Algebraic and Logic Programming,
pages 114–132, London, UK, 1994. Springer-Verlag.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun.
ACM, 21(8):666–677, 1978.

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1982.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus.
Cambridge University Press, New York, NY, USA, 1999.

[NV04] Mogens Nielsen and Frank D. Valencia. Notes on timed ccp. In
In 4th Advanced Course on Petri Nets ICPN03. LNCS. Springer-
Verlag, 2004.

[Pra] Vaughan Pratt. Introduction to chu spaces.

[Pra03] Vaughan R. Pratt. Transition and cancellation in concurrency and
branching time. Mathematical. Structures in Comp. Sci., 13(4):485–
529, 2003.

[Sar93] Vijay A. Saraswat. Concurrent constraint programming. MIT Press,
Cambridge, MA, USA, 1993.

[SJG94] Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Founda-
tions of timed concurrent constraint programming. In Proceedings of
the Ninth Annual IEEE Symposium on Logic in Computer Science,
pages 71–80. IEEE Computer Press, 1994.

[SR90] Vijay A. Saraswat and Martin Rinard. Concurrent constraint pro-
gramming. In POPL ’90: Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
232–245, New York, NY, USA, 1990. ACM.

16

[SRP91] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. The
semantic foundations of concurrent constraint programming. In
POPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 333–352,
New York, NY, USA, 1991. ACM.

[SRP95] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. Se-
mantic foundations of concurrent constraint programming. pages
283–302, 1995.

[Val01] Frank D. Valencia. Temporal concurrent constraint programming.
In CP ’01: Proceedings of the 7th International Conference on Prin-
ciples and Practice of Constraint Programming, page 786, London,
UK, 2001. Springer-Verlag.

[Win87] Glynn Winskel. Event structures. In Proceedings of an Advanced
Course on Petri Nets: Central Models and Their Properties, Ad-
vances in Petri Nets 1986-Part II, pages 325–392, London, UK,
1987. Springer-Verlag.

[Win89] Glynn Winskel. An introduction to event structures. In Linear
Time, Branching Time and Partial Order in Logics and Models for
Concurrency, School/Workshop, pages 364–397, London, UK, 1989.
Springer-Verlag.

17

Appendices

A True concurrency - Invalidating the interleav-
ing law

By means of a counter example it is very easy to show that with these semantics,
the interleaving law does not hold and so, true concurrency is guaranteed. In
this case we just use the triadic case, since the example is a lot shorter and
doing it with the tetradic is really straightforward. So, we now have:

∃a,b,c,d∈Aλ(a) = c1 ∧ λ(b) = c3 ∧ λ(c) = c2 ∧ λ(d) = c4
(c1 → tell(c2)‖(c3 → tell(c4))) = (c1 → (tell(c2)‖c3 → tell(c4))) + (c3 →

(tell(c4)‖c1 → tell(c2)))

We traslate the first part into the new semantics:

(c1 → (tell(c2)‖c3 → tell(c4)))

Obtained by:

c1 → tell(c2) :
a 0 1 2 2 2
c 0 0 0 1 2

c3 → tell(c4) :
b 0 1 2 2 2
d 0 0 0 1 2

and so we have:

c1 → tell(c2)‖c3 → tell(c4) :

a 0 1 2 2 2 0 1 2 2 2 0 0 0 1 1 1 2 2 2 2 2 2 2 2 2
b 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
c 0 0 0 1 2 0 0 0 1 2 0 0 0 0 0 0 0 1 2 0 0 1 1 2 2
d 0 0 0 0 0 0 0 0 0 0 0 1 2 0 1 2 0 0 0 1 2 1 2 1 2

On the other hand we have the second part which we translate into the new
semantics:

(c1 → (tell(c2)‖c3 → tell(c4))) + (c3 → (tell(c4)‖c1 → tell(c2)))

Obtained by

tell(c2)‖c3 → tell(c4) :
b 0 1 2 2 2 0 1 2 2 2 0 1 2 2 2
c 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2
d 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2

tell(c4)‖c1 → tell(c2) :
a 0 1 2 2 2 0 1 2 2 2 0 1 2 2 2
c 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2
d 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2

and

18

c1 → (tell(c2)‖c3 → tell(c4)) :

a 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
b 0 0 0 1 2 2 2 0 1 2 2 2 0 1 2 2 2
c 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2
d 0 0 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2

c3 → (tell(c4)‖c1 → tell(c2)) :

a 0 0 0 1 2 2 2 0 1 2 2 2 0 1 2 2 2
b 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
c 0 0 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2
d 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2

and so we have:

(c1 → (tell(c2)‖c3 → tell(c4))) + (c3 → (tell(c4)‖c1 → tell(c2))) :

a 0 1 2 2 2 0 2 2 2 0 0 0 1 1 1 2 2 2 2 2 2 2 2 2
b 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
c 0 0 0 1 2 0 0 1 2 0 0 0 0 0 0 0 1 2 0 0 1 1 2 2
d 0 0 0 0 0 0 0 0 0 0 1 2 0 1 2 0 0 0 1 2 1 2 1 2

Comparing the triadic Chu spaces representing the two sides of the equation
we can observe that there are not the same, but just. There is only one state
missing in the second Chu space compared to the first one. The state where
events a and b are occurring simultaneously (written in bold face). That is
enough to invalidate the interleaving law.

B Technical Definitions

B.1 Parallel Composition

JP‖QK , (C,W, λ, φ, ψ, β, ω) JP K = (A,X, λ1, φ1, ψ1, β1, ω1) JQK = (B, Y, λ2, φ2, ψ2, β2, ω2)

C = E

W = (
⋃
i∈{i∈N|(e∈{e∈A|λ1(e)6=⊥}∧i=ψ1(e))∨(e∈{e∈B|λ2(e)6=⊥}∧i=ψ2(e))}{w = w1 ∪ w2 ∪

w3 ∪ w4|w1 ∈ presentpast(P, i) ∧ w2 ∈ presentpast(Q, i) ∧ w3 = future(P, i) ∧
w4 = future(Q, i)∧ ask(P,Q,w)∧ ask(Q,P,w)∧ unless(P,Q,w)∧ unless(Q,P,w)∧
or(P,w)∧or(Q,w)∧finalstates(P,Q,w,w1, w2, w3, w4)})∪{e ∈ A|λ1(e) = ⊥}∩{e ∈
B|λ2(e) = ⊥}

where:

presentpast(P, i) = X ↓{e∈A|λ1(e) 6=⊥∧ψ1(e)≤i}

future(P, i) = {0}{e∈A|λ1(e)6=⊥∧ψ1(e)>i}

ask(P,Q,w) = ∀e∈{e∈A|λ1(e)6=⊥}.w(e) 6= 0⇒ ∀(c,i′)∈φ1(e).¬neg(c).((∃e′∈{e′′∈A|λ1(e′′)6=⊥∧ψ1(e)=i′}.λ1(e′) =
c ∧ w(e′) = 2) ∨ (∃e′∈{e′′∈B|λ2(e′′) 6=⊥∧ψ1(e)=i′}.λ2(e′) = c ∧ w(e′) = 2))

unless(P,Q,w) = ∀e∈{e∈A|λ1(e)6=⊥}.w(e) 6= 0⇒ ∀(c,i′)∈φ1(e).neg(c).((∀e′∈{e′′∈A|λ1(e′′)6=⊥∧ψ1(e)=i′}.λ1(e′) =
c ∧ w(e′) 6= 2) ∧ (∀e′∈{e′′∈B|λ2(e′′)6=⊥∧ψ1(e)=i′}.λ2(e′) = c ∧ w(e′) 6= 2))

19

or(P,w) = ∀e∈{e∈A|λ1(e) 6=⊥}.w(e) 6= 0⇒ ∀e′∈ω1(e)w(e′) = 0

finalstates(P,Q,w,w1, w2, w3, w4) = ∀w′=w1∪w2∪w3∪w4 .ask(P,Q,w′)∧ask(Q,P,w′)∧
unless(P,Q,w′)∧unless(Q,P,w′)∧or(P,w′)∧or(Q,w′).|{e ∈ C|(λ1(e) 6= ⊥∧ψ1(e) <
i)∨ (λ2(e) 6= ⊥∧ψ2(e) < i)∧w′(e) = 2}| ≤ |{e ∈ C|(λ1(e) 6= ⊥∧ψ1(e) < i)∨ (λ2(e) 6=
⊥ ∧ ψ2(e) < i) ∧ w(e) = 2}|

λ(e) =


λ1(e) if λ1(e) 6= ⊥
λ2(e) if λ2(e) 6= ⊥
⊥ otherwise

φ(e) =


φ1(e) if λ1(e) 6= ⊥
φ2(e) if λ2(e) 6= ⊥
⊥ otherwise

ψ(e) =


ψ1(e) if λ1(e) 6= ⊥
ψ2(e) if λ2(e) 6= ⊥
⊥ otherwise

β(e) =


β1(e) if λ1(e) 6= ⊥
β2(e) if λ2(e) 6= ⊥
⊥ otherwise

ω(e) =


ω1(e) if λ1(e) 6= ⊥
ω2(e) if λ2(e) 6= ⊥
⊥ otherwise

B.2 Unbounded finite delay

J?P K , (C,W, λ, φ, ψ, β, ω) JP K = (A,X, λ1, φ1, ψ1, β1, ω1)

C = E

W = X

Let i ∈ 1..∞, j ∈ 1..|{e ∈ A|λ1(e) 6= ⊥}|

Let e ∈ {e ∈ A|λ1(e) 6= ⊥}

Let ej ∈ {e ∈ A|λ1(e) 6= ⊥} and ∀j∈1..|{e∈A|λ1(e)6=⊥}|∀h∈1..|{e∈A|λ1(e)6=⊥}|−{j}.ej 6= eh

Let e′ij ∈ {e ∈ A|λ1(e) = ⊥} and ∀i∈1..∞∀j∈1..|{e∈A|λ1(e)6=⊥}|∀h∈1..∞−{i}∀k∈1..|{e∈A|λ1(e)6=⊥}|−{j}.e
′
ij 6=

e′hk ∧ e′ij 6= e′ik ∧ e′ij 6= e′hj

then

λ(e) = λ1(e)

φ(e) = φ1(e)

ψ(e) = ψ1(e)

20

β(e) = β1(e)

ω(e) = ω1(e) ∪ {e′jh ∈ {e ∈ A|λ1(e) = ⊥}|h ∈ 1..∞∧ j ∈ 1..|{e ∈ A|λ1(e) 6= ⊥}|}

λ(e′ij) = λ1(ej)

φ(e′ij) = φ1(ej)

ψ(e′ij) = ψ1(ej)

β(e′ij) = (ej , i)

ω(e′ij) = β−1(ω1(ej), i) ∪ {e′jh ∈ {e ∈ A|λ1(e) = ⊥}|h ∈ 1..∞ − {i} ∧ j ∈ 1..|{e ∈
A|λ1(e) 6= ⊥}|} ∪ {e ∈ A|λ1(e) 6= ⊥}

B.3 Replication

J!P K , (C,W.λ, φ, ψ, β, ω) JP K = (A,X, λ1φ1, ψ1, β1, ω1)

C = E

Let i ∈ 1..∞, j ∈ 1..|{e ∈ A|λ1(e) 6= ⊥}|

Let e ∈ {e ∈ A|λ1(e) 6= ⊥}

Let ej ∈ {e ∈ A|λ1(e) 6= ⊥} and ∀j∈1..|{e∈A|λ1(e)6=⊥}|∀h∈1..|{e∈A|λ1(e)6=⊥}|−{j}.ej 6= eh

Let e′ij ∈ {e ∈ A|λ1(e) = ⊥} and ∀i∈1..∞∀j∈1..|{e∈A|λ1(e)6=⊥}|∀h∈1..∞−{i}∀k∈1..|{e∈A|λ1(e)6=⊥}|−{j}.e
′
ij 6=

e′hk ∧ e′ij 6= e′ik ∧ e′ij 6= e′hj

then

λ(e) = λ1(e)

φ(e) = φ1(e)

ψ(e) = ψ1(e)

β(e) = β1(e)

ω(e) = ω1(e)

λ(e′ij) = λ1(ej)

φ(e′ij) = φ1(ej)

ψ(e′ij) = ψ1(ej)

β(e′ij) = (ej , i)

21

ω(e′ij) = β−1(ω1(e), i)

W = (
⋃
i∈{i∈N|(e∈{e∈A|λ1(e)6=⊥}∧i=ψ1(e))∨(e∈{e∈B|λ2(e)6=⊥}∧i=ψ2(e))}{w = w1 ∪ w2|w1 ∈

presentpast(i)∧w2 = future(i)∧ask(w)∧ask(w)∧or(w)∧finalstates(w,w1, w2)})∪
{e ∈ A|λ1(e) = ⊥}}

where:

presentpast(i) = {x ∈ 3C |e ∈ C ∧ λ(e) 6= ⊥ ∧ ψ(e) ≤ i}

future(i) = {0}{e∈C|λ(e)6=⊥∧ψ(e)>i}

ask(w) = ∀e∈{e∈C|λ(e)6=⊥}.w(e) 6= 0⇒ ∀(c,i′)∈φ(e).¬neg(c).∃e′∈{e′′∈C|λ(e′′)6=⊥∧ψ(e)=i′}.λ(e′) =
c ∧ w(e′) = 2

unless(w) = ∀e∈{e∈C|λ(e) 6=⊥}.w(e) 6= 0⇒ ∀(c,i′)∈φ(e).neg(c).∀e′∈{e′′∈C|λ(e′′)6=⊥∧ψ(e)=i′}.λ(e′) =
c ∧ w(e′) 6= 2

or(w) = ∀e∈{e∈C|λ(e)6=⊥}.w(e) 6= 0⇒ ∀e′∈ω(e)w(e′) = 0

finalstates(w,w1, w2) = ∀w′=w1∪w2 .ask(w′) ∧ unless(w′) ∧ or(w′).|{e ∈ C|λ(e) 6=
⊥ ∧ ψ(e) < i ∧ w′(e) = 2}| ≤ |{e ∈ C|λ(e) 6= ⊥ ∧ ψ(e) < i) ∧ w(e) = 2}|

C Some examples

C.1 tell(c)

∃a∈E .λ(a) = c: a 0 1 2 λ : a 7→ c, φ : a 7→ {},
ψ : a 7→ 1, β : a 7→ ⊥,
ω : a 7→ {}

C.2 when c then do tell(c′)

∃a∈E .λ(a) = c ∧ ∃b∈E .λ(b) = c′:
a 0 1 2 2 2
b 0 0 0 1 2

λ : b 7→ c′, a 7→ ⊥

φ : b 7→ (c, 1), a 7→ ⊥
ψ : b 7→ 1, a 7→ ⊥
β : b 7→ ⊥, a 7→ ⊥
ω : b 7→ {}, a 7→ ⊥

C.3 tell(c) + tell(c′)

∃a∈E .λ(a) = c ∧ ∃b∈E .λ(b) = c′:
a 0 0 0 1 2
b 0 1 2 0 0

λ : b 7→ c′, a 7→ c

φ : b 7→ {}, a 7→ {}
ψ : b 7→ 1, a 7→ 1
β : b 7→ ⊥, a 7→ ⊥
ω : b 7→ {a}, a 7→ {b}

22

C.4 tell(c)‖Next tell(c′)

∃a∈E .λ(a) = c ∧ ∃b∈E .λ(b) = c′:
a 0 1 2 2 2
b 0 0 0 1 2

λ : b 7→ c′, a 7→ c

φ : b 7→ {}, a 7→ {}
ψ : b 7→ 2, a 7→ 1
β : b 7→ ⊥, a 7→ ⊥
ω : b 7→ {}, a 7→ {}

C.5 unless c then do tell(c′)

{a, a′} = {e ∈ E|λ(e) = c} ∧ ∃b∈E .λ(b) = c′:

a 0 0 0 0 0 1 1 1 2 2 2
a′ 0 0 0 1 2 0 1 2 0 1 2
b 0 1 2 0 0 0 0 0 0 0 0

λ : a 7→ ⊥, a′ 7→ ⊥, b 7→ c′

φ : a 7→ ⊥, a′ 7→ ⊥, b 7→ {}
ψ : a 7→ ⊥, a′ 7→ ⊥, b 7→ 1
β : a 7→ ⊥, a′ 7→ ⊥, b 7→ ⊥
ω : a 7→ ⊥, a′ 7→ ⊥, 7→ {}

C.6 Next Next tell(c)

∃a∈E .λ(a) = c: a 0 1 2 λ : a 7→ c, φ : a 7→ {},
ψ : a 7→ 3, β : a 7→ ⊥,
ω : a 7→ {}

23

