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1. Zigzags in polyhedra

1.1. Definition. A zigzag in a polyhedron is a sequence of vertices {xi}i∈N satisfying the fol-
lowing conditions:

(1) xi, xi+1 are distinct vertices on a certain edge,
(2) xi, xi+1, xi+2 are mutually distinct and there is the unique face containing them,
(3) the faces containing xi, xi+1, xi+2 and xi+1, xi+2, xi+3 are distinct.

Examples:

Remark. Zigzags are cyclic sequences of vertices: if {xi}i∈N is a zigzag, then there is n such
that xn+i = xi for every i. The smallest n > 0 satisfying this condition is called the length of
the zigzag.
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1.2. Historical remark. Zigzags in regular polytopes are called Petrie polygons.
See Coxeter’s book Regular polytopes.

The Petrie polygons in Platonic solids (red):
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1.3. Example: a 3-gonal bipyramid.
a

b

1 2

3

There is the unique zigzag:
a12b31a23

b12a31b23
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1.4. A polyhedron is called z-knotted if it contains the unique zigzag.

Example: Every n-gonal bipyramid is z-knotted if n is odd.
Let 1, . . . , n be the vertices of the n-gon. If n = 3, then the unique zigzag is

a12b31a23

b12a31b23.
a

b

1 2

3

If n = 5, then the unique zigzag is

a12b34a51b23a45

b12a34b51a23b45.
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1.5. Two types of edges in z-knotted polyhedra.

a b

b′ a′

x y
e

Suppose that the unique zigzag goes from x to y, i.e. it is a sequence of type a, x, y, a′, . . . .
There are the following two possibilities:

(1) the zigzag is a, x, y︸︷︷︸
→

, a′, . . . , b, y, x︸︷︷︸
←

, b′, . . . and passes through the edge e twice in different

directions.
(2) the zigzag is a, x, y︸︷︷︸

→

, a′, . . . , b′, x, y︸︷︷︸
→

, b, . . . and passes through the edge e twice in the

same direction.

We say that the edge e is of first or second type, respectively.
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Example: an n-gonal bypiramid, n is odd.
If n = 3, then the unique zigzag is

a12b31a23b12a31b23
a

b

1 2

3

The edges ai and bi, i ∈ {1, 2, 3} are of first type.
The edges 12, 23, 13 are of second type.
The same holds for every odd n.
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2. z-knotted triangulations

We consider a triangulation of a closed surface (not necessarily orientable) and suppose that
this triangulation is z-knotted.

2.1. Two types of faces in z-knotted triangulations. Let Γ be a z-knotted triangulation.

Lemma 1. For every face of Γ one of the following possibilities is realized:

• it is a (1, 1, 2)-face, i.e. there are two edges of first type and one edge of second type;
• it is a (2, 2, 2)-face, i.e. all edges are of second type.

Example: all faces in the n-gonal bypiramid (n is odd) are (1, 1, 2)-faces.
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2.2. (2, 2, 2)-faces. Let F be a (2, 2, 2)-face in Γ whose vertices are x, y, z.

y z

x

The zigzag contains the sequences x, y, z and y, z, x and z, x, y,
and there are only the following two possibilities for the zigzag:

(1) x, y, z, . . . , z, x, y, . . . , y, z, x, . . . ,
(2) x, y, z, . . . , y, z, x, . . . , z, x, y, . . . .

There are z-knotted triangulations containing (2,2,2)-faces of first type.

Problem. Are there (2, 2, 2)-faces of second type?
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2.3. The connected sum of triangulations. Let Γ and Γ′ be triangulations.
Let F and F ′ be faces in Γ and Γ′, respectively.
Let also g be a bijection between vertices of F and F ′.

The connected sum Γ#gΓ
′ is the triangulation is obtained as follows:

• we remove the interiors of F and F ′ from Γ and Γ′, respectively,
• every vertex x ∈ F is identified with the vertex g(x) ∈ F ′.

Example: the connected sum of two tetrahedrons is a 3-gonal bipyramid.
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Example: one of the possible connected sums of two 3-gonal bypiramids

It is z-knotted and contains two (2, 2, 2)-faces of first type (formed the vertices with big dots).
There are connected sums of two 3-gonal bypiramids which are not z-knotted.
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2.4. Connected sums of z-knotted triangulations. Suppose that Γ and Γ′ are z-knotted
triangulations.
As above, F and F ′ are faces in Γ and Γ′, respectively.

Theorem 1 (M.P., Adam Tyc). The following assertions are fulfilled:

(1) If both F and F ′ are not (2, 2, 2)-faces of second type, then there is a bijection g between
vertices of F and F ′ such that the connected sum Γ#gΓ

′ is z-knotted.
(2) If F is a (2, 2, 2)-face of first type, then for every bijection g between vertices of F and

F ′ the connected sum Γ#gΓ
′ is z-knotted.

(3) Suppose that F is a (2, 2, 2)-face of second type and the connected sum Γ#gΓ
′ is z-

knotted. Then F ′ is a (2, 2, 2)-face of first type or a (1, 1, 2)-face of special type.
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2.5. Deza conjecture.

Conjecture (M. Deza). In any z-knotted triangulation the number of edges of second type is
even.

This holds trivially for an n-gonal bipyramid (n is odd).

Theorem 2 (M.P., Adam Tyc). If a z-knotted triangulation is the connected sum of B1, . . . , Bt

where every Bi is a ni-gonal bipyramid and ni is odd, then Deza conjecture holds for this
triangulation.
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3. Zigzags and distances between facets in simplicial complexes

Let ∆ be an n-dimensional polytope whose facets are (n− 1)-simplices.
Interesting examples:

• Coxeter complexes,
• nested complexes.

A zigzag in ∆ is a sequence of vertices {xi}i∈N satisfying the following conditions:

(1) xi, xi+1, . . . , xi+n−1 form a facet,
(2) the facets containing xi, . . . , xi+n−1 and xi+1, . . . , xi+n are distinct.
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3.1. Graph of facets. The graph Γ(∆): the vertices are facets of ∆, two facets X, Y are
adjacent vertices if X ∩ Y is (n− 2)-face.

Let X, Y be facets.
The distance d(X, Y ) between X, Y is the smallest number of edge in a path joining X with

Y in Γ(∆).
A path joining X with Y is geodesic if it contains precisely d(X, Y ) edges.

Let Z = {xi}i∈N be a zigzag of length t.
Denote by Xi the facet containing xi, . . . , xi+n−1.
The sequence X1, . . . , Xt is a closed path in Γ(∆), it is called the shadow of Z.

Question. For each pair of facets X, Y there is a geodesic joining X with Y and contained in
the shadow of a zigzag?
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Example: the cross-polytope βn.

The vertices are
1, . . . , n,−1, . . . ,−n.

X ⊂ {±1, . . . ,±n} is a face if for every i ∈ X we have −i ∈ X.
The graph Γ(βn) is the hypercube graph Qn.
If X, Y are facets, then

d(X, Y ) = n− dim(X ∩ Y )− 1.

Every geodesic is contained in the shadow of a zigzag.
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In the general cases, for any two facets X, Y of ∆ we have

d(X, Y ) ≥ n− dim(X ∩ Y )− 1.

d(A,B) = 3 and dim(A ∩B) = 0.
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3.2. Distance normal pairs. Let X, Y be facets of ∆.

The case d(X, Y ) ≤ n.
We say that X, Y is a distance normal pair if

d(X, Y ) = n− dim(X ∩ Y )− 1.

In this case, every geodesic connecting X, Y is called distance normal.
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The case d(X, Y ) > n.

d(A,B) = 5 and A ∩B = ∅.

X, Y is a distance normal pair if there is a geodesic

X = X0, X1, . . . , Xt = Y

such that d(Xi, Xj) ≤ n implies that Xi, Xj is a distance normal pair.
Every such geodesic is called distance normal.

Remark. If d(X, Y ) > n and X, Y is a distance normal pair, then we cannot state that every
geodesic joining X with Y is distance normal.
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Simple fact: If Z is a simple zigzag (i.e. without self-intersections),
then every geodesic contained in the shadow of Z is distance normal.

Theorem 3 (M. Deza, M.P.). Every distance normal geodesic is contained in the shadow of a
zigzag.


