ZIGZAGS IN TRIANGULATIONS AND SIMPLICIAL COMPLEXES

Mark Pankov (University of Warmia and Mazury, Olsztyn)

1 Zigzags in polyhedra.

- $2\,$ Z-knotted triangulations.
- 3 Zigzags and distances between facets in simplicial complexes.

1. ZIGZAGS IN POLYHEDRA

1.1. **Definition.** A *zigzag* in a polyhedron is a sequence of vertices $\{x_i\}_{i \in \mathbb{N}}$ satisfying the following conditions:

(1) x_i, x_{i+1} are distinct vertices on a certain edge,

(2) x_i, x_{i+1}, x_{i+2} are mutually distinct and there is the unique face containing them,

(3) the faces containing x_i, x_{i+1}, x_{i+2} and $x_{i+1}, x_{i+2}, x_{i+3}$ are distinct.

Examples:

Remark. Zigzags are cyclic sequences of vertices: if $\{x_i\}_{i\in\mathbb{N}}$ is a zigzag, then there is n such that $x_{n+i} = x_i$ for every i. The smallest n > 0 satisfying this condition is called the *length* of the zigzag.

1.2. **Historical remark.** Zigzags in regular polytopes are called *Petrie polygons*. See Coxeter's book *Regular polytopes*.

The Petrie polygons in Platonic solids (red):

1.3. Example: a 3-gonal bipyramid.

There is the unique zigzag:

a12b31a23 b12a31b23 **1.4.** A polyhedron is called *z*-*knotted* if it contains the unique zigzag.

Example: Every *n*-gonal bipyramid is *z*-knotted if *n* is odd. Let $1, \ldots, n$ be the vertices of the *n*-gon. If n = 3, then the unique zigzag is

a12b31a23b12a31b23.

If n = 5, then the unique zigzag is

a12b34a51b23a45b12a34b51a23b45. 1.5. Two types of edges in z-knotted polyhedra.

Suppose that the unique zigzag goes from x to y, i.e. it is a sequence of type a, x, y, a', \ldots . There are the following two possibilities:

(1) the zigzag is $a, \underbrace{x, y}_{\rightarrow}, a', \ldots, b, \underbrace{y, x}_{\leftarrow}, b', \ldots$ and passes through the edge e twice in different

directions.

(2) the zigzag is $a, \underbrace{x, y}_{\rightarrow}, a', \ldots, b', \underbrace{x, y}_{\rightarrow}, b, \ldots$ and passes through the edge e twice in the

same direction.

We say that the edge e is of *first* or *second type*, respectively.

Example: an *n*-gonal bypiramid, n is odd. If n = 3, then the unique zigzag is

a12b31a23b12a31b23

The edges ai and bi, $i \in \{1, 2, 3\}$ are of first type. The edges 12, 23, 13 are of second type. The same holds for every odd n.

2. *z*-knotted triangulations

We consider a triangulation of a closed surface (not necessarily orientable) and suppose that this triangulation is z-knotted.

2.1. Two types of faces in z-knotted triangulations. Let Γ be a z-knotted triangulation.

Lemma 1. For every face of Γ one of the following possibilities is realized:

- *it is a* (1,1,2)-*face, i.e. there are two edges of first type and one edge of second type;*
- *it is a* (2,2,2)-*face, i.e. all edges are of second type.*

Example: all faces in the *n*-gonal bypiramid (*n* is odd) are (1, 1, 2)-faces.

2.2. (2,2,2)-faces. Let F be a (2,2,2)-face in Γ whose vertices are x, y, z.

The zigzag contains the sequences x, y, z and y, z, x and z, x, y, and there are only the following two possibilities for the zigzag:

(1) $x, y, z, \dots, z, x, y, \dots, y, z, x, \dots,$ (2) $x, y, z, \dots, y, z, x, \dots, z, x, y, \dots$

There are z-knotted triangulations containing (2,2,2)-faces of first type.

Problem. Are there (2, 2, 2)-faces of second type?

2.3. The connected sum of triangulations. Let Γ and Γ' be triangulations. Let F and F' be faces in Γ and Γ' , respectively. Let also g be a bijection between vertices of F and F'.

The connected sum $\Gamma \#_g \Gamma'$ is the triangulation is obtained as follows:

- we remove the interiors of F and F' from Γ and Γ' , respectively,
- every vertex $x \in F$ is identified with the vertex $g(x) \in F'$.

Example: the connected sum of two tetrahedrons is a 3-gonal bipyramid.

Example: one of the possible connected sums of two 3-gonal bypiramids

It is z-knotted and contains two (2, 2, 2)-faces of first type (formed the vertices with big dots). There are connected sums of two 3-gonal bypiramids which are not z-knotted.

2.4. Connected sums of *z***-knotted triangulations.** Suppose that Γ and Γ' are *z*-knotted triangulations.

As above, F and F' are faces in Γ and Γ' , respectively.

Theorem 1 (M.P., Adam Tyc). The following assertions are fulfilled:

- (1) If both F and F' are not (2,2,2)-faces of second type, then there is a bijection g between vertices of F and F' such that the connected sum $\Gamma \#_{q}\Gamma'$ is z-knotted.
- (2) If F is a (2,2,2)-face of first type, then for every bijection g between vertices of F and F' the connected sum $\Gamma \#_q \Gamma'$ is z-knotted.
- (3) Suppose that F is a (2,2,2)-face of second type and the connected sum Γ#_gΓ' is z-knotted. Then F' is a (2,2,2)-face of first type or a (1,1,2)-face of special type.

2.5. Deza conjecture.

Conjecture (M. Deza). In any z-knotted triangulation the number of edges of second type is even.

This holds trivially for an n-gonal bipyramid (n is odd).

Theorem 2 (M.P., Adam Tyc). If a z-knotted triangulation is the connected sum of B_1, \ldots, B_t where every B_i is a n_i -gonal bipyramid and n_i is odd, then Deza conjecture holds for this triangulation.

3. ZIGZAGS AND DISTANCES BETWEEN FACETS IN SIMPLICIAL COMPLEXES

Let Δ be an *n*-dimensional polytope whose facets are (n-1)-simplices. Interesting examples:

- Coxeter complexes,
- nested complexes.

A zigzag in Δ is a sequence of vertices $\{x_i\}_{i\in\mathbb{N}}$ satisfying the following conditions:

- (1) $x_i, x_{i+1}, ..., x_{i+n-1}$ form a facet,
- (2) the facets containing x_i, \ldots, x_{i+n-1} and x_{i+1}, \ldots, x_{i+n} are distinct.

3.1. Graph of facets. The graph $\Gamma(\Delta)$: the vertices are facets of Δ , two facets X, Y are adjacent vertices if $X \cap Y$ is (n-2)-face.

Let X, Y be facets.

The distance d(X, Y) between X, Y is the smallest number of edge in a path joining X with Y in $\Gamma(\Delta)$.

A path joining X with Y is *geodesic* if it contains precisely d(X, Y) edges.

Let $Z = \{x_i\}_{i \in \mathbb{N}}$ be a zigzag of length t. Denote by X_i the facet containing x_i, \ldots, x_{i+n-1} . The sequence X_1, \ldots, X_t is a closed path in $\Gamma(\Delta)$, it is called the *shadow* of Z.

Question. For each pair of facets X, Y there is a geodesic joining X with Y and contained in the shadow of a zigzag?

Example: the cross-polytope β_n .

The vertices are

 $1,\ldots,n,-1,\ldots,-n.$

 $X \subset \{\pm 1, \ldots, \pm n\}$ is a face if for every $i \in X$ we have $-i \in X$. The graph $\Gamma(\beta_n)$ is the hypercube graph Q_n . If X, Y are facets, then

$$d(X,Y) = n - \dim(X \cap Y) - 1.$$

Every geodesic is contained in the shadow of a zigzag.

In the general cases, for any two facets X, Y of Δ we have

 $d(X,Y) \ge n - \dim(X \cap Y) - 1.$

$$d(A, B) = 3$$
 and $\dim(A \cap B) = 0$.

3.2. Distance normal pairs. Let X, Y be facets of Δ .

The case $d(X, Y) \leq n$. We say that X, Y is a *distance normal pair* if

$$d(X,Y) = n - \dim(X \cap Y) - 1.$$

In this case, every geodesic connecting X, Y is called *distance normal*.

The case d(X, Y) > n.

d(A, B) = 5 and $A \cap B = \emptyset$.

X, Y is a *distance normal pair* if there is a geodesic

$$X = X_0, X_1, \dots, X_t = Y$$

such that $d(X_i, X_j) \leq n$ implies that X_i, X_j is a distance normal pair. Every such geodesic is called *distance normal*.

Remark. If d(X, Y) > n and X, Y is a distance normal pair, then we cannot state that every geodesic joining X with Y is distance normal.

Simple fact: If Z is a simple zigzag (i.e. without self-intersections), then every geodesic contained in the shadow of Z is distance normal.

Theorem 3 (M. Deza, M.P.). Every distance normal geodesic is contained in the shadow of a zigzag.