Génération aléatoire d'automates non-déterministes intéressants

Julien David, Cyril Nicaud

Laboratoire d'Informatique de Paris Nord

Mercredi 14 décembre 2016

Dutomates finis

Automates finis

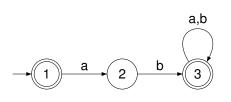
Définition

Un automate A est un quintuplet $< Q, \Sigma, I, F, T > où :$

- Q est un ensemble d'états,
- Σ est un alphabet fini,
- $I \subseteq Q$ est l'ensemble des états initiaux,
- $F \subseteq Q$ est l'ensemble des états finals,
- $T \subseteq Q \times \Sigma \times Q$ est l'ensemble des transitions.

Automates finis

Un automate finis à *n* états sur un alphabet à *k* lettres.



- Ensemble d'états :
 - $Q = \{1, 2, 3, 4\}$
- Alphabet : $\Sigma = \{a, b\}$
- Ensemble d'états initiaux : {1}
- Ensemble d'états terminaux :F = {1,3}
- Langage reconnu par l'automate : L = ε + a.b.Σ*

Automates finis et langages rationnels

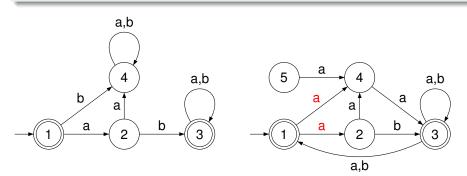
Propriétés

- Les automates sont des machines à états finis reconnaissant les langages rationnels.
- Les langages rationnels sont les langages obtenus à partir
 - d'un alphabet fini,
 - de l'ensemble vide et du mot vide ε ,
 - l'union,
 - le produit de concaténation
 - l'étoile de Kleene : $X^* = \bigcup_{n>0} X^n$
- Les langages rationnels sont également clos par intersection, par complémentaire

Automates déterministes

Déterministe

Un automate est déterministe s'il contient au plus un état initial et si pour tout état $q \in Q$ et toute lettre $a \in \Sigma$, il existe au plus un état $p \in Q$ telle que $(q, a, p) \in T$.



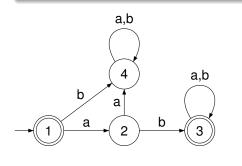
Automate déterministe

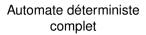
Automate non-déterministe

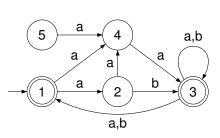
Automates complets

Complet

Un automate est complet si pour tout état $q \in Q$ et toute lettre $a \in \Sigma$, il existe au mois un état $p \in Q$ telle que $(q, a, p) \in T$.







Automate non-déterministe incomplet

Automates déterministes complets

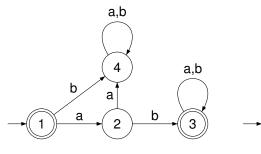
Énumération

- Un automate déterministe complet à *n* états sur un alphabet à *k* lettres à exactement *kn* transitions.
- Le nombre d'automates déterministes complets à n états est $n^{kn}2^n$.
- En comparaisons, le nombre d'automates à n états est 2^{kn^2+2n} .

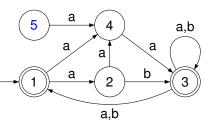
Automates accessibles

Accessible

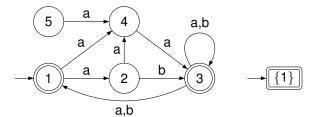
Un automate est accessible si pour tout état $q \in Q$ il existe un chemin qui part de l'état initial et qui passe par q.

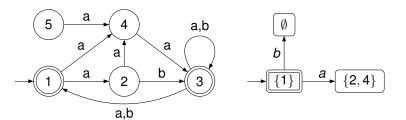


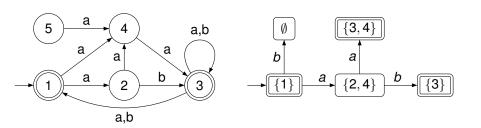
Automate déterministe accessible complet

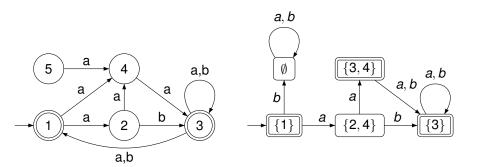


Automate non-déterministe non-accessible incomplet



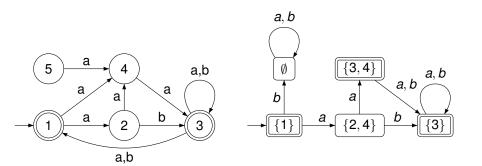






Régulta:

- L'automate obtenu est déterministe accessible complet.
- Son nombre d'états peut être exponentiel dans celui de l'automate d'entrée.



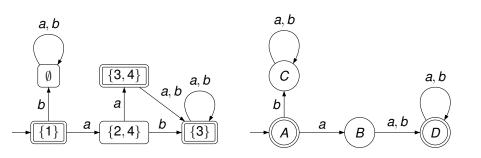
Résultat

- L'automate obtenu est déterministe accessible complet.
- Son nombre d'états peut être exponentiel dans celui de l'automate d'entrée.

Automates minimaux

- Pour un langage rationnel donné, il existe une infinité d'automates finis reconnaissant ce langage.
- Pour tout langage rationnel, il existe un unique automate déterministe accessible complet qui reconnaît ce langage, tel que le nombre d'état est minimal.
 - On parle de l'automate minimal du langage.
- La taille de l'automate minimal est une bonne notion de taille pour un langage rationnel. On parle de complexité en états.

Automates minimaux



Automate déterminisé

Automate minimal

Le langage reconnu est l'ensemble des mots de longueur au moins 2 commençant par a (plus le mot vide).

Génération aléatoire d'objets combinatoires

Objet combinatoire

Un objet combinatoire est un ensemble $\mathcal O$ muni d'une fonction de taille telle que le nombre d'objets d'une taille donnée est fini.

Génération aléatoire d'objets combinatoires

- Un générateur aléatoire est un algorithme permettant d'engendrer des objets combinatoires en suivant une distribution de probabilités préalablement fixée.
- Le plus souvent, l'objectif sera de garantir la distribution uniforme.

Génération aléatoire d'objets combinatoires

Objet combinatoire

Un objet combinatoire est un ensemble \mathcal{O} muni d'une fonction de taille telle que le nombre d'objets d'une taille donnée est fini.

Génération aléatoire d'objets combinatoires

- Un générateur aléatoire est un algorithme permettant d'engendrer des objets combinatoires en suivant une distribution de probabilités préalablement fixée.
- Le plus souvent, l'objectif sera de garantir la distribution uniforme.

Génération aléatoire d'objets combinatoires

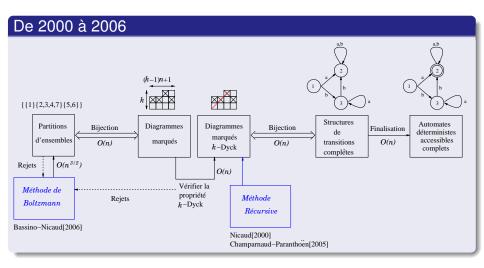
Pourquoi faire?

- Étudier les propriétés moyennes ou génériques des objets engendrés.
- Étudier le comportement moyen des algorithmes qui s'y appliquent.

État de l'art

Génération aléatoire d'automates déterministes accessibles complets.

Génération aléatoire d'automates déterministes : les algorithmes



Algorithme de Carayol-Nicaud

Théorème (Carayol-Nicaud 2012)

Pour la distribution uniforme sur l'ensemble des automates déterministes complets à n états sur un alphabet de taille k, la distribution de la taille de la partie accessible tends vers une loi Gausienne centrée en α_k n $(\alpha_k = 1 + \frac{1}{k}W_0(-ke^{-k}))$ et d'écart-type $\sigma_k\sqrt{n}$.

Corollaire

- Les auteurs engendrent des automates déterministes complets de taille $\frac{n}{\alpha_k}$ et gardent la partie accessible si celle ci est de taille n. Sinon l'automate est rejeté et on recommence.
- La complexité moyenne de cette méthode est $\Theta(n\sqrt{n})$.

Algorithme de Carayol-Nicaud

Théorème (Carayol-Nicaud 2012)

Pour la distribution uniforme sur l'ensemble des automates déterministes complets à n états sur un alphabet de taille k, la distribution de la taille de la partie accessible tends vers une loi Gausienne centrée en α_k n $(\alpha_k = 1 + \frac{1}{k}W_0(-ke^{-k}))$ et d'écart-type $\sigma_k\sqrt{n}$.

Corollaire

- Les auteurs engendrent des automates déterministes complets de taille $\frac{n}{\alpha_k}$ et gardent la partie accessible si celle ci est de taille n. Sinon l'automate est rejeté et on recommence.
- La complexité moyenne de cette méthode est $\Theta(n\sqrt{n})$.

Algorithme de Carayol-Nicaud

Théorème (Carayol-Nicaud 2012)

Pour la distribution uniforme sur l'ensemble des automates déterministes complets à n états sur un alphabet de taille k, la distribution de la taille de la partie accessible tends vers une loi Gausienne centrée en α_k n $(\alpha_k = 1 + \frac{1}{k}W_0(-ke^{-k}))$ et d'écart-type $\sigma_k\sqrt{n}$.

Berend-Kontorovich 2016

Les auteurs obtiennent un résultat moins précis, mais en utilisant une méthode probabiliste.

• Les auteurs montrent que la probabilité que la taille de la partie accessible ne soient pas dans l'intervalle $[\alpha_k n - \sqrt{n} \log n, \alpha_k n + \sqrt{n} \log n]$ est en $\Theta(\frac{1}{n^k})$

Génération aléatoire d'automates déterministes : quelques résultats

Complexité pire cas des algorithmes de minimisation

Sur les automates déterministes accessibles complets :

- Algorithme de Moore $\mathcal{O}(n^2)$
- Algorithme de Hopcroft $\mathcal{O}(n \log n)$

Sur n'importe quel automate :

• Algorithme de Brzozowski $\mathcal{O}(n2^n)$

Complexité moyenne/générique des algorithmes de minimisation

- Bassino-D-Nicaud (2009) : algorithme de Moore $\mathcal{O}(n \log n)$
- D. (2011) : algorithme de Moore et de Hopcroft en $\mathcal{O}(n \log \log n)$
- Nicaud-De Felice (2016): algorithme de Brzozowski Ω(n^{log n})

Génération aléatoire d'automates déterministes : quelques résultats

Complexité pire cas des algorithmes de minimisation

Sur les automates déterministes accessibles complets :

- Algorithme de Moore $\mathcal{O}(n^2)$
- Algorithme de Hopcroft $\mathcal{O}(n \log n)$

Sur n'importe quel automate :

• Algorithme de Brzozowski $\mathcal{O}(n2^n)$

Complexité moyenne/générique des algorithmes de minimisation

- Bassino-D-Nicaud (2009) : algorithme de Moore $\mathcal{O}(n \log n)$
- D. (2011) : algorithme de Moore et de Hopcroft en $\mathcal{O}(n \log \log n)$
- Nicaud-De Felice (2016): algorithme de Brzozowski Ω(n^{log n})

État de l'art

Génération aléatoire d'automates non-déterministes.

Modèles aléatoires d'automates non-déterministes

Intérêts

- Les automates non-déterministes permettent de représenter des langages dont la complexité en états est exponentiellement plus grande.
- l'étude de l'algorithme de déterminisation, central en théorie des automates.

Précision : dans tout ce qui va suivre, les automates auront un unique état initial, l'état 1.

Un résutat négatif

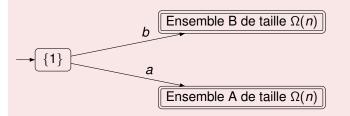
Champarnaud, Hansel, Paranthoën, Ziadi (2004) : le déterminisé d'un automate aléatoire à n états sur un alphabet à k lettres a presque sûrement moins de k+2 états.

Un résultat négatif : l'idée

- la distribution uniforme sur les automates à n états sur un alphabet à k lettres signifie que chaque automate est tiré avec probabilité $\frac{1}{2kn^22n}$
- ullet cela revient à tirer chaque transition/triplet $(p,a,q)\in \mathcal{T}$ avec probabilité $\frac{1}{2}$
- et de décider si un état est final avec probabilité $\frac{1}{2}$.
- le nombre de transition sortant d'un état p étiquetté par une lettre a est presque surement supérieure à $\frac{n}{2} \sqrt{n}$.

Autrement dit, on tire $n \times k \times n$ variables aléatoires i.i.d selon une loi de Bernouilli de paramètre $\frac{1}{2}$ et n variables i.i.d selon une loi de Bernouilli de paramètre $\frac{1}{2}$

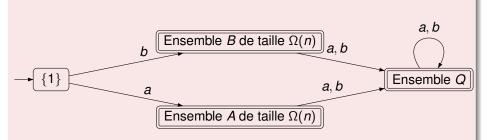
Un résutat négatif : l'idée



Presque sûrement, on a:

- les états A et B sont finals.
- $|A \setminus B| = \Omega(n)$ et $|B \setminus A| = \Omega(n)$

Un résutat négatif : l'idée

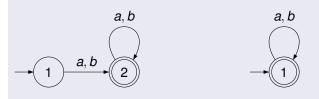


Presque sûrement, on a :

les transitions sortantes des états A et B arrivent dans Q

Autrement dit

La distribution uniforme sur les automates de taille n produit presque sûrement soit automate reconnaissant le langage Σ^+ , soit celui reconnaissant Σ^* , représentables par :



Étude expérimentale

Vardi, Tabakov (2005): les auteurs utilisent le modèle suivant.

- un unique état initial,
- chaque transition (p, a, q) est ajoutée dans l'automate avec probabilité $\frac{\rho}{n}$
- chaque état est final avec probabilité ¹/₂ OU on tire un unique état aléatoirement.
- on reste uniforme parmi les automates à *n* états et *m* transitions.

Résultat

La taille moyenne de l'automate déterminisé est supérieure à *n* lorsque

$$\rho \in [1, \ldots, 2]$$

Étude expérimentale

Vardi, Tabakov (2005): les auteurs utilisent le modèle suivant.

- un unique état initial,
- chaque transition (p, a, q) est ajoutée dans l'automate avec probabilité $\frac{\rho}{\eta}$
- chaque état est final avec probabilité ¹/₂ OU on tire un unique état aléatoirement.
- on reste uniforme parmi les automates à *n* états et *m* transitions.

Résultat

La taille moyenne de l'automate déterminisé est supérieure à *n* lorsque

$$\rho \in [1, \dots, 2]$$

Un premier générateur

Héam, Joly (2016) : les auteurs définissent une chaîne de Markov sur l'ensemble des automates non-déterministes, non-isomorphes à n états et m transitions.

Problèmes

- malgré un temps de mélange rapide, le coût d'une marche aléatoire est très élévé à cause du calcul d'un étiquetage canonique.
- les auteurs ne dépassent pas les automates de taille 10 expérimentalement.

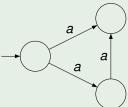
- Partir du modèle des kn^2 variables i.i.d de paramètre $\rho \in [1..2]$ semble plus efficace d'un point de vue algorithmique.
- Question : garantir que l'on tire des automates non-isomorphes est il intéressant du point de vue de la déterminisation ?
- Cela revient à engendrer des automates canoniques.

Génération uniforme à isomorphisme près : une bonne idée ?

Considérons deux matrices binaires encodant les transitions sortantes étiquettées par *a*.

0	1	1
0	0	1 0 1
0	0	1

Ces deux matrices encodent le même automate canonique (sans automorphisme)



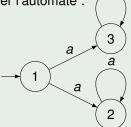
Génération uniforme à isomorphisme près : une bonne idée ?

а

A l'inverse, la matrice

0	1	1
0	1	0 1
0 0 0	0	1 0 1

est la seule à encoder l'automate :



pour lequel on a l'automorphisme suivant : (1,3,2)

Génération à isomorphisme près

Engendrer des automates à isomorphisme près signifie donner plus de poids aux automates possédant des automorphismes.

Définition

Deux états p et q d'un automate sont dits permutables s'il existe un automorphisme σ tel que $\sigma(p) = q$ et $\sigma(q) = p$.

Plus précisément, soit $\mathcal P$ la partition d'ensemble induite par la relation "être permutable". Le nombre de matrices associées à un automate canonique est :

$$\frac{(n-1)!}{\prod_{P\in\mathcal{P}}|P|!}$$

Définition

Deux états p et q d'un automate sont dits permutables s'il existe un automorphisme σ tel que $\sigma(p) = q$ et $\sigma(q) = p$.

Lemma

Soit $N = \langle Q, \Sigma, I, F, T \rangle$ un automate non-déterministe.

Pour tout $p, q \in Q$ tel que p et q sont permutables, pour tout état P du déterminisé $det(\mathcal{N})$, on a

$$p \in P \iff q \in P$$

Génération aléatoire d'automates non-déterministes : des modèles intéressants

Un modèle intéressant pour la génération aléatoire doit

• permettre d'obtenir des automates drastiquement plus petits que leur déterminisé

et garantit que :

- les automates sont accessibles.
- le nombre d'états permutables est borné.

Premier modèle

- Partons de la distribution utilisée par Vardi pour $1 \le \rho \le 2$.
- On souhaite estimer la distribution de la taille de la partie accesssible Acc_{n.k.o}.
 - On montre que celle ci est inférieure à n/2 avec une probabilité constante
 - On montre que si $|Acc_{n,k,\rho}| > \frac{n}{2}$, on a $\mathbb{P}\left(|Acc_{n,k,\rho}| \beta_{\rho,k}n > k\sqrt{n}\log n\right) = \Theta\left(\frac{1}{n^k}\right)$ $(\beta_k = 1 + \frac{1}{k\rho}W_0(-k\rho e^{-k\rho}))$

$\mathbb{P}\left(|\mathit{Acc}_{n,k, ho}|<rac{n}{2} ight)$

On majore la probabilité que la partie accessible soit de taille x+1 comme suit :

$$\binom{n-1}{x} \left(1 - \left(1 - \frac{\rho}{n}\right)^{kx}\right)^x \left(1 - \frac{\rho}{n}\right)^{k(x+1)(n-x-1)}$$

Quelques calculs plus tard...

Pour k = 2 et $\rho = 1$, on a :

$$\sum_{x=0}^{\frac{n}{2}} \mathbb{P}\left(|Acc_{n,k,\rho}| = x\right) < 0.5$$

La somme décroit lorsque ρ ou k augmentent.

$\mathbb{P}\left(|\mathit{Acc}_{n,k, ho}|<rac{n}{2} ight)$

On majore la probabilité que la partie accessible soit de taille x+1 comme suit :

$$\binom{n-1}{x} \left(1 - \left(1 - \frac{\rho}{n}\right)^{kx}\right)^{x} \left(1 - \frac{\rho}{n}\right)^{k(x+1)(n-x-1)}$$

Quelques calculs plus tard...

Pour k = 2 et $\rho = 1$, on a :

$$\sum_{\kappa=0}^{\frac{n}{2}} \mathbb{P}\left(|\textit{Acc}_{n,k,\rho}| = \kappa\right) < 0.5$$

La somme décroit lorsque ρ ou k augmentent.

Cas où $|Acc_{n,k,\rho}| \geq \frac{n}{2}$

Berend et Kontorovitch utilisent un processus aléatoire. On les imites. On effectue un parcours en largeur des états p de la partie accessible et leur transition sortante dans l'ordre alphabétique. Soit ν_t le nombre d'états accessibles après avoir observé tous les t premiers couples (p,a). Dans notre cas :

$$u_t = \nu_{t-1} + x, \text{ avec probabilité } \binom{n - \nu_{t-1}}{x} \frac{\rho^x}{n} \left(1 - \frac{\rho}{n}\right)^{n - \nu_{t-1} - x}$$

où *k* est la taille de l'alphabet.

Si la taille de la partie accessible est x, alors $\nu_{kx+1} = x$

On cherche à estimer la plus petite valeur de t pour laquelle $\nu_t \leq \frac{t-1}{k}$.

Cas où $|Acc_{n,k,\rho}| \geq \frac{n}{2}$

- On a $\mathbb{E}\nu_t = n(1 (1 \frac{\rho}{n})^t)$
- on pose $F(t) = \mathbb{E}\nu_t \frac{t-1}{k}$
- $\mathbb{P}(|Acc_{n,k,\rho}| \in [x,y]) \le \sum_{t=x}^{y} \mathbb{P}(\nu_t \mathbb{E}\nu_t \le -F(t))$
- On utilise l'inégalité de Chernoff :

$$\mathbb{P}(\nu_t - \mathbb{E}\nu_t \le -F(t)) \le e^{-2\frac{F(t)^2}{t}}$$

- pour k = 2 et $\rho = 1$, on montre que $\frac{F(t)^2}{t} \ge \log^2 n$.
- on obtient que $\mathbb{P}(|Acc_{n,k,\rho}| \in [\frac{n/2}{\gamma}\beta_{\rho,k}n k\sqrt{n}\log n]) \leq \Theta\left(\frac{1}{n^2}\right)$.

Algorithm 1: Random accessible NFA (smart) algorithm

```
Input: Nombre d'états n, alphabet \Sigma à k lettres, une probabilité \frac{\rho}{n}, 1 \le \rho \le 2
   Output: Un automate accesssible \mathcal{N} = \langle Q, I, F, T, \Sigma \rangle à n états
 1 cn \leftarrow \frac{n}{\beta};
 2 répéter
       \mathcal{N} \leftarrow créer un automate à cn états:
        Choisir les états terminaux selon le modèle aléatoire:
       pour i \in \{1, \ldots, n\} faire
            pour a \in \Sigma faire
                 outdegree \leftarrow Poisson(\rho);
                 pour j \in \{1, \dots, outdegre\} faire
                     répéter
                          arrival ← nombre aléatoire entre 1 et n;
                     jusqu'à (i, a, arrival) \in T;
                     Ajouter la transition (i, a, arrival) dans T;
13 jusqu'à Acc ne contient pas n states ;
14 Acc \leftarrow \text{partie accessible de } \mathcal{N}:
```

10

11

12

15 return Acc;

Généralisation

Généralisation

Il est possible d'adapter la méthode de preuve précédente en utilisant d'autres loi de probabilité à la place de la loi de Poisson. Il suffit que cette loi vérifie que :

- le nombre moyen de transitions sortantes d'un état est égal à $1 + \varepsilon$.
- $\mathbb{E}\nu_t$ est telle que l'on puisse montrer facilement que $\frac{F(t)^2}{t} \geq \log^2 n$.

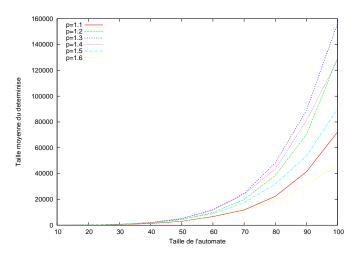
Arnaque!

Et le nombre d'états permutables ???

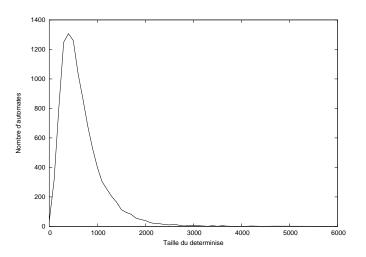
- On peut montrer qu'il existe une proportion constante d'états permutables
- la constante est petite donc l'influence n'apparaît pas sur les simulations, où un automate de taille 1000 contient expérimentalement moins de 2 états permutables.

Résultats expérimentaux : Loi de Poisson

Évolution de la taille moyenne du déterminisé pour k = 2.



Résultats expérimentaux : Loi de Poisson



Déterminisation de 10.000 automates de taille 30.

Résultats expérimentaux : Loi géométrique

Évolution de la taille moyenne du déterminisé pour k = 2.

