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The Geometric Problem
Let P be a set of n points in the plane.

I Plane Graph (on P): A set of pairwise non-crossing
straight-line edges with endpoints in P .

I Perfect Matching: A 1-regular plane graph on P .
I Triangulation: An edge-maximal plane graph on P .

P

Question: How many are there?

pm(P)tr(P)convex position≈ 2n≈ 4n double circle≈ 2n≈ 3.464nEasy to analyze because of unavoidable edgesdouble chain≈ 3n≈ 8n

Theorem (Sharir, Welzl 06)
The number of plane perfect matchings on any P is at most 10.05n.

Theorem (Asinowski, Rote 15)
There are sets of n points with at least 3.093n plane perfect
matchings.

Theorem (Sharir, Sheffer 11)
The number of triangulations on any P is at most 30n.

Theorem (Dumitrescu, Schulz, Sheffer, Tóth 11)
There are sets of n points with at least 8.65n triangulations.
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Trapezoidal Diagrams

Trapezoidal Diagram:

I Augment plane graph with its trapezoidal decomposition.
I Discard all geometric information.

→

Intuition: Every edge knows the order of vertices that it sees
above, and the order of vertices that it sees below, but not more.
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The Roadmap

I Step 1: Calculate the number of diagrams.

n 0 2 4 6 8 10 12 . . .

# 1 1 5 42 462 6006 87516 . . .

n 0 2 4 6 8 10 12 . . .

# 1 1 5 42 462 6006 87516 . . .

I Step 2: Bound the number of embeddings.

→
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3-dimensional Catalan Numbers
Let C (3)

k be the k-th 3-dimensional Catalan number.

I Interpretation 1: Standard Young Tableaux of shape 3× k .

1 2 4

3 5 6

1 3 5

2 4 6

1 2 5

3 4 6

1 3 4

2 5 6

1 2 3

4 5 6

C
(3)
k = 2(3k)!

(k+2)!·(k+1)!·k! ∼
√

3
π
k−4 · 27k .

I Interpretation 2: Balanced bracket expressions with k
symbols of each of 〈, |, and 〉.

〈|〈〉|〉 〈〈||〉〉 〈|〈|〉〉 〈〈|〉|〉 〈|〉〈|〉

I Interpretation 3: Trapezoidal diagrams (of perfect
matchings) with n = 2k points.
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Bijection from Diagrams to Bracket Expressions

I Enumerate trapezoids “bottom-up” and “left-to-right”.
I Associate each trapezoid with edge that defines right boundary.
I Apply simple substitution rule.

1

2

3
4

5
6

7

8
9

1

2

3
4

5
6

7

8
9

7→ ?

〈|〈〈〉||〉〉

Simple Rule:

〈 = | = 〉 =
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Mapping from Bracket Expression to Trap. Diagram
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Number of Diagrams of Perfect Matchings

Theorem
The number of trapezoidal diagrams of perfect matchings over
n = 2k points is

C
(3)
k ≈ 5.196n.

Theorem
There is a set P of n points and a trapezoidal diagram with
approximately 1.071n embeddings on P .

Theorem (Sharir, Welzl 06)
The number of plane perfect matchings on any set of n points is at
most 10.05n.

Theorem (Asinowski, Rote 15)
There are sets of n points with at least 3.093n plane perfect
matchings.
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The Roadmap

I Step 1: Calculate the number of diagrams.

n 2 3 4 5 6 7 8 . . .

# 1 1 2 12 107 1178 14805 . . .

I Step 2: Bound the number of embeddings.



Injection from Diagrams to Bracket Expressions

I Enumerate trapezoids “bottom-up” and “left-to-right”.
I Associate trapezoids with vertex that defines vertical boundary.
I Apply simple substitution rule.
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Number of Diagrams of Triangulations

Theorem
The number of trapezoidal diagrams of triangulations (a.k.a.
upward triangulations) over n = k + 2 points is

P
(3)
k ≈ 23.459n.

Theorem
There is a set P of n points and a trapezoidal diagram with
approximately 1.059n embeddings on P .

Theorem (Tutte 62)
The number of abstract maximal planar graphs (a.k.a.
triangulations) on n vertices is approximately 9.481n.

Theorem (Sharir, Sheffer 11)
The number of triangulations on any set of n points is at most 30n.

Theorem (Dumitrescu, Schulz, Sheffer, Tóth 11)
There are sets of n points with at least 8.65n triangulations.
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Prime Catalan Numbers
Observation
Each balanced bracket expression c can be written as a unique
combination of an expression p of size s without balanced
subexpressions, and an ordered sequence of 3s expressions
c1, . . . , c3s .

c = 〈〈|〉|〈〈|〉〉|〈|〈|〉〉〉〈|〉c = 〈 〈|〉 |〈 〈|〉 〉| 〈|〈|〉〉 〉 〈|〉

p = 〈|〈〉|〉 c1 = 〈|〉 c2 = ε c3 = 〈|〉
s = 2 c4 = ε c5 = 〈|〈|〉〉 c6 = 〈|〉

C (x) :=
∞∑
k=0

C
(3)
k xk , P(x) :=

∞∑
k=0

P
(3)
k xk .

Lemma
The power series defined above satisfy

C (x) = P(xC (x)3).
Proof.

C (x) =
∑
c

x |c| =
∑
p

∑
c1,...,c3s
s=|p|

x |p|+|c1|+···+|c3s | = P(xC (x)3)
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c1,...,c3s
s=|p|

x |p|+|c1|+···+|c3s | = P(xC (x)3)



Asymptotics
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C
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k=0

P
(3)
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Lemma
The power series defined above satisfy

C (x) = P(xC (x)3).

I Experiments suggest that P(3)
k ∼ αk−4 · βk where

α ≈ 0.268 β = 27 ·

(
729
√
3

40π
− 9

)−3

≈ 23.459

Theorem
The radius of convergence of P(x) is 1/β, and the following limit
exists

lim
k→∞

k

√
P
(3)
k = β.
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Questions?


