Trapezoidal Diagrams, Upward Triangulations, and Prime Catalan Numbers

Manuel Wettstein

ETH Zürich

December 6, 2016

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let P be a set of n points in the plane.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Let P be a set of n points in the plane.

Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let P be a set of n points in the plane.

- Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.
- ▶ Perfect Matching: A 1-regular plane graph on *P*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Let P be a set of n points in the plane.

- Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.
- ▶ **Perfect Matching:** A 1-regular plane graph on *P*.
- **• Triangulation:** An edge-maximal plane graph on *P*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Let P be a set of n points in the plane.

- Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.
- ▶ **Perfect Matching:** A 1-regular plane graph on *P*.
- **• Triangulation:** An edge-maximal plane graph on *P*.

Question: How many are there?

ション ふゆ く 山 マ チャット しょうくしゃ

Let P be a set of n points in the plane.

- Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.
- ▶ **Perfect Matching:** A 1-regular plane graph on *P*.
- **• Triangulation:** An edge-maximal plane graph on *P*.

・ロト ・雪 ・ ミート ・ ヨー うらつ

Let P be a set of n points in the plane.

- Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.
- ▶ **Perfect Matching:** A 1-regular plane graph on *P*.
- **• Triangulation:** An edge-maximal plane graph on *P*.

・ロト ・雪 ・ ミート ・ ヨー うらつ

Let P be a set of n points in the plane.

- Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.
- ▶ **Perfect Matching:** A 1-regular plane graph on *P*.
- **• Triangulation:** An edge-maximal plane graph on *P*.

Let P be a set of n points in the plane.

- Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.
- ▶ Perfect Matching: A 1-regular plane graph on *P*.
- **• Triangulation:** An edge-maximal plane graph on *P*.

Easy to analyze because of unavoidable edges

Let P be a set of n points in the plane.

- Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.
- **Perfect Matching:** A 1-regular plane graph on *P*.
- **• Triangulation:** An edge-maximal plane graph on *P*.

Theorem (Sharir, Welzl 06)

The number of plane perfect matchings on any P is at most 10.05^n .

ション ふゆ く 山 マ チャット しょうくしゃ

Let P be a set of n points in the plane.

- Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.
- **Perfect Matching:** A 1-regular plane graph on *P*.
- **• Triangulation:** An edge-maximal plane graph on *P*.

Theorem (Sharir, Welzl 06)

The number of plane perfect matchings on any P is at most 10.05^n . Theorem (Asinowski, Rote 15)

ション ふゆ く 山 マ チャット しょうくしゃ

There are sets of *n* points with at least 3.093^n plane perfect matchings.

Let P be a set of n points in the plane.

- Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.
- ▶ **Perfect Matching:** A 1-regular plane graph on *P*.
- **Triangulation:** An edge-maximal plane graph on *P*.

Theorem (Sharir, Welzl 06)

The number of plane perfect matchings on any P is at most 10.05^n . Theorem (Asinowski, Rote 15)

There are sets of *n* points with at least 3.093^n plane perfect matchings.

Theorem (Sharir, Sheffer 11)

The number of triangulations on any P is at most 30^n .

Let P be a set of n points in the plane.

- Plane Graph (on P): A set of pairwise non-crossing straight-line edges with endpoints in P.
- **Perfect Matching:** A 1-regular plane graph on *P*.
- **• Triangulation:** An edge-maximal plane graph on *P*.

Theorem (Sharir, Welzl 06)

The number of plane perfect matchings on any P is at most 10.05^n . Theorem (Asinowski, Rote 15)

There are sets of *n* points with at least 3.093^n plane perfect matchings.

Theorem (Sharir, Sheffer 11)

The number of triangulations on any P is at most 30^n .

Theorem (Dumitrescu, Schulz, Sheffer, Tóth 11)

There are sets of n points with at least 8.65^n triangulations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Trapezoidal Diagram:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Trapezoidal Diagram:

Augment plane graph with its trapezoidal decomposition.

イロト イポト イヨト イヨト

ж

Trapezoidal Diagram:

- Augment plane graph with its trapezoidal decomposition.
- Discard all geometric information.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Trapezoidal Diagram:

- Augment plane graph with its trapezoidal decomposition.
- Discard all geometric information.

Intuition: Every edge knows the order of vertices that it sees above, and the order of vertices that it sees below, but not more.

Trapezoidal Diagram:

- Augment plane graph with its trapezoidal decomposition.
- Discard all geometric information.

Intuition: Every edge knows the order of vertices that it sees above, and the order of vertices that it sees below, but not more.

Step 1: Calculate the number of diagrams.

Step 1: Calculate the number of diagrams.

n	0	2	4	6	8	10	12	
#	1	1	5	42	462	6006	87516	

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Step 1: Calculate the number of diagrams.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Step 1: Calculate the number of diagrams.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Step 2: Bound the number of embeddings.

Step 1: Calculate the number of diagrams.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

= 900

Step 2: Bound the number of embeddings.

Step 1: Calculate the number of diagrams.

Step 2: Bound the number of embeddings.

Let $C_k^{(3)}$ be the *k*-th 3-dimensional Catalan number.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Let $C_k^{(3)}$ be the *k*-th 3-dimensional Catalan number.

• Interpretation 1: Standard Young Tableaux of shape $3 \times k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $C_k^{(3)}$ be the *k*-th 3-dimensional Catalan number.

• Interpretation 1: Standard Young Tableaux of shape $3 \times k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $C_k^{(3)}$ be the *k*-th 3-dimensional Catalan number.

• Interpretation 1: Standard Young Tableaux of shape $3 \times k$.

► Interpretation 2: Balanced bracket expressions with k symbols of each of 〈, |, and 〉.

 $\langle | \langle \rangle | \rangle \qquad \langle \langle | \rangle \rangle \qquad \langle | \langle | \rangle \rangle \qquad \langle \langle | \rangle | \rangle \qquad \langle | \rangle \langle | \rangle \langle | \rangle \rangle$

Let $C_k^{(3)}$ be the *k*-th 3-dimensional Catalan number.

• Interpretation 1: Standard Young Tableaux of shape $3 \times k$.

► Interpretation 2: Balanced bracket expressions with k symbols of each of 〈, |, and 〉.

 $\langle | \langle \rangle | \rangle \qquad \langle \langle | \rangle \rangle \qquad \langle | \langle | \rangle \rangle \qquad \langle | \rangle | \rangle \qquad \langle | \rangle | \rangle$

Interpretation 3: Trapezoidal diagrams (of perfect matchings) with n = 2k points.

Enumerate trapezoids "bottom-up" and "left-to-right".

Enumerate trapezoids "bottom-up" and "left-to-right".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Enumerate trapezoids "bottom-up" and "left-to-right".

・ロト ・ 日本 ・ 日本 ・ 日本

Enumerate trapezoids "bottom-up" and "left-to-right".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Enumerate trapezoids "bottom-up" and "left-to-right".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・
Enumerate trapezoids "bottom-up" and "left-to-right".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Enumerate trapezoids "bottom-up" and "left-to-right".

Enumerate trapezoids "bottom-up" and "left-to-right".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Enumerate trapezoids "bottom-up" and "left-to-right".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Enumerate trapezoids "bottom-up" and "left-to-right".

- Enumerate trapezoids "bottom-up" and "left-to-right".
- Associate each trapezoid with edge that defines right boundary.

- Enumerate trapezoids "bottom-up" and "left-to-right".
- Associate each trapezoid with edge that defines right boundary.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

- Enumerate trapezoids "bottom-up" and "left-to-right".
- Associate each trapezoid with edge that defines right boundary.

・ロト ・個ト ・ヨト ・ヨト

3

Apply simple substitution rule.

- Enumerate trapezoids "bottom-up" and "left-to-right".
- Associate each trapezoid with edge that defines right boundary.
- Apply simple substitution rule.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Enumerate trapezoids "bottom-up" and "left-to-right".
- Associate each trapezoid with edge that defines right boundary.
- Apply simple substitution rule.

 $\langle |\langle \langle \rangle || \rangle \rangle \quad \mapsto \qquad ?$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Go over symbols and reconstruct diagram using the simple rule.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$\langle |\langle \langle \rangle || \rangle \rangle \quad \mapsto \qquad ?$

• Go over symbols and reconstruct diagram using the simple rule.

$$\langle |\langle \langle \rangle || \rangle \rangle \mapsto ?$$

Simple Rule:

(ロ) (型) (E) (E) (E) (O)

• Go over symbols and reconstruct diagram using the simple rule.

Simple Rule:

• Go over symbols and reconstruct diagram using the simple rule.

Simple Rule:

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

= 900

• Go over symbols and reconstruct diagram using the simple rule.

Simple Rule:

• Go over symbols and reconstruct diagram using the simple rule.

Simple Rule:

• Go over symbols and reconstruct diagram using the simple rule.

Simple Rule:

• Go over symbols and reconstruct diagram using the simple rule.

Simple Rule:

• Go over symbols and reconstruct diagram using the simple rule.

Simple Rule:

• Go over symbols and reconstruct diagram using the simple rule.

Simple Rule:

• Go over symbols and reconstruct diagram using the simple rule.

Simple Rule:

• Go over symbols and reconstruct diagram using the simple rule.

Simple Rule:

Number of Diagrams of Perfect Matchings

Theorem

The number of trapezoidal diagrams of perfect matchings over n = 2k points is

 $C_k^{(3)}\approx 5.196^n.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Number of Diagrams of Perfect Matchings

Theorem

The number of trapezoidal diagrams of perfect matchings over n = 2k points is

$$C_k^{(3)} \approx 5.196^n.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem

There is a set P of n points and a trapezoidal diagram with approximately 1.071^n embeddings on P.

Number of Diagrams of Perfect Matchings

Theorem

The number of trapezoidal diagrams of perfect matchings over n = 2k points is

$$C_k^{(3)} \approx 5.196^n.$$

Theorem

There is a set P of n points and a trapezoidal diagram with approximately 1.071^n embeddings on P.

Theorem (Sharir, Welzl 06)

The number of plane perfect matchings on any set of n points is at most 10.05^n .

(ロ) (型) (E) (E) (E) (O)

Theorem (Asinowski, Rote 15)

There are sets of *n* points with at least 3.093^n plane perfect matchings.

Trapezoidal Diagram (of triangulation):

Trapezoidal Diagram (of triangulation):

Trapezoidal Diagram (of triangulation):

Trapezoidal Diagram (of triangulation):

Trapezoidal Diagram (of triangulation):

Remark: Abstract upward triangulations correspond to 1 or 2 diagrams.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

The Roadmap

Step 1: Calculate the number of diagrams.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Step 2: Bound the number of embeddings.

 \mapsto

?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Enumerate trapezoids "bottom-up" and "left-to-right".

 \mapsto

?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- ► Enumerate trapezoids "bottom-up" and "left-to-right".
- Associate trapezoids with vertex that defines vertical boundary.

 \mapsto

?

- ► Enumerate trapezoids "bottom-up" and "left-to-right".
- Associate trapezoids with vertex that defines vertical boundary.
- Apply simple substitution rule.

Injection from Diagrams to Bracket Expressions

- ► Enumerate trapezoids "bottom-up" and "left-to-right".
- Associate trapezoids with vertex that defines vertical boundary.
- Apply simple substitution rule.

 $\langle = 2 \rangle = 2 \rangle = 2 \rangle$

うして ふゆう ふほう ふほう うらつ

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Prime Catalan Numbers: Let P⁽³⁾_k be the number of bracket expressions which do not contain any bracket expressions as subsequences.

Theorem

The number of trapezoidal diagrams of triangulations (a.k.a. upward triangulations) over n = k + 2 points is

 $P_k^{(3)}\approx 23.459^n.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem

The number of trapezoidal diagrams of triangulations (a.k.a. upward triangulations) over n = k + 2 points is

 $P_k^{(3)}\approx 23.459^n.$

うして ふゆう ふほう ふほう うらつ

Theorem

There is a set P of n points and a trapezoidal diagram with approximately 1.059^n embeddings on P.

Theorem

The number of trapezoidal diagrams of triangulations (a.k.a. upward triangulations) over n = k + 2 points is

 $P_k^{(3)}\approx 23.459^n.$

うして ふゆう ふほう ふほう うらつ

Theorem

There is a set P of n points and a trapezoidal diagram with approximately 1.059^n embeddings on P.

Theorem (Tutte 62)

The number of abstract maximal planar graphs (a.k.a. triangulations) on n vertices is approximately 9.481ⁿ.

Theorem

The number of trapezoidal diagrams of triangulations (a.k.a. upward triangulations) over n = k + 2 points is

 $P_k^{(3)}\approx 23.459^n.$

Theorem

There is a set P of n points and a trapezoidal diagram with approximately 1.059^n embeddings on P.

Theorem (Tutte 62)

The number of abstract maximal planar graphs (a.k.a. triangulations) on n vertices is approximately 9.481ⁿ.

Theorem (Sharir, Sheffer 11)

The number of triangulations on any set of n points is at most 30^n .

Theorem (Dumitrescu, Schulz, Sheffer, Tóth 11) There are sets of *n* points with at least 8.65^n triangulations.

Observation

Each balanced bracket expression c can be written as a unique combination of an expression p of size s without balanced subexpressions, and an ordered sequence of 3s expressions c_1, \ldots, c_{3s} .

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Observation

Each balanced bracket expression c can be written as a unique combination of an expression p of size s without balanced subexpressions, and an ordered sequence of 3s expressions c_1, \ldots, c_{3s} .

 $c = \left\langle \left\langle \left| \right\rangle \right| \left\langle \left\langle \left| \right\rangle \right\rangle \right| \left\langle \left| \left\langle \left| \right\rangle \right\rangle \right\rangle \left\langle \left| \right\rangle \right\rangle \right\rangle \left\langle \left| \right\rangle \right\rangle$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Observation

Each balanced bracket expression c can be written as a unique combination of an expression p of size s without balanced subexpressions, and an ordered sequence of 3s expressions c_1, \ldots, c_{3s} .

$$c = \left\langle \left\langle \left\langle \right\rangle \right\rangle \left| \left\langle \left\langle \right\rangle \right\rangle \right\rangle \left| \left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle \left\langle \left\langle \right\rangle \right\rangle \right\rangle \left\langle \left\langle \right\rangle \right\rangle \right\rangle$$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Observation

Each balanced bracket expression c can be written as a unique combination of an expression p of size s without balanced subexpressions, and an ordered sequence of 3s expressions c_1, \ldots, c_{3s} .

$$c = \left\langle \left\langle \left| \right\rangle \right\rangle \left| \left\langle \left\langle \left| \right\rangle \right\rangle \right\rangle \right\rangle \left\langle \left| \left\langle \left| \right\rangle \right\rangle \right\rangle \left\langle \left| \right\rangle \right\rangle$$
$$p = \left\langle \left| \left\langle \right\rangle \right\rangle \right\rangle \quad c_1 = \left\langle \left| \right\rangle \quad c_2 = \varepsilon \qquad c_3 = \left\langle \left| \right\rangle \\ s = 2 \qquad c_4 = \varepsilon \qquad c_5 = \left\langle \left| \left\langle \left| \right\rangle \right\rangle \right\rangle \quad c_6 = \left\langle \left| \right\rangle \right\rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Observation

Each balanced bracket expression c can be written as a unique combination of an expression p of size s without balanced subexpressions, and an ordered sequence of 3s expressions c_1, \ldots, c_{3s} .

$$C(x) \coloneqq \sum_{k=0}^{\infty} C_k^{(3)} x^k, \qquad P(x) \coloneqq \sum_{k=0}^{\infty} P_k^{(3)} x^k.$$

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Observation

Each balanced bracket expression c can be written as a unique combination of an expression p of size s without balanced subexpressions, and an ordered sequence of 3s expressions c_1, \ldots, c_{3s} .

$$C(x) \coloneqq \sum_{k=0}^{\infty} C_k^{(3)} x^k, \qquad P(x) \coloneqq \sum_{k=0}^{\infty} P_k^{(3)} x^k.$$

Lemma

The power series defined above satisfy

 $C(x) = P(xC(x)^3).$

うして ふゆう ふほう ふほう うらつ

Observation

Each balanced bracket expression c can be written as a unique combination of an expression p of size s without balanced subexpressions, and an ordered sequence of 3s expressions c_1, \ldots, c_{3s} .

$$C(x) \coloneqq \sum_{k=0}^{\infty} C_k^{(3)} x^k, \qquad P(x) \coloneqq \sum_{k=0}^{\infty} P_k^{(3)} x^k.$$

Lemma

The power series defined above satisfy

$$C(x) = P(xC(x)^3).$$

Proof.

$$C(x) = \sum_{c} x^{|c|} = \sum_{p} \sum_{\substack{c_1, \dots, c_{3s} \\ s = |p|}} x^{|p| + |c_1| + \dots + |c_{3s}|} = P(xC(x)^3)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Asymptotics

$$C(x) \coloneqq \sum_{k=0}^{\infty} C_k^{(3)} x^k, \qquad P(x) \coloneqq \sum_{k=0}^{\infty} P_k^{(3)} x^k.$$

Lemma

The power series defined above satisfy

 $C(x) = P(xC(x)^3).$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Asymptotics

$$C(x) \coloneqq \sum_{k=0}^{\infty} C_k^{(3)} x^k, \qquad P(x) \coloneqq \sum_{k=0}^{\infty} P_k^{(3)} x^k.$$

Lemma

The power series defined above satisfy

 $C(x) = P(xC(x)^3).$

• Experiments suggest that $P_k^{(3)} \sim \alpha k^{-4} \cdot \beta^k$ where

$$\alpha \approx 0.268$$
 $\beta = 27 \cdot \left(\frac{729\sqrt{3}}{40\pi} - 9\right)^{-3} \approx 23.459$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Asymptotics

$$C(x) \coloneqq \sum_{k=0}^{\infty} C_k^{(3)} x^k, \qquad P(x) \coloneqq \sum_{k=0}^{\infty} P_k^{(3)} x^k.$$

Lemma

The power series defined above satisfy

 $C(x) = P(xC(x)^3).$

• Experiments suggest that $P_k^{(3)} \sim \alpha k^{-4} \cdot \beta^k$ where

$$\alpha \approx 0.268$$
 $\beta = 27 \cdot \left(\frac{729\sqrt{3}}{40\pi} - 9\right)^{-3} \approx 23.459$

Theorem

The radius of convergence of P(x) is $1/\beta$, and the following limit exists $\sqrt{-(2)}$

くし (1) (

Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?