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Absorption probabilities for the SRW on N
1—-p p
-——>
r—1 00— —0—0—0—>
0 i—1 0 i+1
Probability a(/) := P;[3n > 0 : SRW S(n) = 0] satisfies
> a(0) =1 ~ initial condition
> a(i)=p-a(i+1)+(1—-p)-a
1 if p<

Solution a(/) = { (PTP)I. it p>

Definition: f harmonic if L[f](x) = 0 for all x in a region C Z¢

LIFI(x) = D pILF(x +y) = F(x)},

yenN

—~~

i — 1) ~ recurrence

Nl NI

with set of neighbors N C Z9 and weights p = {P(Y)}yezd

> Multivariate linear recurrences with constant coefficients
X Bousquet-Mélou & Petkoviek '00



{History of /Questions on} preharmonic functions (1/2)

Classical (continuous) harmonic functions in RY
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AIFI) =D 5

=0

i=1
> Possibility of adding weights ~ elliptic operators
> Harmonic functions satisfy various properties: maximum
principle/mean value property/Harnack inequalities/Liouville's
theorem/relations with analytic functions/etc.
> Examples of application: Heat equation/Dirichlet
problem /Poisson’s equation/more general PDEs/etc.
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Classical (continuous) harmonic functions in RY

4. 92f(x)

AIFI) =D 5

=0

i=1

> Possibility of adding weights ~ elliptic operators
> Harmonic functions satisfy various properties: maximum
principle/mean value property/Harnack inequalities/Liouville's
theorem/relations with analytic functions/etc.
> Examples of application: Heat equation/Dirichlet
problem /Poisson’s equation/more general PDEs/etc.

Do preharmonic functions satisfy similar properties?
> Dirichlet problem % Phillips & Wiener '23; Bouligand '25
> Harnack inequalities ® Lawler & Polaski '92; Varopoulos '99

> Maximum principle, Liouville’s theorem & related topics
> Heilbronn '48
> Cauchy-Riemann equations % Duffin '55; Kiselman '05-'08



{History of /Questions on} preharmonic functions (2/2)
Further properties
> Rate of growth & Murdoch '63-'65; Ignatiuk-Robert '10

> Picard’s theorem (sign of harmonic functions) & factorization
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> Absolute monotonicity @ Lippner & Mangoubi '15
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Further properties
> Rate of growth & Murdoch '63-'65; Ignatiuk-Robert '10
> Picard’s theorem (sign of harmonic functions) & factorization
& Murdoch '63-'65
> Absolute monotonicity @ Lippner & Mangoubi '15
Preharmonic & harmonic functions

> Relations between discrete & continuous harmonic functions
@ Lusternik '26; Ferrand '44: Kesten '91: Varopoulos '09

Probability theory models
> Ising models % Mercat '01; Smirnov '10
> Conformal invariance of lattice models © Duminil-Copin & Smirnov '12
Special discrete functions
> Conformal mappings @ Ferrand '44; Isaacs '52

> Discrete harmonic polynomials & discrete exponential functions
D Terracini '45-'46; Heilbronn '48; Isaacs '52; Duffin '55; Duffin & Peterson '68

Potential theory

> Martin boundary
Q> Woess '92; Kurkova & Malyshev '98; Ignatiuk-Robert & Loree '10; Mustapha '15
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Warning: lattice walk enum. vs. preharmonic functions
Multivariate recurrence relations in both cases

> q(ni,j) = #we{(0,0) — (i.))}
> q(n+1;i,j)=
q(n;i—1,))+q(n; i +1,))+q(ni,j—1)+q(n;i,j+1)
(Caloric functions)
> f(i.Jj) =
: S HFG— L)+ F(+ 1)+ (. — 1)+ f(i.j+1)}
e e (Preharmonic functions)

Main differences & difficulties

> A unique solution vs. an unknown (< co) number of solutions

> Consequence: guess and prove techniques do not work

> Generating functions of preharmonic functions satisfy kernel

functional equations

> Preharmonic functions = homogenized enumeration problem:
K(x y)Q(x,y) = K(x,0)Q(x,0) + K(0,y)Q(0,y) — K(0,0)Q(0,0) — xy
K'(x,y) F(x,y) = K'(x,0) F(x,0) + K’(0,y) F(0,y) — K'(0,0) F(0, 0)

> Preharmonic functions ~» counting numbers asymptotics
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Absorption probabilities and statistical mechanics
Markov chains: example

1/2 =
._142_.<é>.i/,2_. fi = P;[hit 4] satisfies - 11‘1 41
1 2753 4
1 & 4: absorbing states

Solution: f1=0.f2=%,f3:%,f4:1

Markov chains: general theorem

The hitting probabilities are characterized as being the minimal
non-negative solutions to a system of linear recurrences.

Ising model

e 06 _0 0 _0 0 _06_6 0 _0_0_6 .
® e o e o o e o o o e e % Smirnov '10
o _©6_0_e 0 0 e 0 0 0 _0 8

e o o o ° * o o o

e o _e o ° 6 _e _o_o
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Example: construct a 1D process conditioned to stay in N

1/2 1/2 1/2 1/2
-—— -——
—_—r—r—— 00— 00—
0 1 i—1 7 i+1

> Function f(i) = i is positive harmonic and f(0) = 0
f

> Replace weights p(i,i +1) = % by pf(i,i+1) = % 0
> New weights sum to 1: (i — 1) + f(i + 1) = 2f (i)
0 1 L= R
. 2i o 2i
— e —0— 00— 00— 00— 00— 00— >

0 1 i—1 i i+1
> Discrete Bessel process % Biane '90; Mishchenko '05

Construction can be generalized

> Random processes conditioned never to leave cones of Z¢
> Quantum random walks, eigenvalues of random matrices,

non-colliding random walks, etc.
KSY Dyson '62; Biane '90-'92; Eichelsbacher & Konig '08
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A second way for the conditioning (with the first exit time)
> RW {S(n)}n=o; first exit time 7 = inf{n > 0: S(n) = 0}

> On the event {7 = oo}, the RW stays in {1,2,3,...}

> Replace P[ - | by P[ - |[{7 = oc}] to obtain a conditioned RW

> Important question: do we have P[ - |{7 = ~0}] = Pf?

2 Denisov & Wachtel '15 (general cones with zero drift); Courtiel, Melczer,
Mishna & R. '16 (Gouyou-Beauchamps model with drift)

> Difficulty: exit time 7
Example (1/3) in the quadrant: the simple walk

> Uniform weights %

> (i, j)=1i-J

> Unique preharmonic function (up to
multiplicative factors)

R SOUUUE R > Product form % Picardello & Woess '92
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A second way for the conditioning (with the first exit time)
> RW {S(n)}n=o; first exit time 7 = inf{n > 0: S(n) = 0}

> On the event {7 = oo}, the RW stays in {1,2,3,...}

> Replace P[ - | by P[ - |{7 = oc}] to obtain a conditioned RW

> Important question: do we have P[ - |{7 = ~0}] = Pf?
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> Difficulty: exit time 7
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> Uniform weights %
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> Unique preharmonic function (up to
multiplicative factors) 2 Biane '92




Doob transform (2/2)

A second way for the conditioning (with the first exit time)
> RW {S(n)}n=o; first exit time 7 = inf{n > 0: S(n) = 0}

> On the event {7 = oo}, the RW stays in {1,2,3,...}

> Replace P[ - | by P[ - |{7 = oc}] to obtain a conditioned RW

> Important question: do we have P[ - |{7 = ~0}] = Pf?
2 Denisov & Wachtel '15 (general cones with zero drift); Courtiel, Melczer,
Mishna & R. '16 (Gouyou-Beauchamps model with drift)

> Difficulty: exit time 7
Example (3/3) in the quadrant: the GB walk

> Uniform weights %

> F(i))=ij-(i+]) (i +2))

> Unique preharmonic function (up to
multiplicative factors) 2 Biane '92
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Martin boundary theory

Rough description

> Martin boundary O ~ set of all harmonic functions

> Minimal Martin boundary O, ~ integral representation of all
harmonic functions: f = fam {Martin kernel}dur

D Martin '41;
Hunt '57; Doob '59; Choquet & Deny '60; Ney & Spitzer '66; Picardello & Woess '92

Homogeneous random processes
> Well understood ® Spitzer '64; Ney & Spitzer '66
Non-homogeneous random processes: difficult problem
> Walks related to Lie algebras % Biane '90-'92
> Quadrant walks with drift ZyENy -p(y)  ® Ignatiouk-Robert '10
> Quadrant walks with zero drift

Partial results by ® R. '14; Bouaziz, Mustapha & Sifi '15

> General RW in cones: open problem (conjecture: uniqueness
<= drift = 0)
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~ fi(k, €)-pj-n™
@ Not proved yet!
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Asymptotics of some numbers of walks

Asymptotic statements
> Total number of walks starting at (k, ¢):
q(n; k, 6;N?) = #e{(k, €) = N?}
~ fi(k, €)-pj-n™
@ Not proved yet!

> Excursions starting at (k, ¢):
T a(mk i) = #e{(k 0 = (1))}

B S R S RSt ~ ok, 0) - £(i,j) - pj -
@ Denisov & Wachtel '15

Preharmonicity of the prefactors

> fi is p1-harmonic & f, is po-harmonic: replace q(n; k, £; N?)
by its asymptotic expansion in the step-by-step construction
q(n+1;k, ¢ Nz) = Z(,-J-)es q(n k —i,0—j N2)

> f; is pp-harmonic for the reversed step set &' = -8

> Drift zero: unique harmonic function = f1, f, and f;
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Random generation

Aim: generate efficiently a long walk (e.g., confined to a region)

A walk of length 18000

Different methods
> Recursive method (step-by-step construction)
> Bijections (if existing) For Kreweras see % Bernardi '07
> Rejection algorithms
X Bacher & Sportiello '16; Lumbroso, Mishna & Ponty '16
> Preharmonic functions and Doob transform % Fusy '16
(Difficulty: after Doob transform, non-uniform walks)
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Potential theoretic tools

Counting numbers are caloric functions

> Asymptotics of numbers of quadrant walks (also with

inhomogeneities) @ D'Arco, Lacivita & Mustapha '16
> Asymptotics in three quarter of plane ® Mustapha '16
Zero drift case: classical inequalities @ Varopoulos '99-'09

General principle: there is a canonical function (the réduite of the
cone fe: A[fe] = 0) containing “all” the information:

> q(n; k, £;N?) =~ f(k,0)-p"- n®as n — oo

> « = homogeneity degree of f,

> f ~ f. asymptotically

Non-zero drift case: Cramér's transform & ongoing work

> Works if drift with < 0 coordinates
> Ongoing work in the remaining cases @ Garbit, Mustapha & R.



Discrete harmonic functions in the quadrant



Functional equation & Tutte’s invariants

A functional equation reminiscent of the enumeration

> F(x,y) = Zi,j>1 f(ivj)xi_lyj_l
> K'(x,y) =xv{>° _1<hica p(k, O)x~Fy=t -1}

> Kernel functional equation:

AN K/ (x, 9 F(x,y) =
: o K'(x, 0)F(x, 0) + K'(0, y)F(0, y) — K'(0,0)F (0, 0)
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> Make the difference of the two identities



Functional equation & Tutte’s invariants

A functional equation reminiscent of the enumeration

> F(x,y) = Zi,j>1 f(ivj)xi_lyj_l
> K'(x,y) =xv{>° _1<hica p(k, O)x~Fy=t -1}
> Kernel functional equation:

K'(x,y)F(x,y) =
K'(x,0)F(x,0) + K'(0, y)F(0,y) — K’(0,0)F (0, 0)

Definition of Tutte’s invariants
> Introduced to count g-colored triangulations & planar maps
D Tutte '73; Bernardi & Bousquet-Mélou '11

> Define Xo & X1 by K/(Xo,y) = K/(Xl,y) =0
> Tutte's invariant: function / € Q[[x]] such that /(Xp) = /(X1)
The sections K’(x,0)F(x,0) & K'(0, y)F(0, y) are invariants

> Evaluate the functional equation at Xg & X
> Make the difference of the two identities

Does this characterize the sections?



Example: the SRW

A product-form generating function

f(i,j)=ij=

Kernel: K'(x,y) = xy{%+ &+ % + % —1} = )’(X4—1)2 4o xly=1y?
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Verification of the functional equation

K'(x,y)F(x,y)=

K'(x,0)F(x,0)+K'(0,y)F(0,y)—K'(0,0)F(0,0)

1 1
= 7 X et 1 X gy 0ox 1



Example: the SRW

A product-form generating function

f(i,j)=1i-j=|F(x,y)= Zi,jgl"'j‘xi_lyj_l = m

w—1)2 (v—1)2

Kernel: K'(x,y) = xy{%+ &+ % + % -1} = ot 41) + (y41)
Verification of the functional equation

K (x, y)F(x, y) = K'(x, 0)F (x, 0)+K'(0, y)F(0, y)—K'(0, 0) F(0,0)
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> 1(Xo) = 1(X1) “E57 1(x) = (L) = I function of x + 1

> | K'(x,0)F(x,0) = §(1_1X)2 = %X+1_2 is an invariant




Example: the SRW

A product-form generating function

fig)=iJj=|Fxy) =i J XY = aypasy

w—1)2 (v—1)2

Kernel: K'(x,y) = xy{%+ &+ % + % -1} = ot 41) + (y41)
Verification of the functional equation

K (x, y)F(x, y) = K'(x, 0)F (x, 0)+K'(0, y)F(0, y)—K'(0, 0) F(0,0)
= X @t X s 0 x ]

Tutte’s invariants

> 1(Xo) = 1(X1) “E57 1(x) = (L) = I function of x + 1

> | K'(x,0)F(x,0) = §(1_1X)2 = %X+1_2 is an invariant

Why this function of x + %?

> Of order 1 in x + % ~» Minimality (conformal mappings)
> F(1,0) = oo ~ Liouville's theorem



Tutte’s invariants & conformal mappings
A general theorem

K'(x,0)F(x,0) = w(x), characterized by
> Conformal mapping of a certain domain K\
> w(x) = w(X) ]

> w(l) =00 8 KJ

> Same for K’(0, y)F (0, y)
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Tutte’s invariants & conformal mappings
A general theorem

K'(x,0)F(x,0) = w(x), characterized by

> Conformal mapping of a certain domain

> w(x) = w(X)

o/

> w(l) =0
> Same for K'(0,y)F(0, y)

Going back to the SRW
K'(x,0)F(x,0) = W, characterized by
> Conformal mapping of the unit disc
> w(e?) = w(e )

> w(l) =00

> Same for K'(0,y)F(0,y) = 4(1{},)2

ZnY Wan
X,

Question
How deep is this connection conformal maps/harmonic functions?
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