#### Edge-colored graphs as higher-dimensional maps

Valentin Bonzom with Luca Lionni

LIPN, Paris 13

May 18, 2016 GT Combi LIX

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Discretization of manifolds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2D discrete surfaces: triangulations, *p*-angulations and combinatorial maps
- ▶ 3D triangulations: gluings of tetrahedra

## Discretization of manifolds

- 2D discrete surfaces: triangulations, *p*-angulations and combinatorial maps
- 3D triangulations: gluings of tetrahedra
- How to represent them in a suitable fashion for combinatorics?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Equivalent of *p*-angulations?
- Enumeration?

Colored triangulations and colored graphs

Bijection with (stuffed colored Walsh) maps

Colored triangulations and colored graphs

Bijection with (stuffed colored Walsh) maps



## Combinatorial maps

Graph with cyclic ordering of edges incident to each vertex



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

## Combinatorial maps

Graph with cyclic ordering of edges incident to each vertex



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Cyclic ordering defines faces: follow the corners

### 2p-angulation

- ► Faces of degree 2p
- Duality: vertices of degree 2p



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Euler's relation with E(M) = pV(M)

$$F(M) - E(M) + V(M) = F(M) - (p-1)V(M) = 2 - 2g(M)$$

- $g(M) \ge 0 \Rightarrow$  bound on F(M) linear in V(M)
- Maximizing F(M) at fixed V(M) equivalent to g(M) = 0

### 2p-angulation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Euler's relation with E(M) = pV(M)

Duality: vertices of degree 2p

Faces of degree 2p

$$F(M) - E(M) + V(M) = F(M) - (p-1)V(M) = 2 - 2g(M)$$

- $g(M) \ge 0 \Rightarrow$  bound on F(M) linear in V(M)
- Maximizing F(M) at fixed V(M) equivalent to g(M) = 0

### 2p-angulation

- Faces of degree 2p
- Duality: vertices of degree 2p



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Euler's relation with E(M) = pV(M)

$$F(M) - E(M) + V(M) = F(M) - (p-1)V(M) = 2 - 2g(M)$$

- $g(M) \ge 0 \Rightarrow$  bound on F(M) linear in V(M)
- Maximizing F(M) at fixed V(M) equivalent to g(M) = 0

## What do we know?

#### Maps: from Tutte to today

- Enumeration [Tutte's equations, matrix models]
- Bijections [Cori-Vauquelin-Schaeffer, Bouttier-Di Francesco-Guitter]
- Topological recursion [Eynard]
- Continuum limit [Brownian sphere]
- ► More being developed nowadays [Hurwitz, integrable hierarchies, etc.]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## What do we know?

Simplicial complexes in higher dim



## What do we know?

#### Simplicial complexes in higher dim

- ▶ ??
- (Mostly) numerical works (Ambjorn, Jurkewic, Jonsson, Loll, etc.)
- Why? Combinatorics difficult to control!
- Most recent analytical attempts via

#### colored graphs

- Mostly by physicists [Gurau, Krajewski, Rivasseau, Tanasa, Vignes-Tourneret and students]
- Try a more systematic combinatorial study [Gurau-Schaeffer, Bonzom-Lionni and wip w/ Monteil]

# The physics

Einstein's 2nd revolution

 ${\sf Gravitation} = {\sf Geometry} \ {\sf of} \ {\sf space-time}$ 

Quantum physics

Quantum = probabilistic, random

#### Gravitation and quantum together

Space-time metric is a random variable

Quantum gravity = random geometry

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Discrete quantum gravity

Define quantum gravity at the discrete level

Two approaches



## Discrete quantum gravity

#### Define quantum gravity at the discrete level

#### Two approaches

| Regge calculus, LQG, Spin foams                | Dynamical triangulations                            |
|------------------------------------------------|-----------------------------------------------------|
| Fix a discretization                           | Edges have fixed lengths                            |
| ${\sf Geometry} = {\sf edge} \; {\sf lengths}$ | ${\sf Geometry} = {\sf discretization}$             |
| Quantization = $\int \prod_e d\ell_e$          | Quantization                                        |
| or $\sum_{quantum numbers}$                    | $\sum_{\rm Geometries} = \sum_{\rm Triangulations}$ |

・ロト・日本・モート モー うへぐ

In 2nd approach,  $\sum_{\text{Triangulations}} \Rightarrow$  generating function!

## How to represent triangulations?

#### Triangulations

- Gluing of simplices (tetrahedra, pentachora, etc.)
- Defined by attaching maps
- Ensemble of triangulations defined by constraints on attaching maps

#### Various ensembles

• Various ensembles in topology (simplicial, CW,  $\Delta$ -complexes, etc.)

- Not suitable for combinatorics (too wild)
- Digging through old work, found colored triangulations [Italian school: crystallization, graph—encoded manifold]
- Represented by edge-colored graphs

#### (d+1)-colored graphs

- Bipartite graphs black and white vertices
- Edges colored with d + 1 possible colors
- Vertices of degree d + 1
- All colors incident exactly once at each vertex



イロト 不得 トイヨト イヨト

э

#### (d+1)-colored graphs

- Bipartite graphs black and white vertices
- Edges colored with d + 1 possible colors
- Vertices of degree d + 1
- All colors incident exactly once at each vertex



Faces are closed cycles with only two colors.

#### (d+1)-colored graphs

- Bipartite graphs black and white vertices
- Edges colored with d + 1 possible colors
- Vertices of degree d + 1
- All colors incident exactly once at each vertex



Faces are closed cycles with only two colors.

#### (d+1)-colored graphs

- Bipartite graphs black and white vertices
- Edges colored with d + 1 possible colors
- Vertices of degree d + 1
- All colors incident exactly once at each vertex



Faces are closed cycles with only two colors.

### Triangulations from colored graphs

duality  $\begin{cases} \text{vertex} \rightarrow d-\text{simplex} \\ \text{edge} \rightarrow (d-1)-\text{simplex} \\ \text{face} \rightarrow (d-2)-\text{simplex} \\ k-\text{bubble} \rightarrow (d-k)-\text{simplex} \end{cases}$ 

 Boundary triangles labeled by a color  $c = 0, \ldots, d$ 





## Triangulations from colored graphs

duality  $\begin{cases} \text{vertex} \rightarrow d-\text{simplex} \\ \text{edge} \rightarrow (d-1)-\text{simplex} \\ \text{face} \rightarrow (d-2)-\text{simplex} \\ k-\text{bubble} \rightarrow (d-k)-\text{simplex} \end{cases}$ 

- Boundary triangles labeled by a color  $c = 0, \ldots, d$
- Induced colorings
- Edges labeled by pair of colors

Colors identify all sub-simplices



## Triangulations from colored graphs

 $\label{eq:duality} \mathsf{duality} \ \left\{ \begin{array}{ll} \mathsf{vertex} & \to & d\mathsf{-simplex} \\ \mathsf{edge} & \to & (d-1)\mathsf{-simplex} \\ \mathsf{face} & \to & (d-2)\mathsf{-simplex} \\ k\mathsf{-bubble} & \to & (d-k)\mathsf{-simplex} \end{array} \right.$ 

- Boundary triangles labeled by a color  $c = 0, \ldots, d$
- Induced colorings
- Edges labeled by pair of colors
- Nodes labeled by three colors

Colors identify all sub-simplices



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Colored attaching maps

Gluing respecting all induced colorings



Theory of crystallization and GEMs (graph–encoded manifolds): (d+1)-colored graphs are dual to triangulations of pseudo-manifolds of dimension d [Pezzana, Ferri, Cagliardi, Lins].



・ロト・日本・ キャー キー うくぐ





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### 2p-angle

- Gluing of 2p triangles with boundary of color 0
- ▶ Dually: Components with all colors but 0



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで



▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



くしゃ (中)・(中)・(中)・(日)

## **Bubbles**

- Colored graph with colors 0, 1, ..., d (triangulation in dim d)
- Bubble: connected piece with colors 1,..., d Obtained by removing the color 0
- ► All graphs obtained by gluing bubbles along edges of color 0
- $\mathcal{G}(B)$  set of (d+1)-colored graphs where all bubbles are B



# Bubbles II

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

#### 2D: only bubbles with 2p vertices Cycles of colors (1,2)



# Bubbles II

 2D: only bubbles with 2p vertices Cycles of colors (1,2)



- Many more in higher dimensions
- Vast world to explore



(日)、

э.

#### Faces



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Vertices: two types

- ► cycle with colors (0, 1)
- ▶ cycle with colors (0,2)

## The problem

- Set *B* a bubble,  $G \in \mathcal{G}(B)$
- Enumerate w.r.t.
  - # bubbles b(G)
  - # subsimplices of codimension 2 which belong to bubble boundary
- ▶ Face of colors (0, c): cycle with colors (0, c)

Number of faces 
$$F(G) = \sum_{c=1}^{d} F_{0c}(G)$$

Classify graphs according to F(G) at fixed b(G)

$$\mathcal{G}_b(B) = \bigcup_F \mathcal{G}_b^{(F)}(B)$$

► Focus on G<sub>b</sub><sup>(F)</sup>(B) How to maximize F(G) at fixed number of bubbles b(G)?

#### Gurau's degree theorem

#### Bound on F(G)

There exists  $\omega(G) \ge 0$ 

$$F(G) - (d-1)(p(B)-1)b(G) = d - \omega(G) \leq d$$

► 
$$d = 2$$
  
 $F(G) - (p(B) - 1)b(G) = 2 - \omega(G) \Rightarrow \omega(G) = 2g(G)$ 

For  $d \ge 3$ , bound can be saturated only for certain type of bubbles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Maximizing graphs (melonic) are series-parallel
  - Bijection with trees
  - Expected from numerics
- Gurau–Schaeffer classification according to the degree
- Need to investigate more generic bubbles

Colored triangulations and colored graphs

Bijection with (stuffed colored Walsh) maps



### Mechanism

► How to control faces?



## Mechanism

How to control faces? Maps!

Same mechanism as Tutte's bijection between bipartite quadrangulations and generic maps, in the dual picture

#### Cycle of graph to star-maps

Cyclically ordered list of objects  $(o_1, \ldots, o_n)$ 



Edge  $(o_k, o_{k+1})$  maps to corner between  $e_k$  and  $e_{k+1}$ 

## From bubble to map

► Choose a pairing of *B* 



#### From bubble to map

- Choose a pairing of B
- Orient edges from white to black; merge pairs to blue vertices
- ▶ Oriented cycle of color  $j \rightarrow$  counter-clockwise star-map



・ロト ・聞ト ・ヨト ・ヨト

### From bubble to map

- Choose a pairing of B
- Orient edges from white to black; merge pairs to blue vertices
- ▶ Oriented cycle of color  $j \rightarrow$  counter–clockwise star–map
- Edge of color  $j \rightarrow$  counter–clockwise corner of color j



イロト イポト イヨト イヨト

# Example



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### Universal part

Cycles of color 0 and pairs of vertices  $\rightarrow$  counter-clockwise star-map



Use  $M(B, \pi)$  as "colored hyper-edge"

(日)、

э

#### Faces

- Black vertices of arbitrary degree
- Blue vertices and box-vertices form

Cycle of colors (0*c*) of graph  $\rightarrow$  face of color *c* in map



イロト イポト イヨト イヨト

э

#### Quartic case, d = 4

Simplification!



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

### Quartic case, d = 4

- Maps of arbitrary degree
- Monocolored edges, colors 1,..., d
- Bicolored edges, colors 1c for c = 2, 3, 4

# Maximizing faces $\sum_{c=1}^{d} F_{0c}$

- Monocolored edges are bridges
- Bicolored form planar components
- Bicolored types 1c and 1c' touch on cut-vertices (similar to O(n) model on planar maps)

### The quartic case

Generating function of (rooted) maps for k types of bicolored edges

$$f_k(t,\lambda) = \sum_M t^{\# ext{edges}} \; \lambda^{\# ext{monocol. edges}}$$

Algebraicity

$$f_k(t,\lambda) = 1 - k + t\lambda f_k(t,\lambda)^2 + kP(tf_k(t,\lambda)^2)$$

implies

$$\begin{cases} tf^2 = u(1-u)^2 \\ f = k(1-u)(1+3u) - k + 1 + \lambda u(1-u)^2 \end{cases}$$

• Generic planar maps for  $\lambda = 0$  and k = 1

$$27t^2A(t)^2 + (1 - 18t)A(t) + 16t - 1 = 0$$

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへぐ

#### Explicit singularity analysis for k = 1

$$egin{aligned} f(t,\lambda) &= rac{4}{27}(\lambda+9) + rac{16(\lambda+3)(\lambda+9)^3}{729(\lambda-3)}(t_1(\lambda)-t) \ &+ rac{64(\lambda+9)^{11/2}}{6561(3-\lambda)^{5/2}}(t_1(\lambda)-t)^{3/2} + oig((t_1(\lambda)-t)^{3/2}ig) \end{aligned}$$

• For  $\lambda > 3$ , singularity at  $t_2(\lambda) = \frac{\lambda}{4(1+\lambda)^2}$ 

$$f(t,\lambda) = 2\frac{\lambda^2 - 1}{\lambda^2} - \frac{4(1+\lambda)^2}{\lambda^{5/2}}\sqrt{\lambda^2 - 2\lambda - 3} \left(t_2(\lambda) - t\right)^{1/2} + o\left((t_2(\lambda) - t)^{1/2}\right)$$

•  $\lambda = 3$ , proliferation of baby universes

$$f(t, \lambda = 3) = \frac{16}{9} - \frac{128}{3^{5/3}} \left(\frac{3}{64} - t\right)^{2/3} + o\left(\left(\frac{3}{64} - t\right)^{2/3}\right)$$

#### Same results with respect to k

- k small enough: universality class of maps
- ▶ k large enough: branching process and square-root singularity
- k critical: singularity exponent 2/3



## Conclusion

- (At least some) Enumeration is feasible in dim d > 2!
- ► To appear with L. Lionni: enumeration of gluings of octahedra which maximize the number of edges

- ▶ Beyond maximizing number of faces in quartic case → Topological recursion! [to appear w/ S. Dartois]
- More to be studied
- Harer–Zagier formula equivalent for unicellular maps?