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Discretization of manifolds

I 2D discrete surfaces: triangulations, p–angulations and
combinatorial maps

I 3D triangulations: gluings of tetrahedra

I How to represent them in a suitable fashion for combinatorics?

I Equivalent of p–angulations?

I Enumeration?
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Graph with cyclic ordering of edges incident to each vertex

6=

Cyclic ordering defines faces: follow the corners
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2p–angulation

I Faces of degree 2p

I Duality: vertices of degree 2p

I Euler’s relation with E (M) = pV (M)

F (M)− E (M) + V (M) = F (M)− (p − 1)V (M) = 2− 2g(M)

I g(M) ≥ 0 ⇒ bound on F (M) linear in V (M)

I Maximizing F (M) at fixed V (M) equivalent to g(M) = 0
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What do we know?

Maps: from Tutte to today

I Enumeration [Tutte’s equations, matrix models]

I Bijections [Cori-Vauquelin-Schaeffer, Bouttier-Di Francesco-Guitter]

I Topological recursion [Eynard]

I Continuum limit [Brownian sphere]

I More being developed nowadays [Hurwitz, integrable hierarchies, etc.]



What do we know?

Simplicial complexes in higher dim

I ??

I (Mostly) numerical works (Ambjorn, Jurkewic, Jonsson, Loll, etc.)

I Why? Combinatorics difficult to control!

I Most recent analytical attempts via

colored graphs

I Mostly by physicists
[Gurau, Krajewski, Rivasseau, Tanasa, Vignes-Tourneret and students]

I Try a more systematic combinatorial study
[Gurau-Schaeffer, Bonzom-Lionni and wip w/ Monteil]
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The physics

I Einstein’s 2nd revolution

Gravitation = Geometry of space–time

I Quantum physics

Quantum = probabilistic, random

Gravitation and quantum together
Space–time metric is a random variable

Quantum gravity = random geometry



Discrete quantum gravity

Define quantum gravity at the discrete level

Two approaches

Regge calculus, LQG, Spin foams Dynamical triangulations

Fix a discretization Edges have fixed lengths

Geometry = edge lengths Geometry = discretization

Quantization =
∫ ∏

e d`e Quantization

or
∑

quantum numbers

∑
Geometries =

∑
Triangulations

In 2nd approach,
∑

Triangulations ⇒ generating function!
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How to represent triangulations?

Triangulations

I Gluing of simplices (tetrahedra, pentachora, etc.)

I Defined by attaching maps

I Ensemble of triangulations defined by constraints on attaching maps

Various ensembles

I Various ensembles in topology (simplicial, CW, ∆–complexes, etc.)

I Not suitable for combinatorics (too wild)

I Digging through old work, found colored triangulations
[Italian school: crystallization, graph–encoded manifold]

I Represented by edge–colored graphs



Colored graphs

(d + 1)-colored graphs

I Bipartite graphs
black and white vertices

I Edges colored with d + 1
possible colors

I Vertices of degree d + 1

I All colors incident exactly
once at each vertex
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Triangulations from colored graphs

duality


vertex → d–simplex

edge → (d − 1)–simplex

face → (d − 2)–simplex

k-bubble → (d − k)–simplex

I Boundary triangles labeled
by a color c = 0, . . . , d

I Induced colorings

I Edges labeled by pair of
colors

I Nodes labeled by three colors
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Colored attaching maps

Gluing respecting all induced colorings

012

013013
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02 33
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Theory of crystallization and GEMs (graph–encoded manifolds):
(d + 1)-colored graphs are dual to triangulations of pseudo-manifolds of
dimension d [Pezzana, Ferri, Cagliardi, Lins].



The 2D case
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The 3D case
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The 3D case
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Bubbles

I Colored graph with colors 0, 1, . . . , d
(triangulation in dim d)

I Bubble: connected piece with colors 1, . . . , d
Obtained by removing the color 0

I All graphs obtained by gluing bubbles along edges of color 0

I G(B) set of (d + 1)-colored graphs where all bubbles are B
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Bubbles II

I 2D: only bubbles with 2p vertices
Cycles of colors (1, 2)
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Faces
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Vertices: two types

I cycle with colors (0, 1)

I cycle with colors (0, 2)



The problem

I Set B a bubble, G ∈ G(B)

I Enumerate w.r.t.
I # bubbles b(G)
I # subsimplices of codimension 2 which belong to bubble boundary

I Face of colors (0, c): cycle with colors (0, c)

Number of faces F (G ) =
d∑

c=1

F0c(G )

I Classify graphs according to F (G ) at fixed b(G )

Gb(B) =
⋃
F

G(F )
b (B)

I Focus on G(F )
b (B)

How to maximize F (G ) at fixed number of bubbles b(G )?



Gurau’s degree theorem

Bound on F (G )
There exists ω(G ) ≥ 0

F (G )− (d − 1)(p(B)− 1)b(G ) = d − ω(G ) ≤ d

I d = 2
F (G )− (p(B)− 1)b(G ) = 2− ω(G ) ⇒ ω(G ) = 2g(G )

I For d ≥ 3, bound can be saturated only for certain type of bubbles

I Maximizing graphs (melonic) are series–parallel
I Bijection with trees
I Expected from numerics

I Gurau–Schaeffer classification according to the degree

I Need to investigate more generic bubbles
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Mechanism

I How to control faces?

Maps!

I Same mechanism as Tutte’s bijection between bipartite
quadrangulations and generic maps, in the dual picture

Cycle of graph to star–maps
Cyclically ordered list of objects (o1, . . . , on)
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Edge (ok , ok+1) maps to corner between ek and ek+1
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From bubble to map

I Choose a pairing of B

I Orient edges from white to black; merge pairs to blue vertices

I Oriented cycle of color j → counter–clockwise star–map

I Edge of color j → counter–clockwise corner of color j

i i1
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From bubble to map

I Choose a pairing of B

I Orient edges from white to black; merge pairs to blue vertices

I Oriented cycle of color j → counter–clockwise star–map

I Edge of color j → counter–clockwise corner of color j

ρ1

ρ2

e e

ρ1
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ρ2

e



Example

B =

1 2

1 2

1 2

π→ 1 2

1 2

1 2

→

1

1

1 2

2

2 →

1 2

2
21

1 = M(B, π)



Universal part

Cycles of color 0 and pairs of vertices → counter–clockwise star–map

j

k1k2

i1 i2
i3

e
ρi

ρj
ρk

→
i1i2i3

k1k2
j

e

ρi

ρkρj

Use M(B, π) as “colored hyper–edge”



Faces

I Black vertices of arbitrary degree

I Blue vertices and box–vertices form

Cycle of colors (0c) of graph → face of color c in map

ρ1

ρ2

e0

e1e′0
→ ρ1

ρ2

e0

e′0 e1



Quartic case, d = 4
Simplification!

i → i

i1 → 1i



Quartic case, d = 4

I Maps of arbitrary degree

I Monocolored edges, colors 1, . . . , d

I Bicolored edges, colors 1c for c = 2, 3, 4

Maximizing faces
∑d

c=1 F0c

I Monocolored edges are bridges

I Bicolored form planar components

I Bicolored types 1c and 1c ′ touch on cut–vertices
(similar to O(n) model on planar maps)



The quartic case

I Generating function of (rooted) maps for k types of bicolored edges

fk(t, λ) =
∑
M

t#edges λ#monocol. edges

I Algebraicity

fk(t, λ) = 1− k + tλfk(t, λ)2 + kP(tfk(t, λ)2)

implies {
tf 2 = u(1− u)2

f = k(1− u)(1 + 3u)− k + 1 + λu(1− u)2

I Generic planar maps for λ = 0 and k = 1

27t2A(t)2 + (1− 18t)A(t) + 16t − 1 = 0



Explicit singularity analysis for k = 1

I Quartic eq on f (t, λ)

I For λ < 3, singularity at t1(λ) = 27
4(λ+9)2

f (t, λ) =
4

27
(λ+ 9) +

16(λ+ 3)(λ+ 9)3

729(λ− 3)
(t1(λ)− t)

+
64(λ+ 9)11/2

6561(3− λ)5/2
(t1(λ)− t)3/2 + o

(
(t1(λ)− t)3/2

)
I For λ > 3, singularity at t2(λ) = λ

4(1+λ)2

f (t, λ) = 2
λ2 − 1

λ2
−4(1 + λ)2

λ5/2

√
λ2 − 2λ− 3 (t2(λ)−t)1/2+o

(
(t2(λ)−t)1/2

)
I λ = 3, proliferation of baby universes

f (t, λ = 3) =
16

9
− 128

35/3

( 3

64
− t
)2/3

+ o
(( 3

64
− t
)2/3)



Same results with respect to k

I k small enough: universality class of maps

I k large enough: branching process and square–root singularity

I k critical: singularity exponent 2/3

0.02 0.04 0.06 0.08
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2.2

fk

k �

9
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Htk H1L ,fk H1LL
Htk H2L ,fk H2LL



Conclusion

I (At least some) Enumeration is feasible in dim d > 2!

I To appear with L. Lionni: enumeration of gluings of octahedra
which maximize the number of edges

I Beyond maximizing number of faces in quartic case
→ Topological recursion! [to appear w/ S. Dartois]

I More to be studied

I Harer–Zagier formula equivalent for unicellular maps?
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