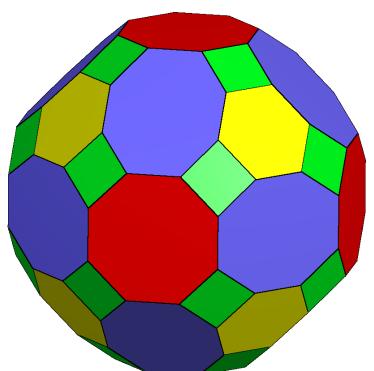
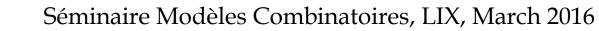
Euler polytopes and convex matroid optimization



Antoine Deza, McMaster

based on joint works with George Manoussakis, University Paris Sud Shmuel Onn, Technion



Linear Optimization?

Given an *n*-dimensional vector *b* and an *n* x *d* matrix *A* find, in any, a *d*-dimensional vector *x* such that :

$$Ax = b \qquad Ax = b x \ge 0$$

linear algebra

linear optimization

Linear Optimization?

Given an *n*-dimensional vector *b* and an *n* x *d* matrix *A* find, in any, a *d*-dimensional vector *x* such that :

 $Ax = b \qquad Ax = b \\ x \ge 0$

linear algebra

linear optimization

Can linear optimization be solved in **strongly polynomial** time? is listed by Smale (Fields Medal 1966) as one of the top mathematical problems for the XXI century

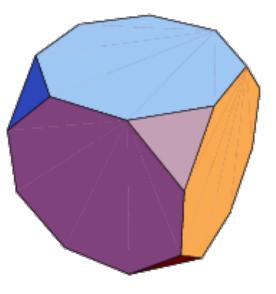
Strongly polynomial : algorithm *independent* from the *input data length* and polynomial in *n* and *d*.

lattice (d,k)-polytope : convex hull of points drawn from {0,1,...,k}^d

diameter $\delta(P)$ of polytope P: smallest number such that any two vertices of P can be connected by a path with at most $\delta(P)$ edges

 $\delta(d, \mathbf{k})$: largest diameter over all **lattice** (d, \mathbf{k}) -polytopes

ex. $\delta(3,3) = 6$ and is achieved by the *truncated cube*

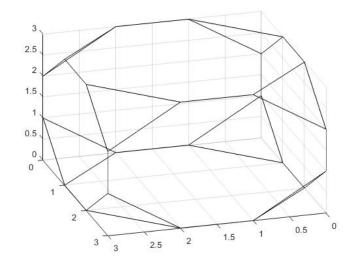


lattice (d,k)-polytope : convex hull of points drawn from {0,1,...,k}^d

diameter $\delta(P)$ of polytope P: smallest number such that any two vertices of P can be connected by a path with at most $\delta(P)$ edges

 $\delta(d, \mathbf{k})$: largest diameter over all **lattice** (d, \mathbf{k}) -polytopes

ex. $\delta(3,3) = 6$ and is achieved by the *truncated cube*



 $\delta(d, \mathbf{k})$: largest **diameter** of a convex hull of points drawn from $\{0, 1, \dots, \mathbf{k}\}^d$

$\delta(d, 1) = d$	[Naddef 1989]
$\delta(2,\boldsymbol{k}) = O(\boldsymbol{k}^{2/3})$	[Balog, Bárány 1991]
$\Rightarrow \delta(\boldsymbol{d},\boldsymbol{k}) = \Omega(\boldsymbol{k}^{2/3} \boldsymbol{d})$	[Del Pia, Michini 2013]
$\delta(d, \mathbf{k}) \leq \mathbf{k}d$	[Kleinschmid, Onn 1992]
$\delta(2, \mathbf{k}) = 6(\mathbf{k}/2\pi)^{2/3} + O(\mathbf{k}^{1/3} \log \mathbf{k})$	[Thiele 1991] [Acketa, Žunić 1995]
δ(d ,2) =_3 d /2_	[Del Pia, Michini 2015]
$\delta(d, \mathbf{k}) \leq \mathbf{k}d - \lceil d/2 \rceil$ for $\mathbf{k} \geq 2$	[Del Pia, Michini 2015]

δ(d , k)		k									
		1	2	3	4	5	6	7	8	9	
	2	2	3	4	4	5	6	6	7	8	
	3	3	4	6	?	?	?	?	?	?	
d	4	4	6	?	?	?	?	?	?	?	
	5	5	7	?	?	?	?	?	?	?	

 $\delta(\boldsymbol{d},\boldsymbol{k}) = \Omega(\boldsymbol{k}^{2/3}\,\boldsymbol{d})$

[Del Pia, Michini 2015]

δ(d , k)		k									
		1	2	3	4	5	6	7	8	9	
	2	2	3	4	4	5	6	6	7	8	
	3	3	4	6	?	9+	?	?	?	?	
d	4	4	6	?	?	?	?	16+	?	?	
	5	5	7	?	?	?	?	?	?:	25+	

 $\delta(\boldsymbol{d},\boldsymbol{k}) = \Omega(\boldsymbol{k}^{2/3} \boldsymbol{d})$

[Del Pia, Michini 2015]

 $\delta(d, k) \ge (k+1)d/2$ for infinitely many *d* for each odd *k*

[Deza, Manoussakis, Onn 2015] Conjecture: $\delta(d, \mathbf{k}) \leq (\mathbf{k}+1)d/2$

δ(d , k)		k										
		1	2	3	4	5	6	7	8	9		
	2	2	3	4	4	5	6	6	7	8		
	3	3	4	6	?	9+	?	?	?	?		
d	4	4	6	?	?	?	?	16+	?-	?		
	5	5	7	?	?	?	?	?	?:	25+		

 $\delta(\boldsymbol{d},\boldsymbol{k}) = \Omega(\boldsymbol{k}^{2/3} \boldsymbol{d})$

[Del Pia, Michini 2015]

 $\delta(\boldsymbol{d},\boldsymbol{k}) \geq \boldsymbol{k}(\boldsymbol{d}\boldsymbol{-}\boldsymbol{k})/2$

[Deza, Manoussakis, Onn 2015] Conjecture: $\delta(d, k) \le (k+1)d/2$

Motivation : convex matroid optimization [Melamed, Onn 2014]

The optimal solution of max { $f(Wx) : x \in S$ } is attained at a vertex of the projection integer polytope in \mathbb{R}^d : conv(WS) = Wconv(S)

S : set of feasible point in \mathbb{Z}^n (in the talk $S \in \{0,1\}^n$)W : integer $d \ge n$ matrixf : convex function from \mathbb{R}^d to \mathbb{R}

Q. What is the maximum number $\mathbf{v}(d, \mathbf{n})$ of vertices of conv(**WS**) when $\mathbf{S} \in \{0, 1\}^{n}$ and **W** is a $\{0, 1\}$ -valued $d \ge n$ matrix ?

Obviously $v(d,n) \le |WS| = O(n^d)$ In particular $v(2,n) = O(n^2)$, and $v(2,n) = \Omega(n^{0.5})$

Motivation : convex matroid optimization [Melamed, Onn 2014]

S : set of feasible point $\in \mathbb{Z}^n$ (in the talk $S \in \{0,1\}^n$)W : integer $d \ge n$ matrix(in the talk W is $\{0,1\}$ -valued)f : convex function from \mathbb{R}^d to \mathbb{R}

Assume **S** in {0,1} *ⁿ* is a *matroid* of order *n*; that is, the set of indicating vectors of bases of a matroid with ground set {1,...,*n*}

Given a matroid **S** of order *n*, $\{0,1\}$ -valued *d* x *n* matrix **W**, the maximum number m(d) of vertices of conv(WS) is independent of *n* and S

Given a matroid **S** of order *n*, $\{0, \pm 1, ..., \pm p\}$ -valued *d* x *n* matrix **W**, the maximum number $\mathbf{m}(d, p)$ of vertices of conv(**WS**) is independent of *n* and **S**

Motivation : convex matroid optimization [Melamed, Onn 2014]

Given a matroid **S** of order *n*, $\{0,1\}$ -valued *d* x *n* matrix **W**, the maximum number m(d) of vertices of conv(WS) is independent of *n* and S

Example : the maximum number m(2) of vertices of a planar projection conv(WS) of matroid S by a binary matrix W is attained by the following matrix and uniform matroid of rank 3 and order 8:

$$W = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$S = U(3,8) = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$0 \quad 1 \quad 2 \quad 3$$

conv(WS)

Motivation : matroid optimization

m(d): maximum number of vertices of conv(WS) over matroid S of order n, and $\{0,1\}$ -valued $d \ge n$ matrix W

d
$$2^{d} \le \mathbf{m}(d) \le 2 \sum_{i=0}^{d-1} \binom{(3^{d}-3)/2}{i}$$

 $24 \le \mathbf{m}(3) \le 158$ $64 \le \mathbf{m}(4) \le 19840$

[Melamed, Onn 2014]

Motivation : matroid optimization

m(d): maximum number of vertices of conv(WS) over matroid S of order n, and $\{0,1\}$ -valued $d \ge n$ matrix W

$$d 2^{d} \le \mathbf{m}(d) \le 2 \sum_{i=0}^{d-1} \binom{(3^{d}-3)/2}{i} \qquad 2d! \le \mathbf{m}(d) \le 2 \sum_{i=0}^{d-1} \binom{(3^{d}-3)/2}{i} - 2 \binom{(3^{d-1}-3)/2}{d-1}$$

 $24 \le \mathbf{m}(3) \le 158$ $64 \le \mathbf{m}(4) \le 19840$

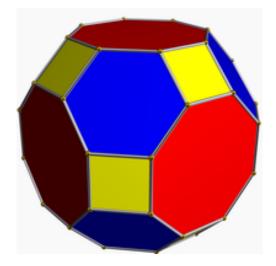
[Melamed, Onn 2014]

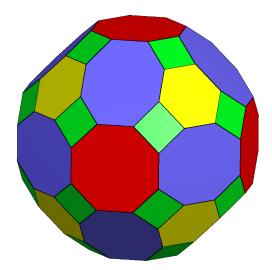
 $48 \le m(3) \le 96$ $672 \le m(4) \le 5376$

[Deza, Manoussakis, Onn 2015]

m(*d*): maximum number of vertices of conv(**WS**) over matroid **S** of order *n*, and {0,1}-valued *d* x *n* matrix **W**

 $48 \le m(3) \le 96$ [Deza, Manoussakis, Onn 2015]





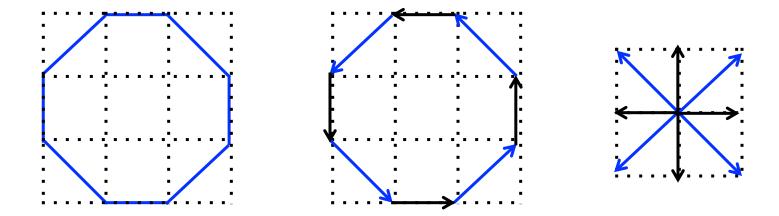
truncated cuboctahedron (great rhombicuboctahedron)

truncated small rhombicuboctahedron

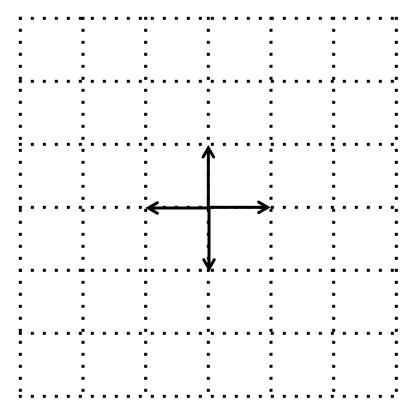
both are zonotopes

Q. What is $\delta(2, \mathbf{k})$: largest diameter of a polygon which vertices are drawn form the $\mathbf{k} \propto \mathbf{k}$ grid?

A polygon can be associated to a set of vectors (*edges*) summing up to zero, and without a pair of positively multiple vectors



 $\delta(2,3) = 4$ is achieved by 8 vectors : (±1,0), (0,±1), (±1,±1)

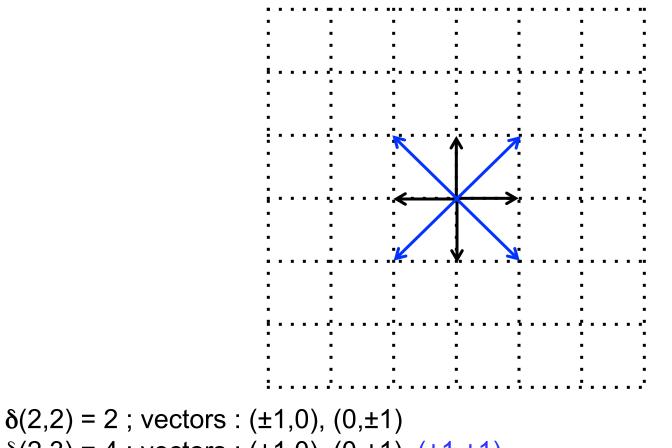


 $\delta(2,2) = 2$; vectors : (±1,0), (0,±1)

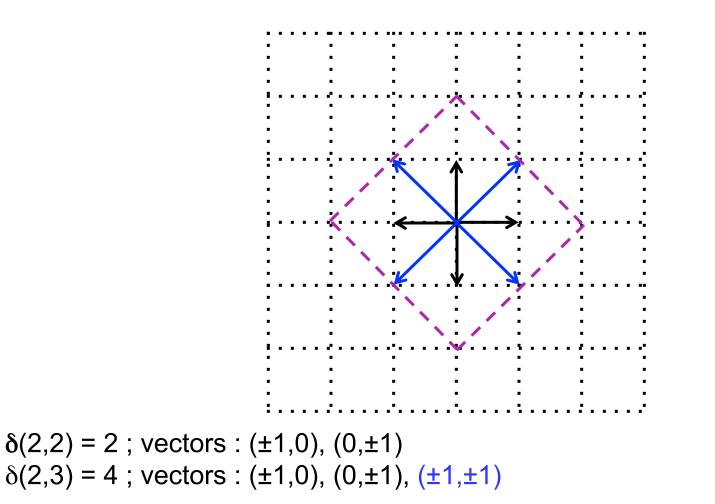


 $||x||_{1} \leq 1$

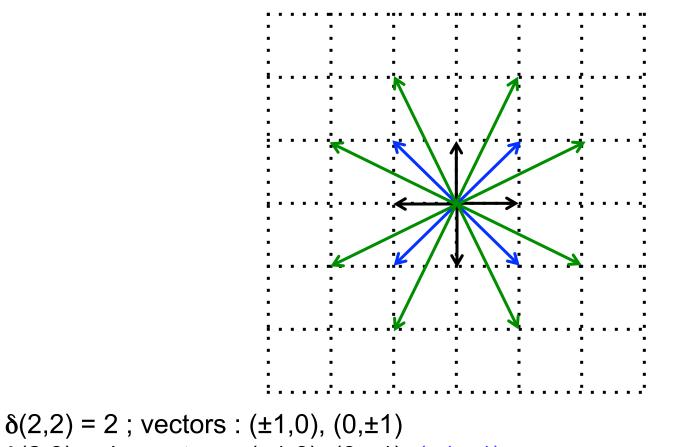
 $\delta(2,2) = 2$; vectors : (±1,0), (0,±1)



 $\delta(2,3) = 4$; vectors : (±1,0), (0,±1), (±1,±1)

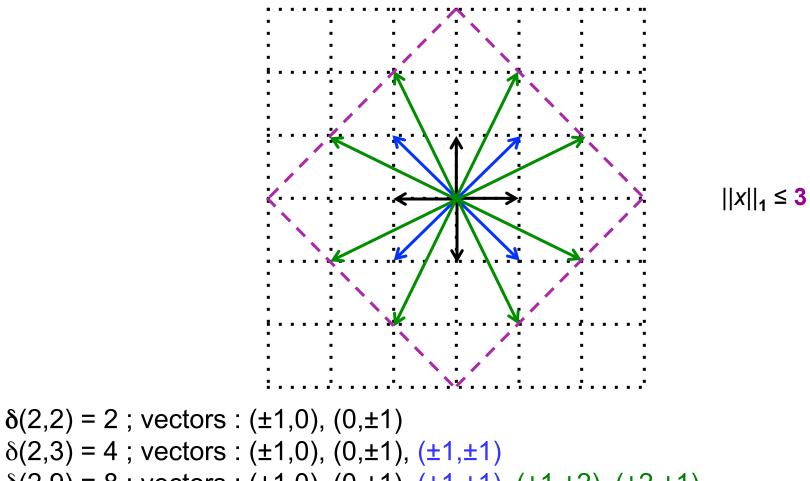


 $||x||_{1} \leq 2$

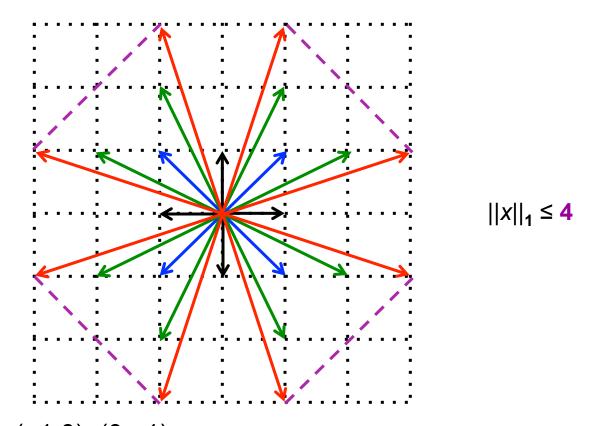


 $\delta(2,3) = 4$; vectors : (±1,0), (0,±1), (±1,±1)

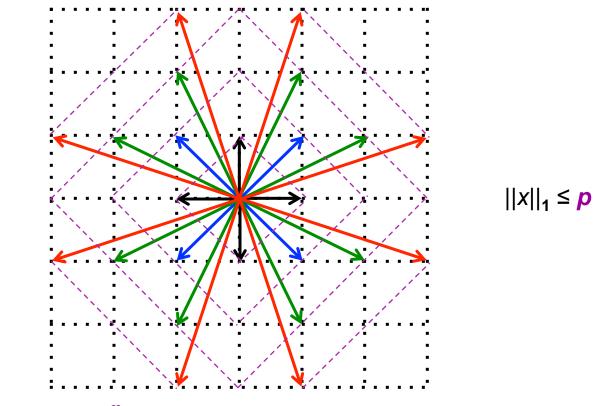
 $\delta(2,9) = 8$; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1)



 $\delta(2,9) = 8$; vectors : (±1,0), (0,±1), (±1,±1), (±1,±2), (±2,±1)



$$\begin{split} &\delta(2,2)=2 \text{ ; vectors : } (\pm 1,0), \ (0,\pm 1) \\ &\delta(2,3)=4 \text{ ; vectors : } (\pm 1,0), \ (0,\pm 1), \ (\pm 1,\pm 1) \\ &\delta(2,9)=8 \text{ ; vectors : } (\pm 1,0), \ (0,\pm 1), \ (\pm 1,\pm 1), \ (\pm 1,\pm 2), \ (\pm 2,\pm 1) \\ &\delta(2,17)=12 \text{ ; vectors : } (\pm 1,0), \ (0,\pm 1), \ (\pm 1,\pm 1), \ (\pm 1,\pm 2), \ (\pm 2,\pm 1), \ (\pm 1,\pm 3), \ (\pm 3,\pm 1) \end{split}$$



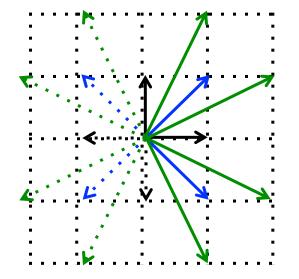
$$\delta(2, \mathbf{k}) = 2 \sum_{i=1}^{p} \varphi(i) \text{ for } \mathbf{k} = \sum_{i=1}^{p} i\varphi(i)$$

 $\varphi(p)$: *Euler totient function* counting positive integers less or equal to *p* relatively prime with *p* $\varphi(1) = \varphi(2) = 1$, $\varphi(3) = \varphi(4) = 2$,...

δ(2, k)		k									
0(2	., k)	1	2	3	4	5	6	7	8	9	
	р	1		2						3	
	v	4	6	8	8	10	12	12	14	16	
	δ	2	3	4	4	5	6	6	7	8	

$$\delta(2,\mathbf{k}) = 2\sum_{i=1}^{p} \varphi(i) \text{ for } \mathbf{k} = \sum_{i=1}^{p} i\varphi(i)$$

 $\varphi(p)$: *Euler totient function* counting positive integers less or equal to *p* relatively prime with *p* $\varphi(1) = \varphi(2) = 1$, $\varphi(3) = \varphi(4) = 2$,...



 $||x||_1 \leq p$

 $E_q(d,p)$: zonotope generated by { $x \in \mathbb{Z}^d$: $||x||_q \leq p$, gcd(x)=1, $x \geq 0$ }

(*E_q*(*d*,*p*) : Minkowski sum of segments)

Ex.
$$E_1(2,p)$$
 has diameter $\delta(2,k) = 2\sum_{i=1}^{p} \varphi(i)$ for $k = \sum_{i=1}^{p} i\varphi(i)$

Ex. E₁(2,2) generated by (1,0), (0,1), (1,1), (1,-1) (fits, up to translation, in 3x3 grid)

 $x \ge 0$: first nonzero coordinate of x is nonnegative

 $E_q(d,p)$: zonotope generated by { $x \in \mathbb{Z}^d$: $||x||_q \leq p$, gcd(x)=1, $x \geq 0$ }

- Iarge symmetry group : permutation and sign flips
- > $\delta(E_1(2, \mathbf{p})) = \delta(2, \mathbf{k})$ for infinitely many \mathbf{k}

 $E_q(d,p)$: zonotope generated by { $x \in \mathbb{Z}^d$: $||x||_q \leq p$, gcd(x)=1, $x \geq 0$ }

- Iarge symmetry group : permutation and sign flips
- > $\delta(E_1(2, \mathbf{p})) = \delta(2, \mathbf{k})$ for infinitely many \mathbf{k}
- $\succ E_1(d,2): d^2 \text{ generators } g^1, g^2, \dots \qquad (d! 2^d \text{ vertices})$
- $\Rightarrow \delta(E_1(\boldsymbol{d},2)) = \boldsymbol{d}^2$

(no two generators are parallel)

> $E_1(d,2)$ in $\{0,1,...,k\}^d$ with k = 2d - 1

 $E_q(d,p)$: zonotope generated by { $x \in \mathbb{Z}^d$: $||x||_q \le p$, gcd(x)=1, $x \ge 0$ }

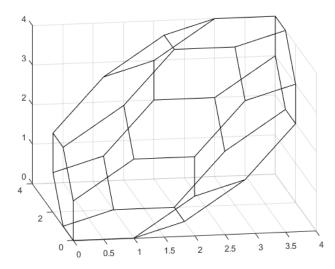
- Iarge symmetry group : permutation and sign flips
- > $\delta(E_1(2, \mathbf{p})) = \delta(2, \mathbf{k})$ for infinitely many \mathbf{k}
- $\succ E_1(d,2): d^2 \text{ generators } g^1, g^2, \dots \qquad (d! 2^d \text{ vertices})$
- $\Rightarrow \delta(E_1(d,2)) = d^2 \qquad (no two generators are parallel)$
- > $E_1(d,2)$ in $\{0,1,...,k\}^d$ with k = 2d 1
- $\Rightarrow \delta(d, \mathbf{k}) \ge d^2$ with $\mathbf{k} = 2d 1$
- $\Rightarrow \delta(d, \mathbf{k}) \ge (\mathbf{k}+1)d/2$ for infinitely many (d, \mathbf{k})

 $\Rightarrow \delta(d, \mathbf{k}) \ge \mathbf{k} d/2 - \mathbf{k}^2/4$ for any (d, \mathbf{k})

 $\succ \quad \mathbf{k} d/2 - \mathbf{k}^2/4 \le \delta(d, \mathbf{k}) \le \mathbf{k} d - \lceil d/2 \rceil$

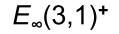
 $E_q(d,p)$: zonotope generated by { $x \in \mathbb{Z}^d$: $||x||_q \le p$, $gcd(x)=1, x \ge 0$ } $E_q(d,p)^+ = E_q(d,p) \cap \mathbb{Z}^d_+$

 $\succ |E_{\infty}(d,p)^{+}| \le \mathbf{m}(d,p) \le |E_{\infty}(d,p)| \implies |E_{\infty}(d,1)^{+}| \le \mathbf{m}(d) \le |E_{\infty}(d,1)|$

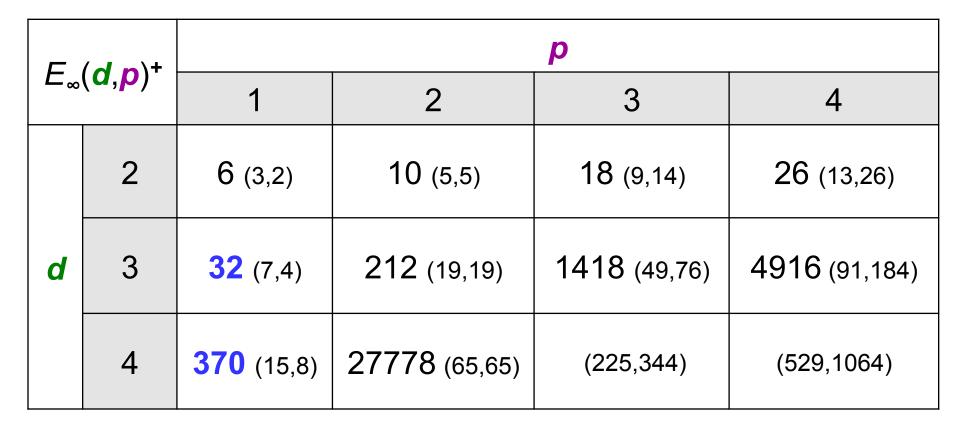


32 ≤ **m**(3) ≤ **96**

370 ≤ **m**(4) ≤ **5376**



*E*_∞(3,1) : *truncated small rhombicuboctahedron*



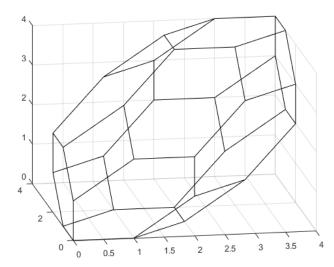
 $|E_{\infty}(\boldsymbol{d},\boldsymbol{p})^{+}|(\delta,\boldsymbol{k})|$

	(d p)	p								
$E_{\infty}(\boldsymbol{d},\boldsymbol{p})$		1	2	3	4					
	2	8 (4,3)	16 (8,9)	32 (16,27)	48 (24,51)					
d	3	<mark>96</mark> (13,9)	1248 (49,57)	10940 (145,249)	43680 (289,633)					
	4	5376 (40,27)	(272,321)	(1120,1923)	(2928,6459)					

 $|E_{\infty}(\boldsymbol{d},\boldsymbol{p})|(\delta,\boldsymbol{k})|$

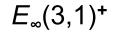
 $E_q(d,p)$: zonotope generated by { $x \in \mathbb{Z}^d$: $||x||_q \le p$, gcd(x)=1, $x \ge 0$ } $E_q(d,p)^+ = E_q(d,p) \cap \mathbb{Z}^d_+$

$$\succ | E_{\infty}(\boldsymbol{d}, 1)^{+} | \leq \mathbf{m}(\boldsymbol{d}) \leq | E_{\infty}(\boldsymbol{d}, 1) |$$



 $32 \le m(3) \le 96$

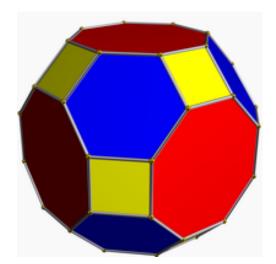
370 ≤ **m**(4) ≤ **5376**



 $E_{\infty}(3,1)$: truncated small rhombicuboctahedron

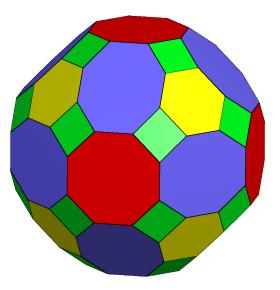
 $E_q(d,p)$: zonotope generated by { $x \in \mathbb{Z}^d$: $||x||_q \le p$, gcd(x)=1, $x \ge 0$ } $E_q(d,p)^+ = E_q(d,p) \cap \mathbb{Z}^d_+$

$$\succ | E_{\infty}(\boldsymbol{d}, 1)^{+} | \leq \mathbf{m}(\boldsymbol{d}) \leq | E_{\infty}(\boldsymbol{d}, 1) |$$



48 \leq **m**(3) \leq 96

672 ≤ **m**(4) ≤ 5376



M(3,5,2) *truncated cuboctahedron* (great rhombicuboctahedron)

 $E_{\infty}(3,1)$: truncated small rhombicuboctahedron

M(d,r,s) = conv(WS) where

- **W** : $\{0,1\}$ -valued **d** x s2^d matrix whose $s2^d$ columns consist of s copies of the 2^d vectors in $\{0,1\}^d$
- uniform matroid of rank *r* and order s2^d (matroid having all *r*-subsets) **S** : of $\{1, 2, \dots, s2^d\}$ as bases); that is, the columns of S consist of all $s2^d$ dimensional {0,1}-vectors with support r

 $M(d,r,s \ge r)$: {0,1,...,s}^d cube $|\mathbf{M}(d, \mathbf{r}, \mathbf{s} \geq \mathbf{r})| = 2^d$

M(d,2,1): truncated {0,1,2}^d cube

 $|\mathbf{M}(d, 2, 1)| = d2^{d-1}$

 $M(d, s+1, s \ge 2)$: truncated $\{0, 1, ..., s\}^d$ cube $|M(d, 2, 1)| = d2^d$

M(3, r ,s)		r										
		1	2	3	4	5	6					
	1	8 (3,1)	12 (3,2)	24 (5,3)	14 (4,4)	24 (5,4)	12 (3,4)					
	2	8 (3,1)	8 (3,2)	24 (6,3)	12 (3,4)	<mark>48 (</mark> 9,5)	24 (5,6)					
S	3	8 (3,1)	8 (3,2)	8 (3,3)	24 (6,4)	24 (6,5)	12 (3,6)					
	4	8 (3,1)	8 (3,2)	8 (3,3)	8 (3,4)	24 (6,5)	24 (6,6)					

 $|\mathbf{M}(3,\boldsymbol{r},\boldsymbol{s})|(\delta,\boldsymbol{k})|$

 $\delta(d, k)$: largest diameter over all lattice (d, k)-polytopes

m(**d**): maximum number of vertices of conv(**WS**) over matroid **S** of order **n**, and {0,1}-valued **d** x **n** matrix **W**

- $\succ kd/2 k^2/4 \le \delta(d, k) \le kd \lceil d/2 \rceil \qquad \text{using } E_1(d, 2)$
- $► 48 ≤ \mathbf{m}(3) ≤ 96$ using $\mathbf{M}(3,5,2)$ and $E_{\infty}(3,1)$

▶ 672 ≤ m(4) ≤ 5376
 ▶ 2d! ≤ m(d) ≤ 2 ∑_{i=0}^{d-1} {(3^d - 3)/2 \choose i}

using M(4,9,2) and $E_{\infty}(4,1)$

using $E_{\infty}(\boldsymbol{d},1)^{+}$ and $E_{\infty}(\boldsymbol{d},1)$

 $\delta(d, k)$: largest diameter over all lattice (d, k)-polytopes

Conjecture

 $\geq \delta(d, \mathbf{k})$ is achieved, up to translation, by a zonotope

 $\succ \delta(d, \mathbf{k}) \leq (\mathbf{k}+1)d/2$

 $\geq \delta(d, \mathbf{k}) = \delta(E_1(d, \mathbf{p}))$ for $\mathbf{k} = \mathbf{k}(E_1(d, \mathbf{p}))$ and is uniquely achieved

in particular, $\delta(d, 2d-1) = d^2$ is uniquely achieved by $E_1(d, 2)$

 $\delta(d, k)$: largest diameter over all lattice (d, k)-polytopes

Conjecture

 $> \delta(d, k)$ is achieved, up to translation, by a zonotope

 $\succ \delta(d, \mathbf{k}) \leq (\mathbf{k}+1)d/2$

 $\geq \delta(d, \mathbf{k}) = \delta(E_1(d, \mathbf{p}))$ for $\mathbf{k} = \mathbf{k}(E_1(d, \mathbf{p}))$ and is uniquely achieved

in particular, $\delta(d, 2d-1) = d^2$ is uniquely achieved by $E_1(d, 2)$

✓ thank you