trees

Anne Micheli (Paris 7)

S. Corteel (Paris 7) and D. Forge (Paris Sud)

Introduction

 \mathcal{A} : finite set of affine hyperplanes in \mathbb{R}^n

 \mathcal{A} : finite set of affine hyperplanes in \mathbb{R}^n

$$x_i - x_j = 0 \text{ or } 1$$

$$1 \le i < j \le 3$$

 \mathcal{A} : finite set of affine hyperplanes in \mathbb{R}^n

$$x_i - x_j = 0$$
 or 1
$$1 \le i < j \le 3$$

$$1 \le i < j \le 3$$

Regions: number of connected components obtained from \mathbb{R}^n by removing \mathcal{A}

 \mathcal{A} : finite set of affine hyperplanes in \mathbb{R}^n

$$x_i - x_j = 0$$
 or 1
 $1 \le i < j \le 3$

$$1 \le i < j \le 3$$

Regions: number of connected components obtained from \mathbb{R}^n by removing \mathcal{A}

16 regions

Braid arrangement: $x_i - x_j = 0$

6 regions

Shi arrangement: $x_i - x_j = 0, 1$

Catalan arrangement: $x_i - x_j = -1, 0, 1$

$$x_{1} = x_{3}$$
 $x_{2} = x_{3}$
 $x_{1} > x_{3} > x_{2}$
 $x_{3} > x_{1} > x_{2}$
 $x_{1} > x_{2} > x_{3}$
 $x_{1} = x_{2}$
 $x_{2} > x_{1} > x_{2}$
 $x_{3} > x_{2} > x_{1}$
 $x_{4} > x_{5} > x_{1} > x_{2}$

Braid arrangement: $x_i - x_j = 0$

6 regions

Shi arrangement: $x_i - x_j = 0, 1$

16 regions

Catalan arrangement: $x_i - x_j = -1, 0, 1$

Braid arrangement: $x_i - x_j = 0$

6 regions

Shi arrangement: $x_i - x_j = 0, 1$

16 regions

Catalan arrangement: $x_i - x_j = -1, 0, 1$

30 regions

Braid arrangement: $x_i - x_j = 0$

6 regions

Shi arrangement: $x_i - x_j = 0, 1$

16 regions

Catalan arrangement: $x_i - x_j = -1, 0, 1$

30 regions

Linial arrangement: $x_i - x_j = 1$

7 regions

Braid arrangement:
$$x_i - x_j = 0$$

$$n!$$
 regions

Shi arrangement:
$$x_i - x_j = 0, 1$$

$$(n+1)^{n-1}$$
 regions

Catalan arrangement:
$$x_i - x_j = -1, 0, 1$$

$$n!C_n$$
 regions

Linial arrangement:
$$x_i - x_j = 1$$

$$2^{-n} \sum_{k=0}^{n} {n \choose k} (k+1)^{n-1}$$
 regions

Lots of names, 90s Postnikov, Stanley, Athanasiadis, Linusson...

Braid arrangement: $x_i - x_j = 0$

Shi arrangement: $x_i - x_j = 0, 1$

Catalan arrangement: $x_i - x_j = -1, 0, 1$

$$B(u_1, u_2, v_1, v_2) = \sum_{T} u_1^{LA(T)} u_2^{LD(T)} v_1^{RA(T)} v_2^{RD(T)}$$

Braid arrangement: $x_i - x_j = 0$

Shi arrangement: $x_i - x_j = 0, 1$

Catalan arrangement: $x_i - x_j = -1, 0, 1$

Linial arrangement: $x_i - x_j = 1$

$$B(u_1, u_2, v_1, v_2) = \sum_{T} u_1^{LA(T)} u_2^{LD(T)} v_1^{RA(T)} v_2^{RD(T)}$$

[Gessel, Oberwolfach 14] $\frac{(1+u_1B)(1+v_2B)}{(1+v_1B)(1+u_2B)} = \exp(x(u_1-u_2-v_1+v_2+u_1v_2-u_2v_1)B)$

Braid arrangement:
$$x_i - x_j = 0$$

$$u_1 = v_1 = 1, \ u_2 = v_2 = 0$$

Shi arrangement:
$$x_i - x_j = 0, 1$$

$$u_1 = v_1 = u_2 = 1, \ v_2 = 0$$

Catalan arrangement:
$$x_i - x_j = -1, 0, 1$$

$$u_1 = v_1 = u_2 = v_2 = 1$$

Linial arrangement:
$$x_i - x_j = 1$$

$$u_2 = v_1 = 1, \ u_1 = v_2 = 0$$

[Gessel, Oberwolfach 14] $\frac{(1+u_1B)(1+v_2B)}{(1+v_1B)(1+u_2B)} = \exp(x(u_1-u_2-v_1+v_2+u_1v_2-u_2v_1)B)$

Arrangements and trees [Gessel]

Braid arrangement:
$$x_i - x_j = 0$$

Shi arrangement: $x_i - x_j = 0, 1$

Catalan arrangement: $x_i - x_j = -1, 0, 1$

Arrangements and trees [Gessel]

Braid arrangement:
$$x_i - x_j = 0$$

left ascent, right ascent

Shi arrangement:
$$x_i - x_j = 0, 1$$

No right descent

Catalan arrangement:
$$x_i - x_j = -1, 0, 1$$

All possible

Linial arrangement:
$$x_i - x_j = 1$$

left descent, right ascent

Arrangements and combinatorial objects

Braid arrangement: $x_i - x_j = 0$

$$13524 \leftrightarrow x_1 > x_3 > x_5 > x_2 > x_4$$

Permutations

Shi arrangement: $x_i - x_j = 0, 1$

Parking functions [Athanasiadis and Linusson 99], Cayley forests

Catalan arrangement: $x_i - x_j = -1, 0, 1$

labelled binary trees

Linial arrangement: $x_i - x_j = 1$

Alternating trees and local binary search trees [Postnikov 97]

Deformation of Coxeter arrangements

[Postnikov and Stanley, 00]

$$x_i - x_j = g$$
 $g \in [a,b]$ and 0 or $1 \in [a,b]$

 $f_n^{ab} = f_n$ number of regions

$$f(x) = \sum_{n} f_n \frac{x^n}{n!}$$

Theorem

- If a+b=0 then $f=1+xf^{b+1}$ Otherwise $f^{a+b}=\exp\left(xf^{1-a}\left(\frac{1-f^{a+b}}{1-f}\right)\right)$

Deformation of Coxeter arrangements

[Postnikov and Stanley, 00]

$$x_i - x_j = g$$

$$g \in [a,b] \text{ and 0 or } 1 \in [a,b]$$

Tools: NBC theorem and generating functions

$$f_n^{ab} = f_n$$
 number of regions

$$f(x) = \sum_{n} f_n \frac{x^n}{n!}$$

No tree interpretation

Theorem

• If
$$a + b = 0$$
 then $f = 1 + xf^{b+1}$

• If
$$a+b=0$$
 then $f=1+xf^{b+1}$
• Otherwise $f^{a+b}=\exp\left(xf^{1-a}\left(\frac{1-f^{a+b}}{1-f}\right)\right)$

Our goal

Combinatorial interpretation!

Strategy:

- Gain graphs [Zavlavsky]
- No broken circuit (NBC)-trees
- Bijections with colored non-increasing or decreasing trees
- Generating functions [Gessel et al]

Main result

Theorem [CFM 15]. There is a bijection between the regions of the arrangements \mathcal{A}_n^{ab} and

- If $a \le 0$ and $b \ge 0$, the (a+b+1,-a)-decreasing forests with n vertices
- If $a \le 0$ and $b \ge 0$ or a=1 and $b \ge 1$, the (a+b-1,1-a)-non-increasing forests with n vertices

Generalization. Poincaré polynomial

$$Poin_{\mathcal{A}}(q) = \sum_{forests} q^{\#edges(forests)}$$

Labelled trees

k-decreasing

ALL edges of the smallest appearing color MUST be decreasing

free color color 1 color 2

k-decreasing

ALL edges of the smallest appearing color MUST be decreasing

free color ____ color 1 ___ color 2

k-non-increasing

AT LEAST one edge of the smallest appearing color is decreasing

 \longrightarrow free color \longrightarrow color 1 \longrightarrow color 2

2 free colors

No conditions

_____ free color

____ color 1

color 2

(2,0)-decreasing

(2,1)-non-increasing

free color

color 1

color 2

Generating functions

Decreasing forests $F_{n,k}$: n vertices, j internal vertices, n-j leaves

$$F(x, y, t) = \sum_{n,j} F_{n,j} \frac{x^n}{n!} y^j t^{n-j}$$

$$F(x, y, t) = \frac{y - t}{y - t \exp(x(y - t))}$$

Decreasing trees $A(x, y, t) = \ln F(x, y, t)$

(k,0)-decreasing trees

Decreasing forests

 $F_{n,k}$: n vertices, j internal vertices, n-j leaves

$$F(x, y, t) = \sum_{n,j} F_{n,j} \frac{x^n}{n!} y^j t^{n-j}$$

$$F(x, y, t) = \frac{y - t}{y - t \exp(x(y - t))}$$

Decreasing trees $A(x, y, t) = \ln F(x, y, t)$

(k,0)-decreasing trees

Decreasing forests

 $F_{n,k}$: n vertices, j internal vertices, n-j leaves

$$F(x, y, t) = \sum_{n,j} F_{n,j} \frac{x^n}{n!} y^j t^{n-j}$$

$$F(x, y, t) = \frac{y - t}{y - t \exp(x(y - t))}$$

Decreasing trees $A(x, y, t) = \ln F(x, y, t)$

(k,0)-decreasing trees

Lemma
$$F_k(x) = F(x, y + F_k + F_k^2 + \dots + F_k^{k-1}, 1)$$

Decreasing forests

 $F_{n,k}$: n vertices, j internal vertices, n-j leaves

$$F(x, y, t) = \sum_{n,j} F_{n,j} \frac{x^n}{n!} y^j t^{n-j}$$

$$F(x, y, t) = \frac{y - t}{y - t \exp(x(y - t))}$$

Decreasing trees $A(x, y, t) = \ln F(x, y, t)$

(k,0)-decreasing trees

$$A_k(x) = \ln F_k(x)$$

Proposition [CFM, 15] For $k \geq 2$, $F_k = F(x, y + F_k \frac{1 - F_k^{k-1}}{1 - F_k}, 1)$

$$(k-1)A_k = x \exp(A_k)(1 + \exp(A_k) + \dots + \exp((k-2)A_k))$$

Decreasing forests

 $F_{n,k}$: n vertices, j internal vertices, n-j leaves

$$F(x, y, t) = \sum_{n,j} F_{n,j} \frac{x^n}{n!} y^j t^{n-j}$$

$$F(x, y, t) = \frac{y - t}{y - t \exp(x(y - t))}$$

Decreasing trees $A(x, y, t) = \ln F(x, y, t)$

(k,0)-decreasing trees

$$A_k(x) = \ln F_k(x)$$

Proposition [CFM, 15] For $k \ge 2$, $F_k^{k-1} = \exp\left(xF_k \frac{1 - F_k^{k-1}}{1 - F_k}\right)$

$$(k-1)A_k = x \exp(A_k)(1 + \exp(A_k) + \dots + \exp((k-2)A_k))$$

Decreasing forests

 $F_{n,k}$: n vertices, j internal vertices, n-j leaves

$$F(x, y, t) = \sum_{n,j} F_{n,j} \frac{x^n}{n!} y^j t^{n-j}$$

$$F(x, y, t) = \frac{y - t}{y - t \exp(x(y - t))}$$

Decreasing trees $A(x, y, t) = \ln F(x, y, t)$

(k,0)-decreasing trees

$$A_k(x) = \ln F_k(x)$$

Proposition [CFM, 15] For $k \ge 2$, $F_k^{k-1} = \exp\left(xF_k\frac{1-F_k^{k-1}}{1-F_k}\right)$

$$(k-1)A_k = x \exp(A_k)(1 + \exp(A_k) + \dots + \exp((k-2)A_k))$$

$$k=2:A_2=x\exp(A_2)$$
 rooted Cayley trees!

Enumeration of (k, j)-non-increasing trees

Increasing forests

$$F(x, y, t) = \frac{y-t}{y-t \exp(x(y-t))}$$

Enumeration of (k, j)-non-increasing trees

Increasing forests

$$F(x, y, t) = \frac{y - t}{y - t \exp(x(y - t))}$$

$$(k,j)$$
-non-increasing trees

$$\tilde{A}_k(x) = \ln \tilde{F}_k(x)$$

Lemma
$$\tilde{F}_k(x) = F(x, -1 - \tilde{F}_k - \dots - \tilde{F}_k^{k-1}, \tilde{F}_k^k)$$

[Marked forests, Gessel 96]

Proposition [CFM, 15] For
$$k \geq 2$$
, $\tilde{F}_k^{k+1} = \exp\left(x\frac{1-\tilde{F}_k^{k+1}}{1-\tilde{F}_k}\right)$

$$(k+1)\tilde{A}_k = x(1 + \exp(A_k) + \dots + \exp(kA_k))$$

Link with the regions of the arrangements

Using [Postnikov and Stanley, 00], we get again

Theorem [CFM 15]. There is a bijection between the regions of the arrangements \mathcal{A}_n^{ab} and

- If $a \le 0$ and $b \ge 0$, the (a+b+1,-a)-decreasing forests with n vertices
- If $a \le 0$ and $b \ge 0$ or a=1 and $b \ge 1$, the (a+b-1,1-a)-non-increasing forests with n vertices

Generalization. Poincaré polynomial

$$Poin_{\mathcal{A}}(q) = \sum_{\text{forests}} q^{\text{\#edges(forests)}}$$

Gain graphs and NBC-trees

[Zavlavsky]

$$x_i - x_j = g$$
$$i < j$$

Vertices: $1, 2, \ldots, n$

[Zavlavsky]

$$x_i - x_j = g$$
$$i < j$$

Vertices: $1, 2, \ldots, n$

[Zavlavsky]

$$x_i - x_j = g$$
$$i < j$$

Vertices: $1, 2, \ldots, n$

Balanced gain graph

sum of the gains in any circuit is zero

[Zavlavsky]

$$x_i - x_j = g$$
$$i < j$$

Vertices: $1, 2, \ldots, n$

Balanced gain graph

sum of the gains in any circuit is zero

Height function

Height function ⇔ Balanced gain graph

Height function

$$h = 0$$

$$-3$$

$$-2$$

$$h = 1$$

$$2$$

$$h = 2$$

$$-1$$

$$h = 3$$

$$4$$

$$h(2) = 0, \ h(1) = h(3) = 2, \ h(4) = 1$$

$$x_i - x_j = g \Leftrightarrow h(i) - h(j) = g$$

$$g \in [-3, 2]$$

Order the edges of the gain graph

Broken circuit: balanced circuit without its minimal edge

NBC: set of edges with no broken circuit

Theorem [Whitney] There exists a bijection between

- ullet the NBC-forests with n vertices and
- ullet the regions of \mathcal{A}_n

Order the edges of the gain graph

Broken circuit: balanced circuit without its minimal edge

NBC: set of edges with no broken circuit

Theorem [Whitney] There exists a bijection between

- ullet the NBC-forests with n vertices and
- ullet the regions of \mathcal{A}_n

Our order:
$$O_h$$
 Choose a height function h
$$i <_{O_h} j \quad \text{if} \quad h(i) < h(j) \quad \text{or} \quad h(i) = h(j) \text{ and } i > j$$

Order the edges of the gain graph

Broken circuit: balanced circuit without its minimal edge

NBC: set of edges with no broken circuit

Theorem [Whitney] There exists a bijection between

- ullet the NBC-forests with n vertices and
- ullet the regions of \mathcal{A}_n

Our order: O_h Choose a height function h

$$i <_{O_h} j \quad \text{ if } \quad h(i) < h(j) \quad \text{ or } \quad h(i) = h(j) \text{ and } i > j$$

Order on vertices 2 < 3 < 1 < 4

 \Rightarrow Order on edges 23 < 21 < 24 < 31 < 34 < 14

Order the edges of the gain graph

Broken circuit: balanced circuit without its minimal edge

NBC: set of edges with no broken circuit

Theorem [Whitney] There exists a bijection between

- ullet the NBC-forests with n vertices and
- ullet the regions of \mathcal{A}_n

Our order: O_h Choose a height function h

$$i <_{O_h} j$$
 if

$$i <_{O_h} j$$
 if $h(i) < h(j)$ or $h(i) = h(j)$ and $i > j$

Order on vertices 2 < 3 < 1 < 4

 \Rightarrow Order on edges 23 < 21 < 24 < 31 < 34 < 14

Order the edges of the gain graph

Broken circuit: balanced circuit without its minimal edge

NBC: set of edges with no broken circuit

Theorem [Whitney] There exists a bijection between

- ullet the NBC-forests with n vertices and
- ullet the regions of \mathcal{A}_n

Our order: O_h Choose a height function h

$$i <_{O_h} j$$
 if

$$i <_{O_h} j$$
 if $h(i) < h(j)$ or $h(i) = h(j)$ and $i > j$

Order on vertices 2 < 3 < 1 < 4

 \Rightarrow Order on edges 23 < 21 < 24 < 31 < 34 < 14

Example: linial

Bijection NBC

trees

 \leftrightarrow

Colored trees

Corner: smallest for O_h

NBC-tree of ${\cal K}_n^{[0,k]}$

color 1

$$4 <_{O_h} 6 <_{O_h} 9 <_{O_h} 5$$

color 2

color 3

label:
$$\begin{cases} k+1-h(r_i) & \text{if} \quad r_i < r \\ k+2-h(r_i) & \text{if} \quad r_i > r \end{cases}$$

label:
$$\begin{cases} k+1-h(r_i) & \text{if} \quad r_i < r \\ k+2-h(r_i) & \text{if} \quad r_i > r \end{cases}$$

color 1

color 2

color 3

label:
$$\begin{cases} k+1-h(r_i) & \text{if} \quad r_i < r \\ k+2-h(r_i) & \text{if} \quad r_i > r \end{cases}$$

color 1

color 2

color 3

label:
$$\begin{cases} k+1-h(r_i) & \text{if} \quad r_i < r \\ k+2-h(r_i) & \text{if} \quad r_i > r \end{cases}$$

color 1 color 2

label:
$$\begin{cases} k+1-h(r_i) & \text{if} \quad r_i < r \\ k+2-h(r_i) & \text{if} \quad r_i > r \end{cases}$$

color 1

color 2

color 3

label:
$$\begin{cases} k+1-h(r_i) & \text{if} \quad r_i < r \\ k+2-h(r_i) & \text{if} \quad r_i > r \end{cases}$$

label:
$$\begin{cases} k+1-h(r_i) & \text{if} \quad r_i < r \\ k+2-h(r_i) & \text{if} \quad r_i > r \end{cases}$$

label:
$$\begin{cases} k+1-h(r_i) & \text{if} \quad r_i < r \\ k+2-h(r_i) & \text{if} \quad r_i > r \end{cases}$$

label:
$$\begin{cases} k+1-h(r_i) & \text{if} \quad r_i < r \\ k+2-h(r_i) & \text{if} \quad r_i > r \end{cases}$$

label:
$$\begin{cases} k+1-h(r_i) & \text{if} \quad r_i < r \\ k+2-h(r_i) & \text{if} \quad r_i > r \end{cases}$$

$$5 >_{O_h} 17 >_{O_h} 18 >_{O_h} 16 >_{O_h} 19 >_{O_h} 21 >_{O_h} 4$$

$$5 >_{O_h} 17 >_{O_h} 18 >_{O_h} 16 >_{O_h} 19 >_{O_h} 21 >_{O_h} 4$$

$$5 >_{O_h} 17 >_{O_h} 18 >_{O_h} 16 >_{O_h} 19 >_{O_h} 21 >_{O_h} 4$$

$$5 >_{O_h} 17 >_{O_h} 18 >_{O_h} 16 >_{O_h} 19 >_{O_h} 21 >_{O_h} 4$$

$$5 >_{O_h} 17 >_{O_h} 18 >_{O_h} 16 >_{O_h} 19 >_{O_h} 21 >_{O_h} 4$$

$$5 >_{O_h} 17 >_{O_h} 18 >_{O_h} 16 >_{O_h} 19 >_{O_h} 21 >_{O_h} 4$$

$$5 >_{O_h} 17 >_{O_h} 18 >_{O_h} 16 >_{O_h} 19 >_{O_h} 21 >_{O_h} 4$$

$$5 >_{O_h} 17 >_{O_h} 18 >_{O_h} 16 >_{O_h} 19 >_{O_h} 21 >_{O_h} 4$$

NBC-tree in $K_n^{[-k_2,k_1+k_2]}$

NBC-tree in $K_n^{[-k_2,k_1+k_2]}$

If gain
$$\in [-k_2, k_2 - 1]$$

NBC-tree in $K_n^{[-k_2,k_1+k_2]}$

If gain
$$\in [-k_2, k_2 - 1] \implies c_i$$
 corner of N_i

NBC-tree in $K_n^{[-k_2,k_1+k_2]}$

If gain $\in [-k_2, k_2 - 1] \Rightarrow c_i$ corner of $N_i \Rightarrow (cc_i)$ edge in the decreasing tree of color

NBC-tree in $K_n^{[-k_2,k_1+k_2]}$

If gain
$$\in [-k_2, k_2 - 1] \implies c_i$$
 corner of $N_i \implies (cc_i)$ edge in the decreasing tree of color

$$k_1 + k_2 - h(c_i) \text{ if } c_i < c$$
 $(h(c_i) = \text{gain } \ge 0)$

$$k_1 + k_2 + 1 - h(c_i)$$
 if $c_i > c$ $(h(c_i) = -gain > 0)$

NBC-tree in $K_n^{[-k_2,k_1+k_2]}$

If gain
$$\in [-k_2, k_2 - 1] \Rightarrow c_i$$
 corner of $N_i \Rightarrow (cc_i)$ edge in the decreasing tree of color

$$k_1 + k_2 - h(c_i)$$
 if $c_i < c$ $(h(c_i) = gain \ge 0)$

$$(h(c_i) = gain \ge 0)$$

$$k_1 + k_2 + 1 - h(c_i)$$
 if $c_i > c$ $(h(c_i) = -gain > 0)$

$$(h(c_i) = -\mathsf{gain} > 0)$$

If gain
$$\in [k_2, k_1 + k_2]$$

apply the preceding bijection with the colors in $[1, k_1 + 1]$

 $(k_1 + 1, k_2)$ - decreasing trees

General results

Theorem [CFM 15]. There is a bijection between the regions of the arrangements \mathcal{A}_n^{ab} and

- If $a \le 0$ and $b \ge 0$, the (a+b+1,-a)-decreasing forests with n vertices
- If $a \le 0$ and $b \ge 0$ or a=1 and $b \ge 1$, the (a+b-1,1-a)-non-increasing forests with n vertices

Theorem [CFM 15]. There is a bijection between the regions of the arrangements \mathcal{A}_n^{ab} and

- If $a \le 0$ and $b \ge 0$, the (a+b+1,-a)-decreasing forests with n vertices
- If $a \le 0$ and $b \ge 0$ or a=1 and $b \ge 1$, the (a+b-1,1-a)-non-increasing forests with n vertices

D. Forge (2015)

Other order O'_h

 $i <_{O_h'} j$ if h(i) < h(j) or h(i) = h(j) and i < j

Enumerative consequences

Theorem [CFM 15] There exists a bijection between (k,j)-decreasing trees with n vertices and (k-2,j+1)-non-increasing trees with n vertices

[Conjectured first thanks to Sage and F. Chapoton]

The case of Shi

NBC-trees with order O'_h

Cayley trees

NBC-trees with order O_h

2-decreasing trees

The case of Shi

The case of Shi

Bijection Cayley \leftrightarrow (2,0)-decreasing

color 1 color 2

color 1 color 2

Lemma. Root of the Cayley tree

 \leftrightarrow vertex at the end of the 2-decreasing path of the (2,0)-decreasing tree.

Lemma. Increasing vertices in the Cayley trees

 \leftrightarrow vertices who have a decreasing 2-edge in the (2,0)-decreasing tree.

Lemma. Root of the Cayley tree

 \leftrightarrow vertex at the end of the 2-decreasing path of the (2,0)-decreasing tree.

Lemma. Increasing vertices in the Cayley trees

 \leftrightarrow vertices who have a decreasing 2-edge in the (2,0)-decreasing tree.

Lemma. Root of the Cayley tree

 \leftrightarrow vertex at the end of the 2-decreasing path of the (2,0)-decreasing tree.

Lemma. Increasing vertices in the Cayley trees

 \leftrightarrow vertices who have a decreasing 2-edge in the (2,0)-decreasing tree.

Generalization

Theorem [CFM 15] There exists a bijection between (k,j)-decreasing trees with n vertices and (k-2,j+1)-non-increasing trees with n vertices

Generalization

Theorem [CFM 15] There exists a bijection between (k,j)-decreasing trees with n vertices and (k-2,j+1)-non-increasing trees with n vertices

vertices with a decreasing $k\text{-edge} \leftrightarrow$ increasing vertices on the first free color

Ongoing projects

• Simple bijections? (2,0)-decreasing trees \leftrightarrow rooted Cayley trees (1,1)-decreasing \leftrightarrow labelled binary trees....

Iink with parking functions
 regions of the Shi arrangement ↔ parking functions [Athanasiadis & Linusson 99]

- Other Coxeter arrangements $x_i \pm x_j = g$ [Athanasiadis 99]
- Ish arrangement [Armstrong et al, 10]
- Counting bounded regions

Merci!