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The term “chiral” comes from the greek χựư̆ρ 
(kheir), which means hand.

In 1893 Lord Kelvin use the term “chiral” in a 
scientific context for the first time:

“I call any geometrical figure, or group of points, 
'chiral', and say that it has chirality if its image in a 
plane mirror, ideally realized, cannot be brought to 
coincide with itself”
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Chirality in chemistry

Thalidomide
One is a sedative, the other one weakens 

the bones (and can produce birth defects)
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Chirality in mathematics

Snob cubeTrefoil knot
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Abstract polytopes



Abstract polytopes generalize the (face lattice) of 
convex (and some other “classic” geometric) 
polytopes to combinatorial structures.
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Polyhedra

In the 1920’s…

Brahana: 
maps in surfaces 

(he was in algebra!)

Projective plane

Torus
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Polyhedra



Higher dimensions

Convex polytopes 
Ludwig Schläfli (1852)

Convex hull of a finite 
number of points
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Coxeter



Higher dimensions

Polyhedra and polytopes:

Combinatorics

Geometry

Topology

Group Theory

(1907-2003)
Coxeter



maps on 
surfaces

convex 
polytopes

1970´s

G
rü

nb
au

m
 



maps on 
surfaces

convex 
polytopes

1970´s

G
rü

nb
au

m
 

P r o p o s e s t o s t u d y
“polytopes” whose facets
and vertex-figures are
not spherical



maps on 
surfaces

convex 
polytopes

1970´s

G
rü

nb
au

m
 

Ti
ts
 

P r o p o s e s t o s t u d y
“polytopes” whose facets
and vertex-figures are
not spherical

D e v e l o p s t h e
ideas of incidence
geometries
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Danzer & Schulte 
(early 1980´s) 

I n c i d e n c e 
polytopes, now 
called abstract 
polytopes
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Technical: Min and max element

Flags: n+2 elements

Strongly connected

Diamond

An abstract n-polytope is a partially ordered set 
endowed with a rank function to {-1,0,…,n} 
(dimension, in the convex case)
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Vertices

Edges
1-skeleton
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Two flags are adjacent if  
they differ in exactly on one 
face.

Φ
Flag

Φi
Its (unique!)  

i-adjacent

Given an abstract polytope P
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An automorphism of a polytope P is a order 
preserving bijection of P.

An automorphism of a polytope P is a bijection of 
the set of flags of P that preserves the 
incidences.

We often study automorphisms through their 
action on the flags of the polytope.
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If a polytope is regular, fixing a base flag ứ, there 
exist automorphisms ρi, for each i, such that  
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i

ρi

If a polytope is such that, fixing a base flag ứ, there 
exist automorphisms ρi, for each i, satisfying  

ứρi=ứi 

then the polytope is regular.



ρ2

ρ1
ρ0

Φ
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i

ρi

Regular case:

ρ2

ρ1
ρ0

Φ
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All rank 2 polytopes are regular (easy to see)

There are no finite chiral polytopes in 
Euclidian 3-space (Schulte)

There are no convex chiral polytopes (McMullen)

A polytope is chiral if its automorphism group 
has two orbits on flags with adjacent flags in 
different orbits.
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A polytope is chiral if its automorphism group has 
two orbits on flags with adjacent flags 
in different orbits

σ1
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A polytope is chiral if its automorphism group has 
two orbits on flags with adjacent flags 
in different orbits



Rank 4



Rank 4

Coxeter ~1970’s constructed some by making
quotients of hyperbolic tessellations and forcing
right and left Petire polygons to be of different
lenght



Rank 4

Coxeter ~1970’s constructed some by making
quotients of hyperbolic tessellations and forcing
right and left Petire polygons to be of different
lenght

During the 1990´s, Monson, Nostrand, Schulte,
Weiss constructed infinite families
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Rank 5
2006 Conder, H. Pisanski. First examples of finite
chiral rank 5 polytopes.

Higher ranks

In the 1990´s Schulte and Weiss gave a construction
in which, given a finite chiral n-polytope,
constructed a (locally) infinite chiral (n+1)-polytope

Ranks 6-8
2009 Conder, Devillers
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Higher ranks

2014 Cunningham, Pellicer.
Constructed chiral (n+1)-polytopes provided they
have chiral n-polytopes with regular facets

2010 Pellicer.
Gave a recursive construction and showed that they
exist for every rank…
Their groups are uncontrollable
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Why is it so difficult???

n-1

n-2

j

The faces of rank
n-2 are always

regular



A polytope is chiral if its automorphism group has 
two orbits on flags with adjacent flags in different 
orbits

The automorphism of a chiral n-polytope P can be 
generated by σ1, …, σn-1 such that

(σi…σj)2 =  ự    for     i < j



A polytope is chiral if its automorphism group has 
two orbits on flags with adjacent flags in different 
orbits

The automorphism of a chiral n-polytope P can be 
generated by σ1, …, σn-1 such that

(σi…σj)2 =  ự    for     i < j

and the generators satisfy certain “intersection 
conditions”



1991. Schulte and Weiss 
Given a group ỉ with distinguished generators  

σ1, …, σn-1  
such that:
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and satisfying certain “intersection conditions”, 
one can construct an n-polytope with ỉ acting on it.



1991. Schulte and Weiss 
Given a group ỉ with distinguished generators  

σ1, …, σn-1  
such that:

(σi…σj)2 =  ự    for     i < j

and satisfying certain “intersection conditions”, 
one can construct an n-polytope with ỉ acting on it.

The resulting polytope is either 
chiral or regular



Some open questions
• Given a (finite) group ỉ, is there a chiral 

polytope having ỉ as its automorphism 
group? 

• Given a (finite/simple) group ỉ, can one 
determine all chiral polytopes having ỉ as 
automorphism group? 

• Given a (finite) regular n-polytope P,  is there 
a (finite) chiral polytope whose facets are all 
isomorphic to P? Can one classify them all?



Some open questions

• For each dimension n, is there a finite 
“geometrically chiral” n-polytope in Rn? Can 
one classify them all? 

• Can one classify all chiral (n-1)-polytopes in 
Rn? 

• Given a graph G, is there a chiral polytope 
having G as its 1-skeleton? Can one classify 
them all?



Some open questions

• The smallest chiral polytopes are known for 
ranks 3, 4 and 5. What are is the smallest 
chiral polytope of rank 6? Of rank n? 

• How prevalent is chirality (vs. regularity) 
among n-chiral polytopes? (or among 
polytopes with certain properties, for 
example, with a given automorphism group 
or with a given 1-skeleton)



• For each dimension n, is there a finite 
“geometrically chiral” n-polytope in Rn?

In a work with Javier Bracho and Daniel Pellicer, 
we found the first example of a chiral 4-polytope 
in R4. (The one on the video!) 

The polytope is combinatorially regular, but 
geometrically chiral. 

It’s 1-skeleton is the hypercube. 

The facets are double covers of a cube. 

The automorphism group is the rotational group 
of the hyper-cube.
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For ỉ = An or ỉ = Sn 

(work with Marston Conder, Eugenia O’Reilly and 
Daniel Pellicer)

Recently we showed that: 
For all but finitely many n, both Sn and An are the 
automorphism group of a chiral 4-polytope

We are working on showing that that: 
Given d>4,  for infinitely many n, both Sn and An are 
the automorphism group of a chiral d-polytope



• How prevalent is chirality (vs. regularity) 
among n-chiral polytopes with Suzuki simple 
groups Sz(q)?

In a work with Dimitri Leemans we showed that: 

• there are no chiral n-polytopes for n>4, with 
automorphism group Sz(q).  

• if a(q) is the number of regular 3-polytopes with 
Sz(q), and b(q) the number of chiral ones, then 

b(q) = O(qŁa(q))



THANK YOU!


