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The flip operation

Flip graph on the triangulations of the polygon:

Vertices: triangulations Edges: flips

(n+ 3)-gon = n diagonals = the flip graph is n-regular.



Definition
An associahedron is a polytope whose graph is the flip graph
of triangulations of a convex polygon.
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Useful configuration (Loday's)
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Graph point of view

{diagonals of G,,3} <— {strict subpaths of the path [n+ 1]}
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Non-crossing diagonals

Two ways to be non-crossing in Loday's configuration:

0. . S 0. . S
1 7 1 7
2 6 2 6
3 1 5 3 A 5

nested subpaths non-adjacent subpaths




Caution with the second case:

The right condition is indeed non-adjacent, disjoint is not
enough!
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Now do it on graphs

G = (V,E) a (connected) graph.
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Now do it on graphs

G = (V, E) a (connected) graph.

@ A tube of G is a proper subset t C V inducing a
connected subgraph of G;

e t and t' are compatible if they are nested or
non-adjacent;

@ A tubing on G is a set of pairwise compatible tubes of G.
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A tube A maximal tubing

(generalizes a diagonal) (generalizes a triangulation)



Graph associahedra

Theorem (Carr-Devadoss '06)

There exists a polytope Assog, the graph associahedron
of G, realizing the complex of tubings on G.

Faces <> tubings of G.



Some classical polytopes...
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The associahedron The cyclohedron The permutahedron



...can be seen as graph associahedra
= SR

The associahedron The cyclohedron The permutahedron




Many different associahedra

Hohlweg-Lange [HL]: O(2")

Ceballos-Santos-Ziegler [CSZ] (Santos): O(Cat(n))

[HL] N [CSZ] = Chapoton-Fomin-Zelewinsky [CFZ] (type A): 1



Few graph associahedra

Carr-Devadoss [CD]: 1 C Postnikov [P]: 1

Volodin [Vol]: 777
Probably many, but not explicit.
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Fans

Polyhedral Cone: positive span of finitely many vectors. //
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Simplicial Cone: positive span of independent vectors.
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Fan = set of polyhedral cones intersecting properly.

Simplicial Fan: fan whose cones all are simplicial.
Complete Fan: fan whose cones cover the whole space.



polytope = complete fan (normal fan).

simple polytope = complete simplicial fan.



Santos' construction for the fan

— choose an initial triangulation T, of the polygon.

set Uy, = —¢;




Santos' construction for the fan

— choose an initial triangulation T, of the polygon.

set Uy, = —¢;

— for a diagonal d ¢ To, define Uug = (]I.d crosses d,')d,'ETo'
— for a triangulation T, define C(T) = cone(uy|d € T).
— Define 7 = {C(T)|T triangulation}.



Theorem (Ceballos-Santos-Ziegler 13)

F is a complete simplicial fan realizing the associahedron.




Theorem (Ceballos-Santos-Ziegler 13)

F is a complete simplicial fan realizing the associahedron.
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|dea of the proof

— The cone C(Ty) is the negative orthant.

= full-dimensional and simplicial
— Local condition on flips T <> T" =T ~ {d} U {d'}.

< us >5eT\{d}§



Checking local conditions

— Formulation: aug + o’ ugr + Z Bsus = 0= a.a/ > 0.
oeT~{d}



Checking local conditions

— Formulation: aug + o’ ugr + Z Bsus = 0= a.a/ > 0.
oeT~{d}

— Reduction:

— Finite number of linear dependences to check explicitly.
[



For graphs?
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— impossible to choose —1,0, 1 coordinates.



The compatibility degree

— notion of compatibility degree between two tubes (t || t').



The compatibility degree

— notion of compatibility degree between two tubes (t || t').

0 otherwise.

—lift=1t,
(t ]| t') = { #(neighbors of t' in t ') if t' Z t,

— Counts compatibility obstructions.
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The result!

— Define u, = ((t || t1), ..., (t || tn))
— For a maximal tubing T, define C(T) = cone(u:|t € T).
— Define Fg = {C(T)|T triangulation}.
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The result!

— Define u, = ((t || t1), ..., (t || tn))
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Link with cluster complexes

— [CFZ]: compatibility degrees between roots in finite types
to construct generalized associahedra.
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Link with cluster complexes

— [CFZ]: compatibility degrees between roots in finite types
to construct generalized associahedra.

{Generalized Associahedra}(\{Graph Associahedra} = A, B, C.

type | graph
A path
B | cycle
C | cycle




Link with cluster complexes

— [CFZ]: compatibility degrees between roots in finite types
to construct generalized associahedra.

{Generalized Associahedra}(\{Graph Associahedra} = A, B, C.

type | graph roots tubes
A | path (ala) | (t] )
B | cycle (ala)](t]t)
C | cycle (o] o) | (£]]
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