Compatibility fans realizing graph associahedra

Thibault Manneville (LIX, Polytechnique)

joint work with Vincent Pilaud (CNRS, LIX Polytechnique)

Journées du GDR-IM CombAlg September 22th, 2015

The flip operation

Flip graph on the triangulations of the polygon:

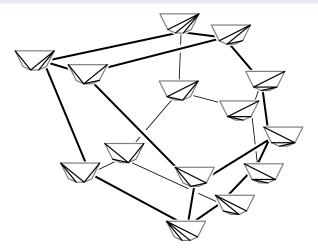
Vertices: triangulations

Edges: flips

(n+3)-gon $\Rightarrow n$ diagonals \Rightarrow the flip graph is n-regular.

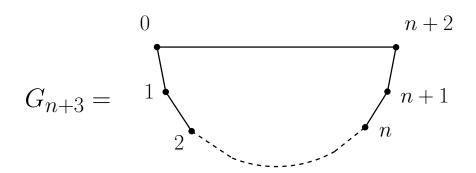
Definition

An *associahedron* is a polytope whose graph is the flip graph of triangulations of a convex polygon.



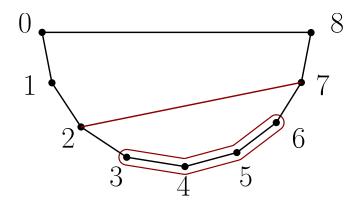
Faces ↔ dissections of the polygon

Useful configuration (Loday's)



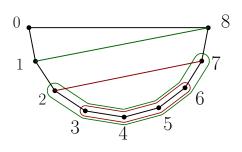
Graph point of view

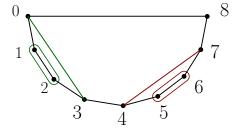
 $\{ \text{diagonals of } G_{n+3} \} \longleftrightarrow \{ \text{strict subpaths of the path } [n+1] \}$



Non-crossing diagonals

Two ways to be non-crossing in Loday's configuration:



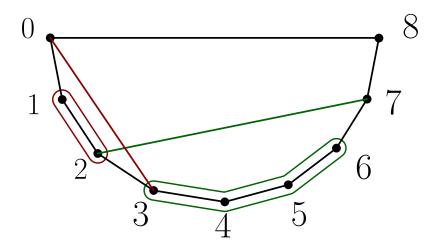


nested subpaths

non-adjacent subpaths

Caution with the second case:

The right condition is indeed *non-adjacent*, disjoint is not enough!



$$G = (V, E)$$
 a (connected) graph.

Definition

$$G = (V, E)$$
 a (connected) graph.

Definition

• A *tube* of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;

G = (V, E) a (connected) graph.

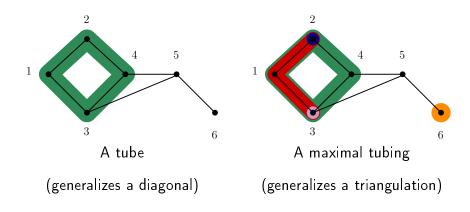
Definition

- A *tube* of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;
- t and t' are compatible if they are nested or non-adjacent;

G = (V, E) a (connected) graph.

Definition

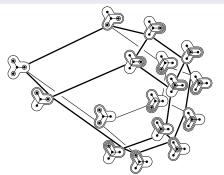
- A *tube* of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;
- t and t' are compatible if they are nested or non-adjacent;
- A *tubing* on *G* is a set of pairwise compatible tubes of *G*.



Graph associahedra

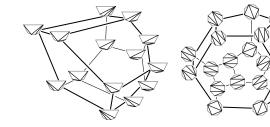
Theorem (Carr-Devadoss '06)

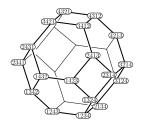
There exists a polytope \mathbf{Asso}_G , the **graph associahedron** of G, realizing the complex of tubings on G.



Faces \leftrightarrow tubings of G.

Some classical polytopes...



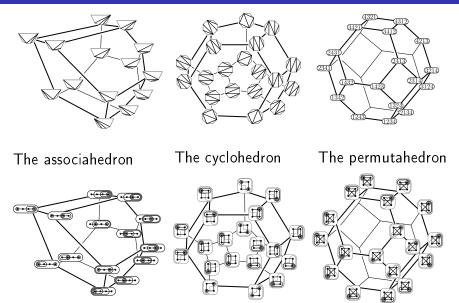


The associahedron

The cyclohedron

The permutahedron

...can be seen as graph associahedra



Many different associahedra

Hohlweg-Lange [HL]: $O(2^n)$

```
Ceballos-Santos-Ziegler [CSZ] (Santos): O(Cat(n))
```

 $[HL] \cap [CSZ] = Chapoton-Fomin-Zelewinsky [CFZ] (type A): 1$

Few graph associahedra

```
Carr-Devadoss [CD]: 1 ⊂ Postnikov [P]: 1

Volodin [Vol]: ???

Probably many, but not explicit.
```

Many different associahedra

```
Hohlweg-Lange [HL]: O(2^n)
Ceballos-Santos-Ziegler [CSZ] (Santos): O(Cat(n))
```

```
[HL] \cap [CSZ] = Chapoton-Fomin-Zelewinsky [CFZ] (type A): 1
```

 $Polyhedral\ Cone:\ positive\ span\ of\ finitely\ many\ vectors.$

Polyhedral Cone: positive span of finitely many vectors.

Simplicial Cone: positive span of independent vectors.

Polyhedral Cone: positive span of finitely many vectors.

Simplicial Cone: positive span of independent vectors.

 ${\sf Fan} = {\sf set} \ {\sf of} \ {\sf polyhedral} \ {\sf cones} \ {\sf intersecting} \ {\sf properly}.$

Polyhedral Cone: positive span of finitely many vectors.

Simplicial Cone: positive span of independent vectors.

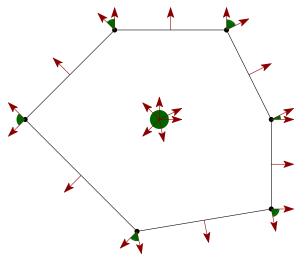
Fan = set of polyhedral cones intersecting properly.

Simplicial Fan: fan whose cones all are simplicial.

Complete Fan: fan whose cones cover the whole space.

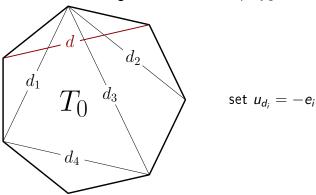
polytope \Rightarrow complete fan (normal fan).

 $\mathsf{simple}\ \mathsf{polytope} \Rightarrow \mathsf{complete}\ \mathsf{simplicial}\ \mathsf{fan}.$



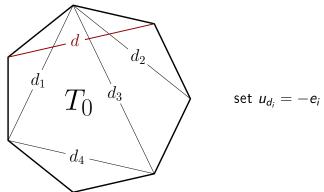
Santos' construction for the fan

 \rightarrow choose an initial triangulation T_0 of the polygon.



Santos' construction for the fan

 \rightarrow choose an initial triangulation T_0 of the polygon.



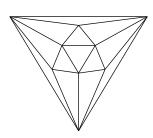
- ightarrow for a diagonal $d
 otin T_0$, define $u_d = (1_{d \text{ crosses } d_i})_{d_i \in T_0}$.
- \rightarrow for a triangulation T, define $C(T) = cone(u_d | d \in T)$.
- \rightarrow Define $\mathcal{F} = \{C(T)|T \text{ triangulation}\}.$

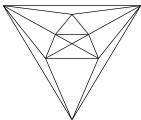
Theorem (Ceballos-Santos-Ziegler 13)

 ${\cal F}$ is a complete simplicial fan realizing the associahedron.

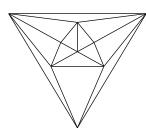
Theorem (Ceballos-Santos-Ziegler 13)

 ${\cal F}$ is a complete simplicial fan realizing the associahedron.





$$T_0 = \langle \rangle$$



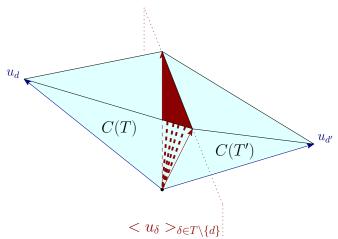
$$T_0 = \langle \rangle$$

Idea of the proof

 \rightarrow The cone $C(T_0)$ is the negative orthant. \Rightarrow full-dimensional and simplicial

Idea of the proof

- \rightarrow The cone $C(T_0)$ is the negative orthant.
 - \Rightarrow full-dimensional and simplicial
- ightarrow Local condition on flips $T \leftrightarrow T' = T \setminus \{d\} \cup \{d'\}$.



Checking local conditions

$$\rightarrow$$
 Formulation: $\alpha u_d + \alpha' u_{d'} + \sum_{\delta \in T \setminus \{d\}} \beta_{\delta} u_{\delta} = 0 \Rightarrow \alpha . \alpha' > 0.$

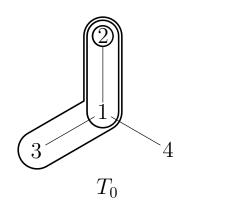
Checking local conditions

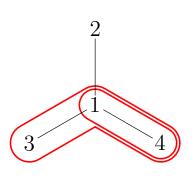
$$\rightarrow \text{ Formulation: } \alpha \textit{\textbf{u}}_\textit{\textbf{d}} + \alpha' \textit{\textbf{u}}_\textit{\textbf{d}'} + \sum_{\delta \in \mathcal{T} \smallsetminus \{\textit{\textbf{d}}\}} \beta_\delta \textit{\textbf{u}}_\delta = 0 \Rightarrow \alpha.\alpha' > 0.$$

 \rightarrow Reduction:

ightarrow Finite number of linear dependences to check explicitly.

For graphs?





ightarrow impossible to choose -1,0,1 coordinates.

The compatibility degree

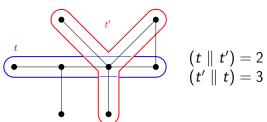
 \rightarrow notion of compatibility degree between two tubes $(t \parallel t')$.

The compatibility degree

ightarrow notion of compatibility degree between two tubes $(t \parallel t')$.

$$(t \parallel t') = \begin{cases} -1 \text{ if } t = t', \\ \#(\text{neighbors of } t' \text{ in } t \setminus t') \text{ if } t' \not\subseteq t, \\ 0 \text{ otherwise.} \end{cases}$$

→ Counts compatibility obstructions.



The result!

- ightarrow Define $u_t = ((t \parallel t_1), \ldots, (t \parallel t_n))$
- ightarrow For a maximal tubing T, define $C(T) = cone(u_t|t \in T)$.
- \rightarrow Define $\mathcal{F}_G = \{C(T)|T \text{ triangulation}\}.$

The result!

- ightarrow Define $u_t = ((t \parallel t_1), \ldots, (t \parallel t_n))$
- \rightarrow For a maximal tubing T, define $C(T) = cone(u_t|t \in T)$.
- \rightarrow Define $\mathcal{F}_G = \{C(T)|T \text{ triangulation}\}.$

Theorem (M.,Pilaud 15)

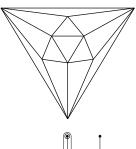
 \mathcal{F}_G is a complete simplicial fan realizing Asso_G.

The result!

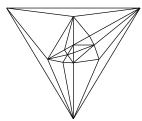
- ightarrow Define $u_t = ((t \parallel t_1), \ldots, (t \parallel t_n))$
- \rightarrow For a maximal tubing T, define $C(T) = cone(u_t|t \in T)$.
- \rightarrow Define $\mathcal{F}_G = \{C(T)|T \text{ triangulation}\}.$

Theorem (M.,Pilaud 15)

 \mathcal{F}_G is a complete simplicial fan realizing Asso_G.







Link with cluster complexes

→ [CFZ]: compatibility degrees between roots in finite types to construct generalized associahedra.

 $\{Generalized Associahedra\} \cap \{Graph Associahedra\} = A, B, C.$

Link with cluster complexes

→ [CFZ]: compatibility degrees between roots in finite types to construct generalized associahedra.

 $\{Generalized Associahedra\} \cap \{Graph Associahedra\} = A, B, C.$

type	graph
Α	path
В	cycle
C	cycle

Link with cluster complexes

→ [CFZ]: compatibility degrees between roots in finite types to construct generalized associahedra.

 $\{Generalized Associahedra\} \cap \{Graph Associahedra\} = A, B, C.$

type	graph
Α	path
В	cycle
C	cycle

roots	tubes
$(\alpha \parallel \alpha')$	$(t \parallel t')$
$(\alpha \parallel \alpha')$	$(t \parallel t')$
$(\alpha \parallel \alpha')$	$(t' \parallel t)$

THANK YOU FOR YOUR AMAZED ATTENTION!