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o [n]={1,2,...,n}forneN

@ antichain: set of pairwise incomparable subsets of [n]

Theorem (E. Sperner, 1928)

The maximal size of an antichain of [n] is (Lg )-




@ /-family: family of subsets of [n] that can be written as
a union of at most k antichains

Theorem (P. Erdds, 1945)

The maximal size of a k-family of [n] is the sum of the k largest
binomial coefficients.




@ poset perspective:

e antichain of [1] +— antichain in the Boolean lattice 3,
o binomial coefficients «— rank numbers of 5,



@ poset perspective:

e antichain of [1] +— antichain in the Boolean lattice 3,
o binomial coefficients «— rank numbers of 5,

@ P .. graded poset of rank n

@ k-Sperner: size of a k-family does not exceed sum of k
largest rank numbers

@ strongly Sperner: k-Sperner for allk <n



@ a strongly Sperner poset



@ a Sperner poset that is not 2-Sperner
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@ strongly Sperner posets:

o Boolean lattices
divisor lattices
lattices of noncrossing set partitions
Bruhat posets of finite Coxeter groups
weak order lattice of Hj

@ non-Sperner posets:

o lattices of set partitions
o geometric lattices
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@ strongly Sperner posets:
@ Boolean lattices
divisor lattices (symmetric chain decompositions)

lattices of noncrossing set partitions
Bruhat posets of finite Coxeter groups
weak order lattice of H3  (no symmetric chain decomposition)

@ non-Sperner posets:

o lattices of set partitions (of very large sets...)
e geometric lattices (certain bond lattices of graphs)



@ Motivation
© Symmetric Chain Decompositions

€ Noncrossing Partition Lattices
@ Complex Reflection Groups
@ Noncrossing Partitions

@ Symmetric Chain Decompositions of NCqa,am
@ The Group G(d,d, n)
@ A First Decomposition
@ A Second Decomposition

@ Strong Sperner Property of ACyy



© Symmetric Chain Decompositions



@ P .. graded poset of rank n

@ decomposition: partition of P into connected
subposets



@ P .. graded poset of rank n

@ symmetric decomposition: parts sit in P
symmetrically, i.e. match minimal and maximal
elements so that ranks add up to n
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@ P .. graded poset of rank n

@ symmetric decomposition: parts sit in P
symmetrically, i.e. match minimal and maximal
elements so that ranks add up to n



@ P .. graded poset of rank n

@ symmetric chain decomposition: symmetric
decomposition where parts are chains



@ P .. graded poset of rank n

If P admits a symmetric chain decomposition, then P is strongly
Sperner.




@ P .. graded poset of rank n

If P and Q admit a symmetric chain decomposition, then so does
P x Q.




@ P .. graded poset of rank 1; N; .. size of it" rank

@ rank-symmetric: N; = N,,_;
@ rank-unimodal: Ng <--- < N; > --- > Ny

@ Peck: strongly Sperner, rank-symmetric,
rank-unimodal

If P admits a symmetric chain decomposition, then P is Peck. l
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@ rank-symmetric: N; = N,,_;
@ rank-unimodal: Ng <--- < N; > --- > Ny

@ Peck: strongly Sperner, rank-symmetric,
rank-unimodal

If P and Q are Peck, then sois P x Q. l
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@ one infinite family G(de, e, n):
e monomial (n X n)-matrices
e non-zero entries are (de)™ roots of unity
e product of non-zero entries is d™ root of unity

@ 34 exceptional groups Gy, Gs, ..., Gs7



@ one infinite family G(de, e, n):
e monomial (n X n)-matrices
e non-zero entries are (de)™ roots of unity
e product of non-zero entries is d™ root of unity

@ 34 exceptional groups Gy, Gs, ..., Gs7

o well-generated complex reflection groups:
G(1,1,n),n>1

Gd,1,n),d>2,n>1

G(d,d,n),dn>?2

26 exceptional groups



@ one infinite family G(de, e, n):
e monomial (n X n)-matrices
e non-zero entries are (de)™ roots of unity
e product of non-zero entries is d™ root of unity

@ 34 exceptional groups Gy, Gs, ..., Gs7

o finite Coxeter groups:

G(l, 1, 1’!) = An—l

G(2,1,n) = B,

G(2,2,n) =D,

G(d,d,2) = L(d)

G2y = H3, Gog = Fy, G3p = Hy, G35 = Es, G3g = E7,
Gsy = Eg



@ Motivation
© Symmetric Chain Decompositions

€ Noncrossing Partition Lattices

@ Noncrossing Partitions

e Symmetric Chain Decompositions of NCG(M,”)

@ Strong Sperner Property of ACyy



@ W .. complex reflection group; T .. reflections of W; c ..
Coxeter element

@ absolute length: ¢7(w) = min{k | w = ity - -, t; € T}
@ absolute order: u <r v if and only if
ET(U) = éT(M) + ET(u_lv)
@ W-noncrossing partitions:
NCw(c) ={we W|w <rc}
e write MCw(c) = (NCw(c), <t)



@ Symmetric Chain Decompositions of NCqa,am
@ The Group G(d,d, n)
@ A First Decomposition
@ A Second Decomposition



e W=G(1,1,n) = n)
@ NCg(1,1,)(c) is isomorphic to the lattice of noncrossing
set partitions of [n]

@ Ry = {w € NCq1,1,0)(c) | w(1) =k}, Rp = (R, <7)

Sy; T .. transpositions; c = (12 ...



e W=G(1,1,n) = n)

Sy; T .. transpositions; c = (12 ...

@ NCg(1,1,)(c) is isomorphic to the lattice of noncrossing
set partitions of [n]

@ Ry = {w € NCq1,1,0)(c) | w(1) =k}, Rp = (R, <7)
@ W .. disjoint set union; 2 .. 2-chain

Lemma (R. Simion & D. Ullmann, 1991)

We have Rq W Ry = 2 x NCq1,1,4-1), and

Ri = NCG(l,l,i*Z) X NCG(l,l,n7i+1) whenever 3 < i < n.
Moreover, this decomposition is symmetric.




e W=G(1,1,n) = n)
@ NCg(1,1,)(c) is isomorphic to the lattice of noncrossing
set partitions of [n]

@ Ry = {w € NCq1,1,0)(c) | w(1) =k}, Rp = (R, <7)
@ W .. disjoint set union; 2 .. 2-chain

Sy; T .. transpositions; c = (12 ...

Theorem (R. Simion & D. Ullmann, 1991)

The lattice NC G(1,1,n) admits a symmetric chain decomposition for
eachn > 1.
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@ Motivation
© Symmetric Chain Decompositions

€ Noncrossing Partition Lattices

e Symmetric Chain Decompositions of NCG(M,”)
@ The Group G(d,d, n)

@ Strong Sperner Property of ACyy



@ subgroups of &, permuting elements of

{10, 00,10, a0, 16D, o)

@ w € G(d,d, n) satisfies w(k(s)) = 71(k) s+

0 Y/ 1t =0 (modd)
o € &y, and f; depends on w and k



coo o

NI
G o o o o
c oo =
coo c o
c o - c o

@ Coxeter element






@ Motivation
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€ Noncrossing Partition Lattices

e Symmetric Chain Decompositions of NCG(M,”)

@ A First Decomposition

@ Strong Sperner Property of ACyy






Lemma (3%, 2015)

The sets Rgs) and R,ES/) are empty for 2 < s < d as well as
2<k<nandl <s' <d-1.




Lemma (3%, 2015)

The poset Rgo) W Rgo) is isomorphic to 2 X NCg(g4n-1) -
Moreover, its least element has length 0, and its greatest element
has length n.




Lemma (3%, 2015)

The poset R,(f) is isomorphic to NCg(11,4—1) for 0 < s < d.
Moreover, its least element has length 1, and its greatest element
has length n — 1.




Lemma (3%, 2015)

The poset Rfo) is isomorphic to NCg(g 4 n—ir1) X NCq(1,1,i-2)
whenever 3 < i < n. Moreover, its least element has length 1,
and its greatest element has length n — 1.




Lemma (3%, 2015)

The poset Rfdfl) is isomorphic to NCg(11,u—iy X NCq(ad,i-1)
whenever 3 < i < n. Moreover, its least element has length 1,
and its greatest element has length n — 1.




Lemma (3%, 2015)

The poset Rgl) is isomorphic to NC G(1,1,n—2) - Moreover, its least
element has length 2, and its greatest element has length n — 1.




Lemma (3%, 2015)

The poset Rgdﬁl) is isomorphic to NC (1,1, n—) - Moreover, its
least element has length 1, and its greatest element has length
n—2.










@ Motivation
© Symmetric Chain Decompositions

€ Noncrossing Partition Lattices

@ Symmetric Chain Decompositions of NCqa,am

@ A Second Decomposition

@ Strong Sperner Property of ACyy



@ bad parts: Rgl) and Réd_l)



@ bad parts: Rgl) and Réd_l)
@ consider the map
A RY = NCoaam(c), x+ ((1(0) n(d—2)))x



@ bad parts: Rgl) and Réd_l)
@ consider the map
frr R S REY, xe (100062



@ bad parts: Rgl) and Réd_l)
@ consider the map
fi:RW S REY s ((1<0> n(d‘z)))x

@ this map is an injective involution

@ its image consists of permutations w € Rsld_l) with

w(,q(dfl)) — 100
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@ bad parts: Rgl) and Rgd_l)
@ consider the map
frr R S REY, xe (100062

Lemma (3%, 2015)

The interval (f1 (Rgl)), ST) is isomorphic to NC G(11,n-2)-




@ bad parts: Rgl) and Réd_l)
@ consider the map
fi:RW S REY s ((1<0> n(d‘z)))x

@ define D = Rgl) W f1 (Rgl)), and Dy = (D1, <r)



@ bad parts: Rgl) and Rgd_l)
@ consider the map
fi:RW S REY s ((1<0> n(@-2) ))x

@ define D = Rgl) W f1 (Rgl)), and Dy = (D1, <r)

Lemma (3%, 2015)

The poset D; is isomorphic to 2 x NC(1,1,4—o). Moreover, its
least element has length 1, and its greatest element has length
n—1




@ bad parts: Rgl) and Réd_l)
@ consider the map
d—
foi RETY = Negan (@), x> (20 n®))x



@ bad parts: Rgl) and Réd_l)
@ consider the map
f: Rgd_l) SRV x ((2(0) n(o)))x



@ bad parts: Rgl) and Réd_l)
@ consider the map
LR S RETY, v (200 00))x

@ this map is an injective involution

@ its image consists of permutations w € Rsld_l) with

w<n(d71)> — p(d-1)



@ bad parts: Rgl) and Réd_l)
@ consider the map

LR S RETY, v (200 00))x
@ this map is an injective involution

@ its image is the interval

[((1(0) nd=1) z(d—n)), ((1@) nld=1) 2d=1) (n_1><d—1>))h



@ bad parts: Rgl) and Rgd_l)
@ consider the map
LR S RETY, v (200 00))x

Lemma (3%, 2015)

The interval (fz (Réd_l)), ST) is isomorphic to NCG(l,l,n—2)-




@ bad parts: Rgl) and Réd_l)

1) consider the map

HRTYD S RIED .y ((2(0) n(o)))x

@ define D, = Rgd_l) W (Réd_1)>, and D, = (D3, <)




@ bad parts: Rgl) and Rgd_l)
° consider the map

f2:R L REY xs <<2(0) n(o)))x

o define D, = Rgd_l) Wh (Rgd_1)>, and D, = (Dy, <r)

Lemma (3%, 2015)

The poset D, is isomorphic to 2 x NC(1,1,4—o). Moreover, its
least element has length 1, and its greatest element has length
n—1




@ bad parts: Rgl) and Rgd_l)

o define D = R\ (f1 (Rg“) W (Rg"‘”)), and
D= (D,<r)

Lemma (3%, 2015)

The poset D is isomorphic to W!—3' NC c(11,i—2) X NCG1,n—i)-
Morever, its minimal elements have length 2, and its maximal
elements have length n — 2.




Theorem (3%, 2015)

Ford,n > 2 the lattice NCG(d,d,n) admits a symmetric chain
decomposition. Consequently, it is Peck.










@ Strong Sperner Property of ACyy
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decompositions

@ what about the other well-generated complex reflection
groups?
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The lattice NC (21 ) admits a symmetric chain decomposition for
anyn > 1.
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groups?
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@ so far: NCg(11,,) and NCg 44, admit symmetric chain
decompositions

@ what about the other well-generated complex reflection
groups?

o we have NCg 51,0 = NCqg1m ford > 2andn > 1

@ only the 26 exceptional groups remain

Theorem (V. Reiner, 1997)

The lattice NC (21 ) admits a symmetric chain decomposition for
anyn > 1.




@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed
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@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed
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@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed
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@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed
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@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

Proposition (3, 2015)

A graded poset P of rank n is strongly Sperner if and only if P|i]
is Sperner foralli € {0,1,...,n}.




@ P .. graded poset of rank n
@ PJi] .. subposet of P with i largest ranks removed

Proposition (3, 2015)

A graded poset P of rank n is strongly Sperner if and only if P|i]
is Sperner foralli € {0,1,...,n}.

@ antichains in P[i] are antichains in P|[s] for s < i



@ SAGE has a fast implementation to compute the size of
the largest antichain of a poset



@ SAGE has a fast implementation to compute the width
of a poset



@ SAGE has a fast implementation to compute the width
of a poset

Theorem (%, 2015)

The lattice NCyy is Peck for any well-generated exceptional
complex reflection group W.




@ SAGE has a fast implementation to compute the width
of a poset

Theorem (%, 2015)

The lattice NCy is Peck for any well-generated complex
reflection group W.




o W .. well-generated complex reflection group; c ..
Coxeter element of W

@ m-divisible noncrossing partition: m-multichain of
noncrossing partitions ~ NCW ) (c)

(W) = (w1, w2, ..., wy) withwy <pwy <7 -+ <t wy <rc



o W .. well-generated complex reflection group; c ..
Coxeter element of W

@ m-divisible noncrossing partition: m-multichain of
noncrossing partitions ~ NC‘(:; ) (c)

e m-delta sequence: sequence of “differences” of
elements in a multichain

(W)m = (w1, w2, ..., wy) withwy <gwy <7 -+ <rwy, <rc

W) = [wi;wy twa, wy tws, ..., w, b wm,wy, ]



o W .. well-generated complex reflection group; c ..
Coxeter element of W

@ m-divisible noncrossing partition: m-multichain of
noncrossin, titi N
g partitions ~+ NCy, " (c)
e m-delta sequence: sequence of “differences” of
elements in a multichain
@ partial order: (u),, < (v), if and only if
A1)y <1 (V) - NCI (c)

Question (D. Armstrong, 2009)

Are the posets NC I(X; ) strongly Sperner for any W and any
m>1?




@ affirmative answer form = 1

Question (D. Armstrong, 2009)

Are the posets NC 31; ) strongly Sperner for any W and any
m>1?




o affirmative answer for m =1
@ what about m > 1?
o NC g]n i antiisomorphic to an order ideal in (MCy)"
o (NCw)" is Peck

o NC %ﬂ ) is not rank-symmetric ~~ no symmetric chain
decomposition

Question (D. Armstrong, 2009)

Are the posets NC I(X; ) strongly Sperner for any W and any
m>1?
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Proposition (3%, 2015)

& 2n+1
For n > 0 we have Zi -Catg, - Catgin-i) = (:jl )
i=0

NCG (.4, (c) = U ( UR(d Y > W |+ U RY
s=0



Proposition (3%, 2015)

! 2n+1
For n > 0 we have Zi -Catg, - Catgin-i) = (:jl )
i=0

Catg(gans2) = 2 Catgangr) T2 Catg,1u) +d - Catg,1,n41)

n+1
+2)  Catgggu_i+s)Catgio)
&

1
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& 2n+1
For n > 0 we have Zi -Catg, - Catgin-i) = (:jl )
i=0

Catg(gdni2) = d - Catgr,1,n11)
n+2

+2- Z CatG(d,d,n—i+3) : CatG(l,l,i—Z)
i=2
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Proposition (3%, 2015)

£ 2n+1
For n > 0 we have Zi -Catg, - Catgin-i) = (:jl )
i=0

Catg(gani2) = d- Catg,1,n41)

n
+2- ) Catggair) - Catga,ini
i=0

it n—1d\ n+ (n—1)d
Categ,int2) = (H (di )) -1

i=1 B



Proposition (3%, 2015)

! 2n+1
For n > 0 we have Zi -Catg, - Catgin-i) = (:jl )
i=0
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n
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i=0
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£ 2n+1
For n > 0 we have Zi -Catg, - Catgin-i) = (:jl )
i=0

Catg(gani2) = d- Catg,1,n41)

n
+2- ) Catggair) - Catga,ini
i=0

Catggans2) = d- Catg,1,n41)

+ (nd +n+ 2) . CatG(LLnH)
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& 2n+1
For n > 0 we have Zi -Catg, - Catgin-i) = (:jl )
i=0

(n+1)
nd - Catg 11,011 +< na 1 )

2-

1

ld + l + 1 CatG(LL,’) . CatG(LLn_i)

n
i=0
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& 2n+1
For n > 0 we have Zi -Catg, - Catgin-i) = (:jl )
i=0

2(n+1)> -

nd - Catg1,1,041) + < na 1

no, n. /o
2.y (ld - Catg(1,1,i) 'CatG(l,l,n—i)) +2-) (z) - Catg(1,1,0-1)
i=0 i=0



Proposition (3%, 2015)

& 2n+1
For n > 0 we have Zi -Catg, - Catgin-i) = (:jl )
i=0

2(n+1)>

nd - Catg1,1,041) + < na 1

Ly 2(n+1
2d . Z (1 . CatG(lllli) . CatG(lan_,’)> + ( <1’l + 1 )>
i=0



Proposition (3%, 2015)

& 2n+1
For n > 0 we have Zi -Catg, - Catgin-i) = (:jl )
i=0

n o
5 - Catg1n41) = 31 - Catgr 1, - Catgr g
i=0



Proposition (3%, 2015)

& 2n+1
For n > 0 we have Zi -Catg, - Catgin-i) = (:jl )
i=0

2n+1 wy
( N ) = Zl . CatG(l,l,i) : CatG(l,l,n—i)
i=0



Proposition (Y. Kong, 2000)

= 2(n —1) 2n+1
Forn > 0 we have Y_ Catg(11,) - ( , ) = < >
= L) " \p—i—1 n—1
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