Zakaria CHEMLI

Université Paris-Est Marne-la-Vallée

Journées GT CombAlg GDR IM September 21, 2015, Palaiseau

Outline

Introduction

Partitions

Young tableaux and domino tableaux

Shifted analogues

Perspectives

Introduction

shifted Young tableaux: (Sagan/Worley)

- Q-Schur functions
- shifted plactic monoid (Serrano)

Shifted domino tableaux

Zakaria CHEMLI

Introduction

Shifted domino tableaux

Zakaria CHEMLI

A partition λ of an integer n is:

- $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell),$
- $(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell)$,
- $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.

A Young diagram is:

- a set of square cells,
- the cells are adjusted down and left,
- the i^{th} row contains λ_i cells.

A partition λ of an integer n is:

- $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell),$
- $(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell)$,
- $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.

A Young diagram is:

- a set of square cells,
- the cells are adjusted down and left,
- the i^{th} row contains λ_i cells.

A partition λ of an integer n is:

- $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell),$
- $(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell)$,
- $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.

A Young diagram is:

- a set of square cells,
- the cells are adjusted down and left,
- the i^{th} row contains λ_i cells.

A partition λ of an integer n is:

- $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell),$
- $(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell)$,
- $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.

A Young diagram is:

- a set of square cells,
- the cells are adjusted down and left,
- the i^{th} row contains λ_i cells.

A partition λ of an integer n is:

- $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell),$
- $(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell)$,
- $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.

A Young diagram is:

- a set of square cells,
- the cells are adjusted down and left,
- the i^{th} row contains λ_i cells.

Two adjacent cells form a domino $(i.e., \square)$ or \square).

Thus (5,4,4,3) is pavable. We give below some pavings of (5,4,4,3):

Paving a partition by dominoes

Two adjacent cells form a domino $(i.e., \square)$ or \square).

Thus (5,4,4,3) is pavable. We give below some pavings of (5,4,4,3):

Note that the partition (5, 4, 3, 1, 1) is not pavable.

Shifted domino tableaux

Zakaria CHEMLI

$$-- = 0$$
 $= 1$

The 2-quotient of a partition λ is a pair of partitions (μ, ν) obtained by:

$$= 0$$
 $= 1$

0

The 2-quotient of a partition λ is a pair of partitions (μ, ν) obtained by:

$$= 0$$
 $= 1$

0 1

$$\begin{array}{ccc} & \longrightarrow & = 0 \\ & & \downarrow & = 1 \end{array}$$

The 2-quotient of a partition λ is a pair of partitions (μ, ν) obtained by:

5,2

The 2-quotient of a partition λ is a pair of partitions (μ, ν) obtained by:

5,2,1

The 2-quotient of a partition λ is a pair of partitions (μ, ν) obtained by:

5,2,1,1

The 2-quotient of a partition λ is a pair of partitions (μ, ν) obtained by:

Shifted domino tableaux

Zakaria CHEMLI

The 2-quotient of a partition λ is a pair of partitions (μ, ν) obtained by:

(5,2,1,1) (7,4,2)

2-quotient of a partition

The 2-quotient of a partition λ is a pair of partitions (μ, ν) obtained by:

Hence, the 2-quotient of (14, 10, 8, 4, 4, 2, 1, 1) is ((5,2,1,1), (7,4,2)).

A Young tableau is:

a filling of a Young diagram with positive integers,

A Young tableau is:

- a filling of a Young diagram with positive integers,
- \bullet the rows are non-decreasing from left to right,
- the columns are increasing from bottom to top.

A Young tableau is:

- a filling of a Young diagram with positive integers,
- the rows are non-decreasing from left to right,
- the columns are increasing from bottom to top.

A Young tableau is:

- a filling of a Young diagram with positive integers,
- the rows are non-decreasing from left to right,
- the columns are increasing from bottom to top.

The diagonal reading is: 5

A Young tableau is:

- a filling of a Young diagram with positive integers,
- the rows are non-decreasing from left to right,
- the columns are increasing from bottom to top.

The diagonal reading is: 5/4

A Young tableau is:

- a filling of a Young diagram with positive integers,
- the rows are non-decreasing from left to right,
- the columns are increasing from bottom to top.

The diagonal reading is: 5/4/2.9

A Young tableau is:

- a filling of a Young diagram with positive integers,
- the rows are non-decreasing from left to right,
- the columns are increasing from bottom to top.

The diagonal reading is: 5/4/2,9/1,4,9

A Young tableau is:

- a filling of a Young diagram with positive integers,
- the rows are non-decreasing from left to right,
- the columns are increasing from bottom to top.

The diagonal reading is: 5/4/2,9/1,4,9/3,7/6,8/6/7/8.

Young tableaux and domino tableaux

A Young tableau is:

- a filling of a Young diagram with positive integers,
- the rows are non-decreasing from left to right,
- the columns are increasing from bottom to top.

The diagonal reading is: 5/4/2,9/1,4,9/3,7/6,8/6/7/8.

Conversely, given a diagonal reading, we can construct the associated Young tableau.

Given a Young tableau t, its corresponding monomial is:

Given a roung tableau ι , its corresponding monomial is

$$x^t = \prod_{i \in t} x_i.$$

For each partition λ , the Schur function s_{λ} is:

$$s_{\lambda} = \sum_{t} x^{t}$$

where the sum runs over all Young tableaux t of shape λ .

For example:

$$s_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + {\color{red} 2 x_1 x_2 x_3},$$

where the monomial $x_1x_2x_3$ is obtained from the two following Young tableaux:

Domino tableaux

Given a paved partition λ , a domino tableau is:

Domino tableaux

Given a paved partition λ , a domino tableau is:

 $\bullet\,$ a filling of dominoes with positive integers,

	5		6				
	3	3	4	4	5		
	1	1	3		J		
			2		2		3

Domino tableau

Given a paved partition λ , a domino tableau is:

- a filling of dominoes with positive integers,
- the entries are non-decreasing along rows from left to right,
- the entries are increasing along columns from bottom to top.

Given a paved partition λ , a domino tableau is:

- a filling of dominoes with positive integers,
- the entries are non-decreasing along rows from left to right,
- the entries are increasing along columns from bottom to top.

two types of dominoes:

Domino tableaux

Given a paved partition λ , a domino tableau is:

- a filling of dominoes with positive integers,
- the entries are non-decreasing along rows from left to right,
- the entries are increasing along columns from bottom to top.

two types of dominoes:

Theorem (Stanton, White 1985)

Given a pavable partition λ of 2-quotient (μ, ν) , the set of domino tableaux of shape λ and the set of pairs of Young tableaux (t_1, t_2) of shape (μ, ν) are in bijection.

The 2-quotient of a pavable partition λ is a pair of partitions (μ, ν) obtained by:

The 2-quotient of a pavable partition λ is a pair of partitions (μ, ν) obtained by:

The 2-quotient of a pavable partition λ is a pair of partitions (μ, ν) obtained by:

The 2-quotient of a pavable partition λ is a pair of partitions (μ, ν) obtained by:

The 2-quotient of a pavable partition λ is a pair of partitions (μ, ν) obtained by:

The 2-quotient of a pavable partition λ is a pair of partitions (μ, ν) obtained by:

The 2-quotient of a pavable partition λ is a pair of partitions (μ, ν) obtained by:

The 2-quotient of a pavable partition λ is a pair of partitions (μ, ν) obtained by:

The 2-quotient of a pavable partition λ is a pair of partitions (μ, ν) obtained by:

Hence, the 2-quotient of (14, 10, 8, 4, 4, 2, 1, 1) is ((5, 2, 1, 1), (7, 4, 2)).

11/25

Sketch of proof [Carré, Leclerc 1993] (1/2)

	7	7	7 5		7		
ſ		5			'		
ſ	3	3	3		6		
ſ	1	1	2	2	O		
١	1	1	_	-		3	4

5 5

Shifted domino tableaux

Shifted domino tableaux

5

diagonal reading: 7/3, 7/1, 3, 7/2, 6/3/4

We obtain two Young tableaux (t_1, t_2) of shape ((2, 2), (4, 3, 3)).

Shifted domino tableaux

Given a pair of Young tableaux:

$$\left(\begin{array}{c|c} 55 & 777 \\ \hline 12 & 1234 \\ \end{array}\right)$$

Shifted domino tableaux

Given a pair of Young tableaux:

$$\left(\begin{array}{ccc} 55 & 777 \\ 12 & 1234 \end{array}\right)$$

we construct the associated domino tableau:

Shifted domino tableaux

12/25

Given a pair of Young tableaux:

$$\left(\begin{array}{ccc} 55 & 777 \\ 12 & 1234 \end{array}\right)$$

we construct the associated domino tableau:

$$\left(\boxed{1} , \boxed{1} \right) \rightarrow \boxed{1}$$

Shifted domino tableaux

Given a pair of Young tableaux:

$$\left(\begin{array}{c|c} 55 & 777 \\ \hline 12 & 1234 \end{array}\right)$$

we construct the associated domino tableau:

Shifted domino tableaux

Given a pair of Young tableaux:

$$\left(\begin{array}{c|c} 55 & 777 \\ \hline 12 & 1234 \end{array}\right)$$

we construct the associated domino tableau:

$$\left(\begin{array}{c} \boxed{1} \end{array} \right, \hspace{0.1cm} \boxed{1} \hspace{0.1cm} \right) \hspace{0.1cm} \rightarrow \hspace{0.1cm} \boxed{1} \hspace{0.1cm} \boxed{1} \hspace{0.1cm} 2 \hspace{0.1cm} 2 \hspace{0.1cm} \boxed{1} \hspace{0.1cm} 2 \hspace{0.1cm} 2 \hspace{0.1cm} \boxed{1} \hspace{0.1cm} 2 \hspace{0.1cm} 2 \hspace{0.1cm} 2 \hspace{0.1cm} \boxed{1} \hspace{0.1cm} 2 \hspace{0.1cm} 2$$

$$\left(\begin{array}{c} \boxed{12} \;,\; \boxed{33} \\ \boxed{123} \right) \;\to\; \boxed{1122} \\ \boxed{3} \;,\; \boxed{1122} \\ \boxed{3} \;,\; \boxed{3} \\ \boxed{1} \;,\; \boxed{1} \;,\; \boxed{3} \;,\; \boxed{3} \\ \boxed{1} \;,\; \boxed{3} \;,\; \boxed{3} \\ \boxed{1} \;,\; \boxed{3} \;,\; \boxed{3} \\ \boxed{1} \;,\; \boxed{3} \;,\; \boxed{3} \;,\; \boxed{3} \\ \boxed{1} \;,\; \boxed{3} \;,\; \boxed{3} \;,\; \boxed{3} \\ \boxed{1} \;,\; \boxed{3} \;,\;$$

Given a pair of Young tableaux:

$$\left(\begin{array}{ccc} 55 & 777 \\ 12 & 1234 \end{array}\right)$$

we construct the associated domino tableau:

Shifted domino tableaux

In terms of symmetric functions

Theorem (Carré, Leclerc 1993)

Let λ be a partition of 2-quotient (μ, ν) . One has

$$\sum_{T} x^{T} = s_{\mu} s_{\nu}$$

where the sum runs over all domino tableaux of shape λ .

Let λ and θ be two partitions and $K_{\lambda\theta}^{(1)}$ be the number of domino tableaux of shape λ and evaluation θ .

Corollary (Carré, Leclerc 1993)

Let λ be a partition. Then

$$\sum_{T} x^{T} = \sum_{\theta} K_{\lambda\theta}^{(1)} m_{\theta}$$

where the first sum runs over all domino tableaux of shape λ and the second sum runs over all partitions θ .

The numbers $K_{\lambda\theta}^{(1)}$ are the domino analogues of the Kostka numbers.

Super plactic monoid

Given the totally ordered infinite alphabets $A_1 := \{a_1^1 < a_2^1 < a_3^1 < \cdots \}$ and $A_2 := \{a_1^2 < a_2^2 < a_3^2 < \cdots \}$. The Super Plactic monoid is the quotient of the free monoid $(A_1 \cup A_2)^*$ by the relations:

$$\begin{split} &a_j^\epsilon a_i^\epsilon a_k^\epsilon \equiv a_j^\epsilon a_k^\epsilon a_i^\epsilon \text{ for } i < j \le k \text{ and } \epsilon \in \{1,2\}, \\ &a_i^\epsilon a_k^\epsilon a_j^\epsilon \equiv a_k^\epsilon a_i^\epsilon a_j^\epsilon \text{ for } i \le j < k \text{ and } \epsilon \in \{1,2\}, \\ &a_i^1 a_i^2 \equiv a_i^2 a_i^1 \text{ for any positive integers } i \text{ and } j. \end{split}$$

Carré and Leclerc proved that each super plactic class is represented by a unique domino tableau.

Shifted domino tableaux

Schur functions	Young tableaux	plactic monoid	
	Carré, Leclerc		
product of two Schur functions	domino tableaux	super plactic monoid	
Q-Schur functions	shifted Young tableaux $ \qquad \qquad \downarrow \\ \text{Carr\'e, Leclerc?} $	shifted plactic monoic	
product of two Q-Schur functions	?	?	

Shifted domino tableaux

Young tableaux plactic monoid Schur functions product of two domino tableaux super plactic monoid Schur functions Q-Schur functions shifted Young tableaux shifted plactic monoid product of two super shifted plactic shifted domino tableaux Q-Schur functions monoid

Shifted domino tableaux

Shifted Young tableaux

Given a partition λ of length ℓ satisfying $\lambda_{\ell} \geq \ell$, a shifted Young tableau is:

• a filling of the cells above D_0 by x,

Shifted Young tableaux

Given a partition λ of length ℓ satisfying $\lambda_{\ell} \geq \ell$, a shifted Young tableau is:

- a filling of the cells above D_0 by x,
- the remaining cells are filled with letters from $A' = \{1' < 1 < 2' < 2 < \cdots \},\$
- such that:

x	x	x	8				
x	x	7	8'	9			
x	2'	3	5	6			
1	2'	3'	3	4	5	5	

Shifted domino tableaux

Given a partition λ of length ℓ satisfying $\lambda_{\ell} \geq \ell$, a shifted Young tableau is:

- a filling of the cells above D_0 by x,
- the remaining cells are filled with letters from $A' = \{1' < 1 < 2' < 2 < \cdots\},\$
- such that:
 - · the rows and columns are non-decreasing,

 \leq

Shifted domino tableaux

Shifted Young tableaux

Given a partition λ of length ℓ satisfying $\lambda_{\ell} \geq \ell$, a shifted Young tableau is:

- a filling of the cells above D_0 by x,
- the remaining cells are filled with letters from $A' = \{1' < 1 < 2' < 2 < \cdots \},\$
- such that:
 - the rows and columns are non-decreasing,
 - a letter $\ell' \in \{1', 2', 3', \dots\}$ appears at most once in each row,

 \leq

16/25

Given a partition λ of length ℓ satisfying $\lambda_{\ell} \geq \ell$, a shifted Young tableau is:

- a filling of the cells above D_0 by x,
- the remaining cells are filled with letters from $A' = \{1' < 1 < 2' < 2 < \cdots \},$
- such that:
 - the rows and columns are non-decreasing,
 - a letter ℓ' ∈ {1', 2', 3', ...} appears at most once in each row,
 a letter ℓ ∈ {1, 2, 3, ...} appears at most once in each column.

Q-Schur functions

Given a shifted Young tableau t, its corresponding monomial is:

$$x^t = \prod_{\ell \in t} x_{|\ell|}$$
, where $|\ell| = \ell$ and $|\ell'| = \ell$.

For each partition λ , the Q-Schur function is:

$$Q_{\lambda} = \sum_{t} x^{t}$$

where the sum runs over all shifted Young tableaux t of shape λ .

For example:

$$Q_{(2,1)} = 4x_1^2x_2 + 4x_1x_2^2 + 4x_1^2x_3 + 4x_1x_3^2 + 4x_2^2x_3 + 4x_2x_3^2 + 8x_1x_2x_3,$$

where the monomial $x_1^2x_2$ is obtained from the following four shifted Young tableaux:

Shifted pavable partition

A partition λ of 2-quotient (μ, ν) is a shifted pavable partition if it satisfies the following two conditions:

• the last parts of μ and ν are greater than or equal to their lengths,

Shifted domino tableaux

Shifted pavable partition

A partition λ of 2-quotient (μ, ν) is a shifted pavable partition if it satisfies the following two conditions:

• the last parts of μ and ν are greater than or equal to their lengths,

Shifted domino tableaux

18/25

Shifted pavable partition

A partition λ of 2-quotient (μ, ν) is a shifted pavable partition if it satisfies the following two conditions:

• the last parts of μ and ν are greater than or equal to their lengths,

 there is no vertical domino d on D₀, such that d has at its left only adjacent dominoes strictly above D₀,

Shifted pavable partition

A partition λ of 2-quotient (μ, ν) is a shifted parable partition if it satisfies the following two conditions:

• the last parts of μ and ν are greater than or equal to their lengths,

 there is no vertical domino d on D₀, such that d has at its left only adjacent dominoes strictly above D₀,

Given a shifted pavable partition λ , a shifted domino tableaux is:

• a filling of the dominous above D_0 by x,

Given a shifted pavable partition λ , a shifted domino tableaux is:

- a filling of the dominoes above D_0 by x,
- the remaining ones are filled with letters from $A' = \{1' < 1 < 2' < 2 < \cdots\},\$

Given a shifted pavable partition λ , a shifted domino tableaux is:

- a filling of the dominous above D_0 by x,
- the remaining ones are filled with letters from $A' = \{1' < 1 < 2' < 2 < \cdots\},\$
- such that:
 - · the rows and columns are non-decreasing,

Shifted domino tableaux

Given a shifted pavable partition λ , a shifted domino tableaux is:

- a filling of the dominous above D_0 by x,
- the remaining ones are filled with letters from $A' = \{1' < 1 < 2' < 2 < \cdots\},\$
- such that:
 - the rows and columns are non-decreasing,
 - a letter ℓ ∈ {1,2,3,...} appears at most once in each column,
 a letter ℓ' ∈ {1',2',3',...} appears at most once in each row.

Given a shifted pavable partition λ , a shifted domino tableaux is:

- a filling of the dominous above D_0 by x.
- the remaining ones are filled with letters from $A' = \{1' < 1 < 2' < 2 < \cdots \}$,
- such that:
 - the rows and columns are non-decreasing,
 - a letter ℓ ∈ {1, 2, 3, ...} appears at most once in each column,
 a letter ℓ' ∈ {1', 2', 3', ...} appears at most once in each row.

Theorem (C. 2015)

Given a valid paved partition λ of 2-quotient (μ, ν) , the set of shifted domino tableaux of shape λ and the set of pairs of shifted Young tableaux (t_1, t_2) of shape (μ, ν) are in bijection.

Sketch of proof (1/2)

diagonal reading: x/x, x/1, 2, 5/2', 5'/2/3

We obtain two shifted Young tableaux (t_1, t_2) of shape ((2, 2), (4, 3, 3)).

Given a pair of shifted Young tableaux:

$$\begin{pmatrix} x & 4 & x & 5 \\ x & 25 & 12 & 23 \end{pmatrix}$$

We construct the associated shifted domino tableau:

Shifted domino tableaux

In terms of symmetric functions

Theorem (C. 2015)

Let λ be a valid paved partition of 2-quotient (μ, ν) . One has

$$\sum_T x^T = Q_\mu Q_\nu$$

where the sum runs over all shifted domino tableaux of shape λ .

Let λ and θ be two partitions and $K_{\lambda\theta}^{(2)}$ be the number of shifted domino tableaux of shape λ and evaluation θ .

Corollary (C. 2015)

Let λ be a partition. Then

$$\sum_{T} x^{T} = \sum_{\theta} K_{\lambda\theta}^{(2)} m_{\theta}.$$

where the first sum runs over all shifted domino tableaux of shape λ and the second sum runs over all partitions θ .

The numbers $K_{\lambda\theta}^{(2)}$ can be seen as analogues of the Kostka numbers.

Super shifted plactic monoid

Let $A_1 := \{a_1^1 < a_2^1 < a_3^1 < \cdots \}$ and $A_2 := \{a_1^2 < a_2^2 < a_3^2 < \cdots \}$ be two totally ordered infinite alphabets. The super shifted plactic monoid is the quotient of the free monoid $(A_1 \cup A_2)^*$ by the relations:

$$\begin{split} &a_i^\epsilon a_j^\epsilon a_i^\epsilon a_k^\epsilon \equiv a_i^\epsilon a_i^\epsilon a_j^\epsilon a_k^\epsilon \text{ for } i \leq j \leq k < l \text{ and } \epsilon \in \{1,2\}, \\ &a_i^\epsilon a_l^\epsilon a_k^\epsilon a_j^\epsilon \equiv a_i^\epsilon a_k^\epsilon a_j^\epsilon a_l^\epsilon \text{ for } i \leq j < k \leq l \text{ and } \epsilon \in \{1,2\}, \\ &a_i^\epsilon a_i^\epsilon a_k^\epsilon a_j^\epsilon \equiv a_i^\epsilon a_l^\epsilon a_k^\epsilon a_j^\epsilon \text{ for } i \leq j < k \leq l \text{ and } \epsilon \in \{1,2\}, \\ &a_i^\epsilon a_i^\epsilon a_k^\epsilon a_j^\epsilon \equiv a_i^\epsilon a_l^\epsilon a_k^\epsilon a_j^\epsilon \text{ for } i \leq j < k < l \text{ and } \epsilon \in \{1,2\}, \\ &a_j^\epsilon a_i^\epsilon a_l^\epsilon a_k^\epsilon \equiv a_j^\epsilon a_l^\epsilon a_i^\epsilon a_k^\epsilon \text{ for } i < j \leq k < l \text{ and } \epsilon \in \{1,2\}, \\ &a_k^\epsilon a_j^\epsilon a_l^\epsilon a_i^\epsilon \equiv a_k^\epsilon a_l^\epsilon a_j^\epsilon a_i^\epsilon \text{ for } i < j < k \leq l \text{ and } \epsilon \in \{1,2\}, \\ &a_l^\epsilon a_j^\epsilon a_k^\epsilon a_i^\epsilon \equiv a_j^\epsilon a_l^\epsilon a_k^\epsilon a_i^\epsilon \text{ for } i < j \leq k < l \text{ and } \epsilon \in \{1,2\}, \\ &a_j^\epsilon a_k^\epsilon a_l^\epsilon a_i^\epsilon \equiv a_j^\epsilon a_l^\epsilon a_i^\epsilon a_j^\epsilon \text{ for } i < j \leq k \leq l \text{ and } \epsilon \in \{1,2\}, \\ &a_k^\epsilon a_i^\epsilon a_l^\epsilon a_j^\epsilon \equiv a_k^\epsilon a_l^\epsilon a_i^\epsilon a_j^\epsilon \text{ for } i \leq j < k \leq l \text{ and } \epsilon \in \{1,2\}, \\ &a_l^\epsilon a_j^\epsilon a_l^\epsilon a_j^\epsilon \equiv a_k^\epsilon a_l^\epsilon a_i^\epsilon a_j^\epsilon \text{ for } i \leq j < k \leq l \text{ and } \epsilon \in \{1,2\}, \\ &a_l^\epsilon a_j^\epsilon \equiv a_j^\epsilon a_l^\epsilon \text{ for any positive integers } i \text{ and } j. \end{split}$$

Theorem (C. 2015)

Each super shifted plactic class is represented by a unique shifted domino tableau.

- express the coefficients of the shifted Littlewood-Richardson rule in terms of shifted domino tableaux,
- find an insertion algorithm for shifted domino tableaux.

Thank you

Shifted domino tableaux