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Introduction

Any group is isomorphic to a quotient group of some free group.
Study of algebraic properties of free groups by combinatorial
methods

Graphical representation of subgroups : Stallings graphs
Combinatorial interpretation of parameters or propertieslike the
rank, malnormality, Whitehead minimality, ...

Quantitative study of finitely generated subgroups of a free group
and analysis of related algorithms
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I. Free Group



Free group : a definition

A group F isfree if there is a subset A of F such that any element
of F can be uniquely written as a finite product of elements of A
and their inverses.

The cardinality ofA is therank of the free group.

Apart from the existence of inverses no other relation exists
between the generators of a free group.

Basic properties

The subgroups of a free group are free (Nielsen-Schreier
Theorem).

A free group with finite rank contains subgroups with any
countable rank.
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Free groups and reduced words

Let A be afinite alphabet andF = F(A) be the free group overA.

The elements ofF(A) are uniquely represented by thereduced
words overA ∪ A−1 whereA−1 = {a−1 | a ∈ A},

A word is reduced if it does not contain factors of the formaa−1

Examples :ab−1b−1aaba−1 is reduced,
aab−1a−1abcca−1 is not reduced

Reduction of a word : replacein any order all occurrences of
aa−1 by the empty wordǫ.

Example :

aab−1a−1abcca−1 = aab−1bcca−1 = aacca−1
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Finitely generated subgroups

We are interested infinitely generatedfree subgroups,i.e., obtained
from a finite set of generators.

Finitely generated free subgroups can be represented in a unique
way by a finite graph called itsStallings graph (Stallings 1983).

This description is very useful, some properties of the subgroup
can be directly obtained from its graph representation.

A 1st goal

To study algebraic properties of finitely generated subgroups of a free
group with combinatorial methods.
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Stallings foldings

Let Y = {aba−1ba−1, b2a−1, b3a−1b−1}.

Goal

Build a directed graph representing the free subgroup generated byY

First step

Build a directed cycle labeled withaba−1ba−1 the first element ofY
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Stallings foldings

Second step

Build from the same vertexi a directed cycle labeled withb2a−1 the
second element ofY.
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Stallings foldings

Third step

Build from the same vertexi a directed cycle labeled withb3a−1b−1

the third and last element ofY.
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Stallings foldings

Formal inverses

Reverse all edges labeled bya−1 are and replace their label bya.
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Stallings foldings

Foldings to obtain determinism and codeterminism

Apply as many times as possible the following rules of merging (or
folding) :

�

�

a

a

�

�

a

a

The result does not depend on the order in which the transformations
are performed.



Stallings foldings - 1st folding
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Stallings foldings - 2nd folding
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Stallings foldings - 3rd folding
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Stallings foldings - 4th folding
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Stallings foldings - Last folding and Stallings graph
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The Stallings graph representing the free subgroup generated by

Y = {aba−1ba−1, b2a−1, b3a−1b−1}.
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Stallings graphs : a definition

The graph (with a distinguished vertexi) obtained is aStallings graph.

Stallings graph

It is deterministic and co-deterministic : each letter acts like a
partial injection on the set of states.

it is connected

all but the distinguished statei have degree at least two

Unicity of the representation

A Stallings graph represents in a unique way a finitely generated
subgroup of the free group generated by the alphabet of the labels.
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Stallings graphs – examples of use

One can check whether a (reduced) word belongs the subgroup
or not.
Check if there exists a cycle labeled by the word beginning in i

One can compute a basis and the rank of the subgroup

rank = |E| − (|V| − 1)

To obtain a basis, choose a spanning tree of the Stallings graph.
Each edge e that is not in the tree corresponds to a generator of
the base : the label of a cycle beginning in i using e and edges in
the spanning tree.

One can check whether the subgroup has finite index or not.
All letters act like permutations on the set of vertices
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Example for the rank

The Stallings graph of the subgroup genrated by
Y = {aba−1ba−1, b2a−1, b3a−1b−1} :

ia

b b

a

b

Therefore{b2a−1, aba−1b−1} is a basis of the subgroup and the rank
is 2.



Stallings graphs – algorithmic point of view

Stalling foldings can be computed inO(n log∗ n) wheren is the
total length of the generators. The algorithm due Touikan (2006)
makes use of ”Union and Find”.

The intersection (resp. union) of two subgroups can be computed
in time and spaceO(n1 × n2) wheren1 (resp.n2) is the size (here
the number of vertices) of the first (resp. second) Stallings graph.



II. Distributions on Subgroups



A graph-based distribution on subgroups

A random subgroup is given by choosing uniformly at random a
Stallings graph of sizen

Studied by Bassino, Nicaud, Weil (2008, 2013, 2015)

What does the Stallings graph of such a random subgroup look
like ?

FIGURE: A random subgroup with 200 vertices for the graph-based
distribution (The alphabet is of size 2).



The classical word-based distribution on subgroups

A random subgroup is given by choosing randomly and
uniformly k generators of length at mostn, wherek is fixed
Studied by Gromov (1987), Arzhantseva and Ol’shanskiǐ (1996),
Jitsukawa (2002), . . .

What does the Stallings graph of such a random subgroup look
like ?

FIGURE: A random subgroup for the word-based distribution with 5 words
of lengths at most 40 (The alphabet is of size 2.)



A word-based distribution (few generators)

Fix the numberk of generators and the maximal lengthn of each
generator.

Consider the uniform distribution over thek-tuples of reduced
words of length at mostn.

Let Rn the number of reduced words of lengthn,

Rn = 2r(2r − 1)n−1

The length of word in a randomk-tuple is near ton.
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A word-based distribution (few generators)

Length, prefixes and suffixes

Let 0< α < 1. A reduced word inRn has length greater thanαn
with probability that tends toward 1 whenn tends toward+∞.

Let 0< β < α/2. A k-uple of reduced words ofRn is such that
the prefixes of lengthβn of all words and their inverses are
pairwise distinct with probability that tends toward 1 whenn
tends toward+∞.

Consequence

Each of thek reduced words has an outer loop of length at least
n(α− 2β) with probability that tends to 1 whenn tends to+∞.



A graph-based distribution : Probabilistic results

Theorem (Bassino, Nicaud, Weil 2008)

The probability for a random r-tuple of partial injections of size n to
form a Stallings graph tends toward 1 when n tends toward +∞.

Stallings graph

It is deterministic and co-deterministic : each letter acts like a
partial injection on the set of states.

it is connected

all but the distinguished statei have degree at least two

The proof

is a study of partial injections

basically uses the saddle-point method
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A graph-based distribution : Partial injections

A partial injection can be seen as a set of cycles and of
non-empty sequences.

Set(Cycle or non-empty Sequences)

With the symbolic method :

I(z) =
∑

n≥0

In

n!
zn = exp

(

log
1

1− z
+

z
1− z

)

=
1

1− z
ez/(1−z)

With the saddle point method :

In

n!
∼ e−

1
2

2
√
π

e2
√

nn−
1
4



A graph-based distribution : Partial injections

A partial injection can be seen as a set of cycles and of
non-empty sequences.

Set(Cycle or non-empty Sequences)

With the symbolic method :

I(z) =
∑

n≥0

In

n!
zn = exp

(

log
1

1− z
+

z
1− z

)

=
1

1− z
ez/(1−z)

With the saddle point method :

In

n!
∼ e−

1
2

2
√
π

e2
√

nn−
1
4



Connectedness

Theorem

The probability forr partial injections of sizen to form a connected
graph is

pn = 1− 2r

nr−1 + o

(

1
nr−1

)

Proof

Let J(z) =
∑

n>0 jnzn =
∑

n>0 Ir
nzn/n!.

Then 1+ J(z) = exp(C(z)) andC(z) = log(1+ J(z)).
From a Bender theorem (1974) it is enough to check thatjn = o(jn−1)
and that for somes ≥ 1,

∑n−s
k=s |jkjn−k| = O(jn−s), to obtain that

cn = jn

(

1− 2r

nr−1 + o

(

1
nr−1

))
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Vertices with zero or one outgoing or ingoing edge

If x is a vertex with 0 or 1 edge, thenx must beisolatedfor r − 1
injections andan endpoint for the remaining injection.

The probability it is isolated for an injection isIn−1
In

, which is

smaller than1
n .

Let In,k be the number of size-n injectionshaving k sequences,
and letI(z, u) be the bivariate generating function defined by :

I(z, u) = exp

(

zu
1− z

+ log

(

1
1− z

))

=
1

1− z
exp

(

zu
1− z

)

Using thesaddle point theoremwe obtain that the expected
number of sequences is1√n and that the probability that a given

vertex is an endpoint is inO( 1√
n).



Trimness

Therefore

A given vertex has degree 0 or 1 with probabilityO(n−r+1/2),

there is such a vertex with probabilityO(n−r+3/2)

with probability at least O(n−1/2) the graph has no such
vertex.



IV. How to compare the two
distributions



Méthod

A propertyP is generic for (Xn) when the probability for an
element ofXn to satisfyP tends toward 1 whenn tends toward
∞.

A propertyP is negligible for (Xn) when the probability for an
element ofXn to satisfyP tends towardO whenn tends toward
∞.

In the following, we present generic or negligible algebraic
properties for each distribution.
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Experimental results

FIGURE: On the left, a random subgroup for the word-based distribution
with 5 words of lengths at most 40. On the right, a random subgroup with
200 vertices for the graph-based distribution (The alphabet is of size 2).



Rank

One can compute the rank of a finitely generated subgroup from
its Stallings graph

rank = |E| − (|V| − 1)

In the word based distribution (k words of maximal lengthn), the
average rank isk

In the graph based distribution the average rank is
(|A| − 1)n − |A|√n + 1.
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Malnormality

A subgroupH of G is normal when for anyg ∈ G, g−1Hg = H.

A subgroup ismalnormal when for anyg /∈ H, g−1Hg ∩ H = 1.

Theorem (combinatorial characterization)

A subgroup of a free group isnon-malnormal if and only, in its
Stallings graph, if there exists two verticesx 6= y and a non-empty
reduced wordu, such that
u is the label of a loop onx and of a loop ony.
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Malnormality

Theorem

For the word-based distribution, malnormality isgeneric, but it is
negligible for the graph-based.

Proof

The proof in the word-based distribution is due to Jitsukawa
(2002). Basically loops are long enough to be distinct with high
probability.

The probability that a partial injection contains at most one cycle
and that the length of this cycle is 1 is∼ e√

n .
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Finite presentation

The idea is to quotient the free group by a normal finitely
generated subgroup. LetE be an arbitrary subset, andN(E) be its
normal closure, that is the smallest normal subgroup containing
E.

Equivalently each wordx of E becomes a relatorx = 1.

In the word-based distribution generically the quotient subgroup
is infinite (Jitsukawa, 2002).

But in the graph-based distribution, the quotient group is
generically trivial.
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Finite presentation

Theorem

Generically the gcd of the lengths of the cycles of apartial injection
of sizen is 1.

Theorem

Generically the gcd of the lengths of the cycles of apermutation of
sizen is 1.

Permutation part of an injection

Generically the permutation part of a sizen injection is greater than
n1/3 and the gcd of the length of the cycles is 1.
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Thank you for your attention !


