A bijection for rooted maps on general surfaces

Maciej Dołęga, LIAFA, Université Paris Diderot & Uniwersytet Wrocławski

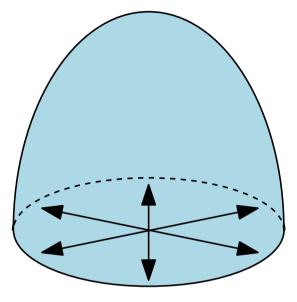
joint work with

Guillaume Chapuy, CNRS & LIAFA, Université Paris Diderot

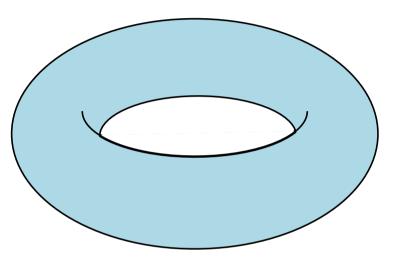
2015 LIX - École Polytechnique, 1st April 2015.

I. Maps

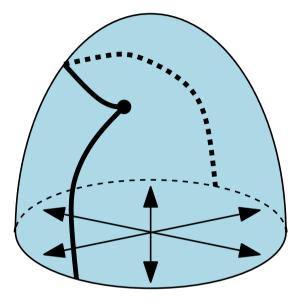
= graphs embedded into a surface in a way that the complement of the image is homeomorphic to the collection of open discs called faces

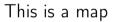


Projective plane



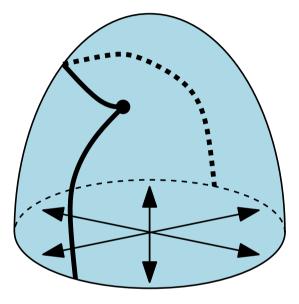
Torus

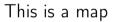


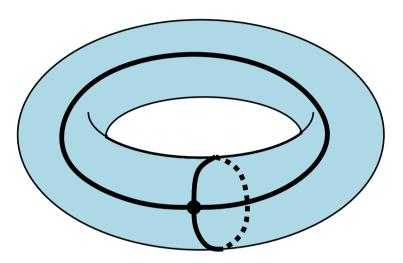




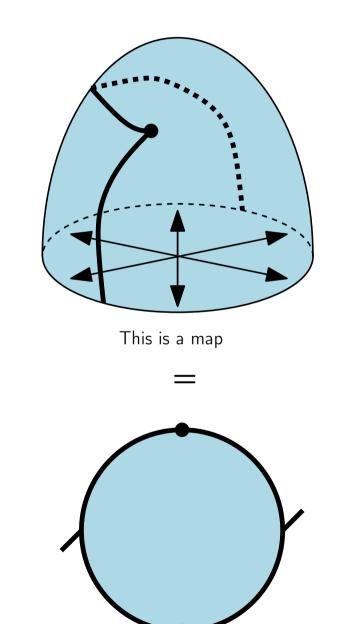
This is not a map!

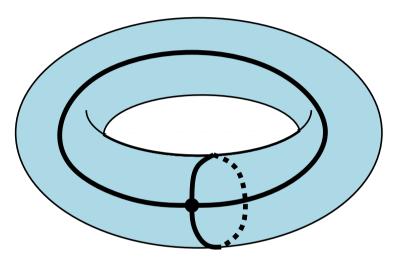




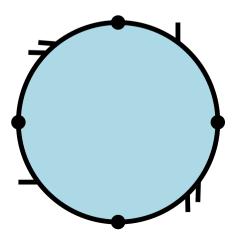


This is a map too.





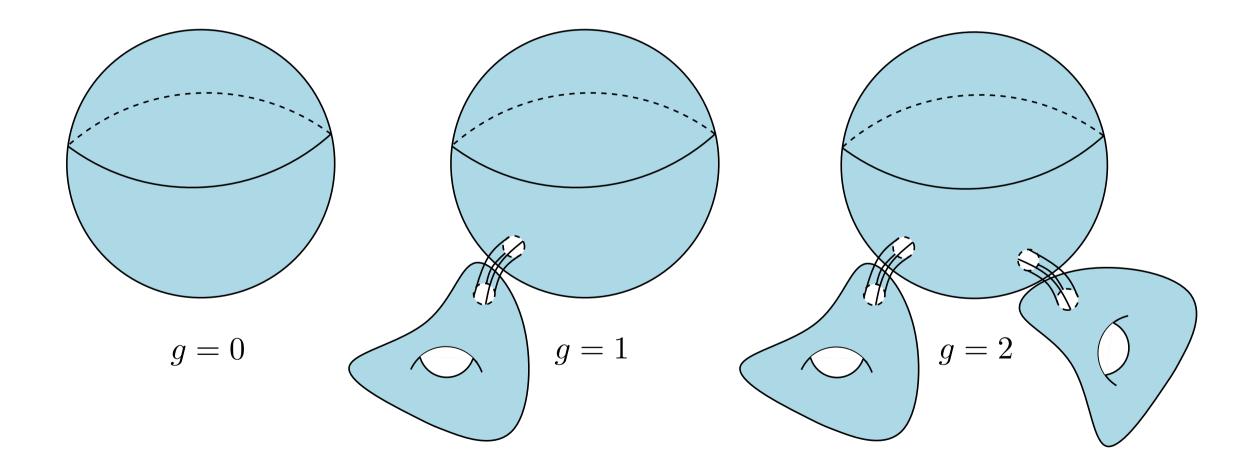
This is a map too.



Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S}) = 2 - 2g$. Surfaces can be:

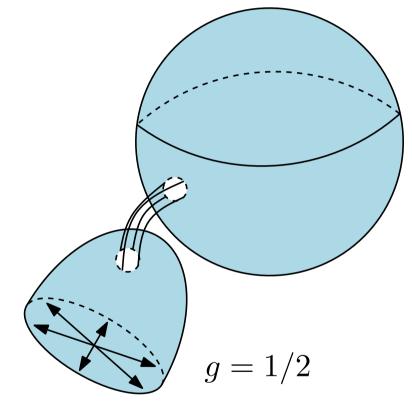
Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S}) = 2 - 2g$. Surfaces can be:

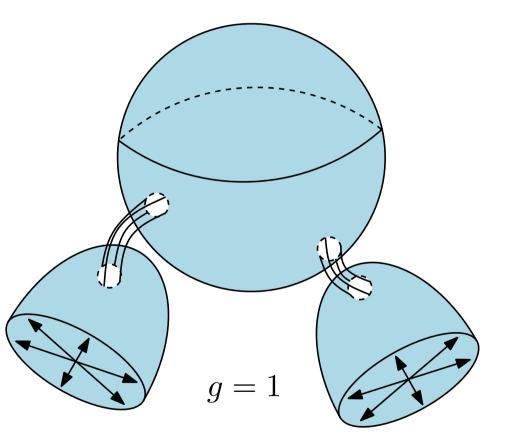
• orientable



Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S}) = 2 - 2g$. Surfaces can be:

• non-orientable





Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S}) = 2 - 2g$. Surfaces can be:

R

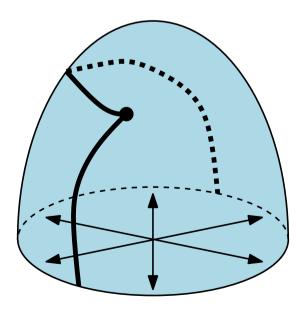
- orientable,
- non-orientable.

We will say that a map M is orientable/non-orientable of type g if the underlying surface is orientable/non-orientable of type g.

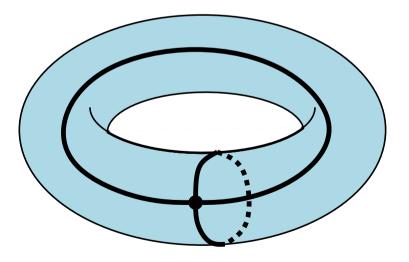
Surfaces are classified by their Euler characterisitc: $\chi(\mathbb{S})$. The number g is the type of surface \mathbb{S} if $\chi(\mathbb{S}) = 2 - 2g$. Surfaces can be:

- orientable,
- non-orientable.

We will say that a map M is orientable/non-orientable of type g if the underlying surface is orientable/non-orientable of type g.



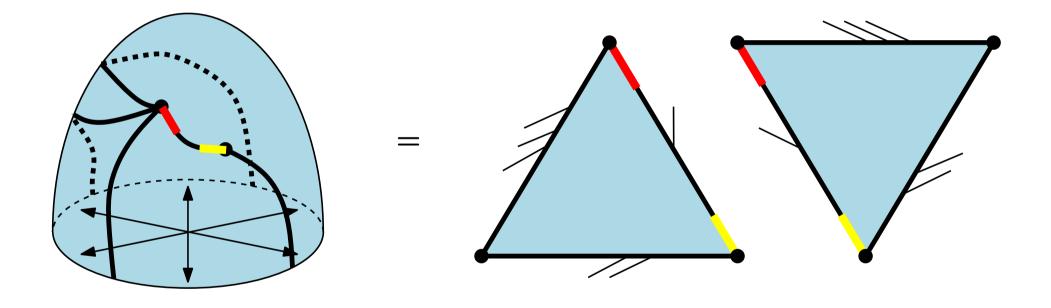
Non-orientable map of type 1/2



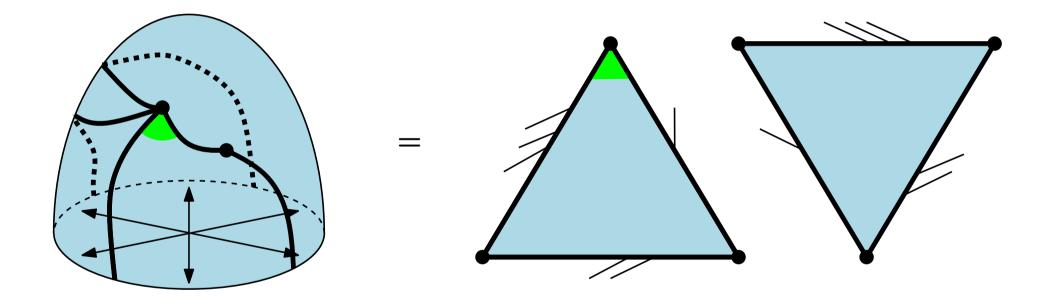
R

Orientable map of type 1

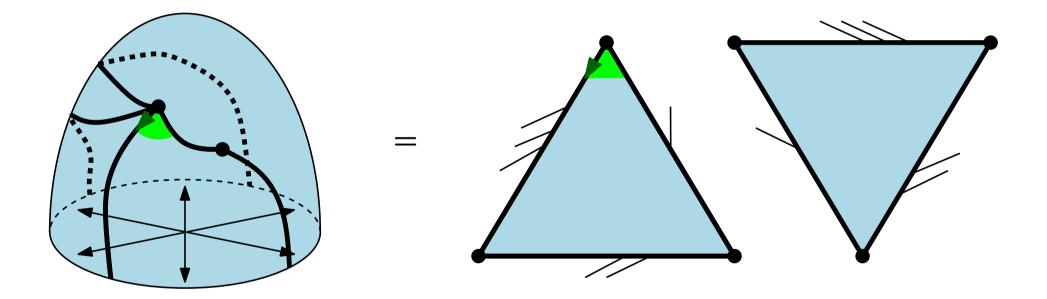
Each edge consists of two half-edges.



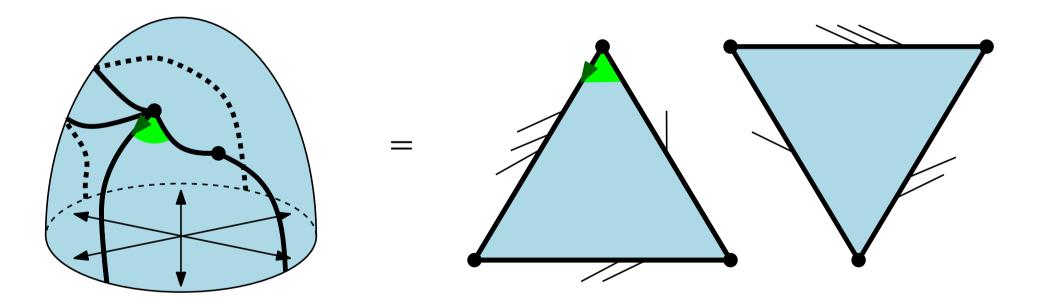
Each edge consists of two half-edges. A region between two consecutive half-edges attached to a vertex is called a corner.



Each edge consists of two half-edges. A region between two consecutive half-edges attached to a vertex is called a corner. A map is rooted if it is equipped with a distinguished half-edge (called the root), together with a distinguished side of this half-edge.



Each edge consists of two half-edges. A region between two consecutive half-edges attached to a vertex is called a corner. A map is rooted if it is equipped with a distinguished half-edge (called the root), together with a distinguished side of this half-edge.



Remark:

Tutte noticed that maps are much simpler to enumerate, when rooted, because of the lack of symmetry. From now on, all maps will be rooted!

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M) -$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M) -$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]

There is a bijection between

ullet the set of rooted maps on $\mathbb S$ with n edges, l vertices and k faces of degree

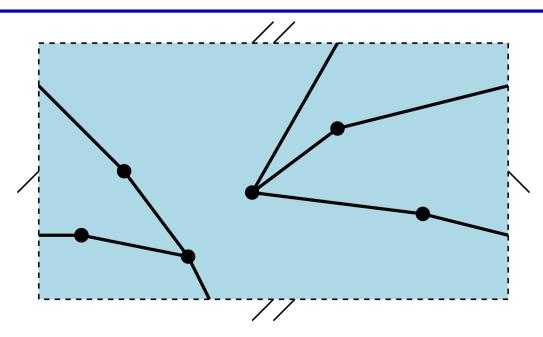
Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M) -$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]

There is a bijection between

ullet the set of rooted maps on $\mathbb S$ with n edges, l vertices and k faces of degree



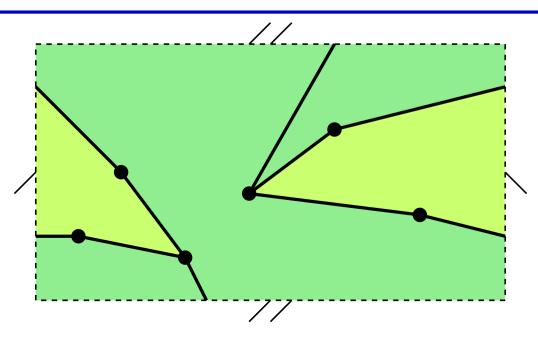
Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M) -$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]

There is a bijection between

ullet the set of rooted maps on $\mathbb S$ with n edges, l vertices and k faces of degree



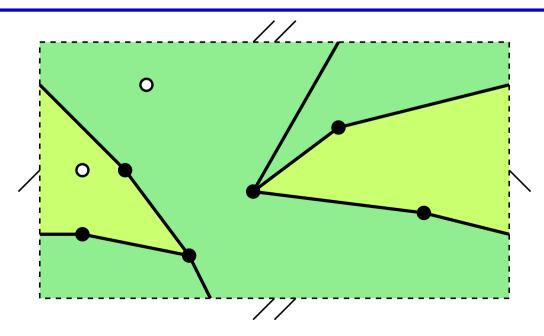
Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M) -$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]

There is a bijection between

ullet the set of rooted maps on $\mathbb S$ with n edges, l vertices and k faces of degree



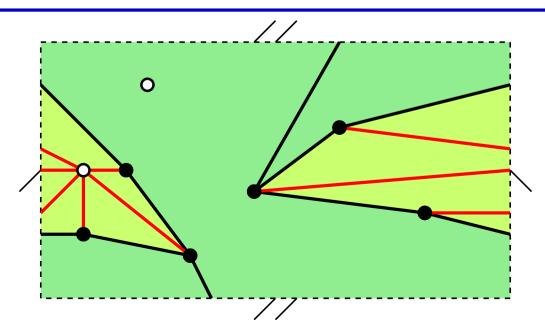
Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M) -$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]

There is a bijection between

ullet the set of rooted maps on $\mathbb S$ with n edges, l vertices and k faces of degree



Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M) -$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

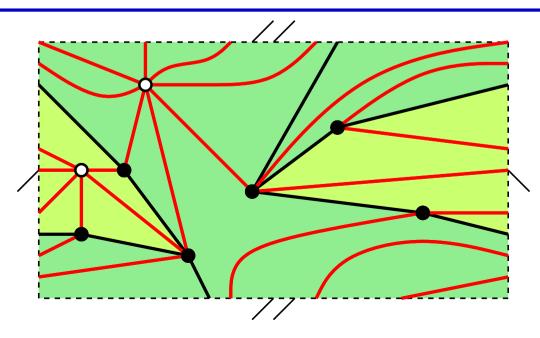
Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]

There is a bijection between

ullet the set of rooted maps on $\mathbb S$ with n edges, l vertices and k faces of degree

 $\lambda_1, \ldots, \lambda_k$, • the set of rooted, bipartite quadrangulations on \mathbb{S} with n faces, l black vertices and k white vertices of degree $\lambda_1, \ldots, \lambda_k$.



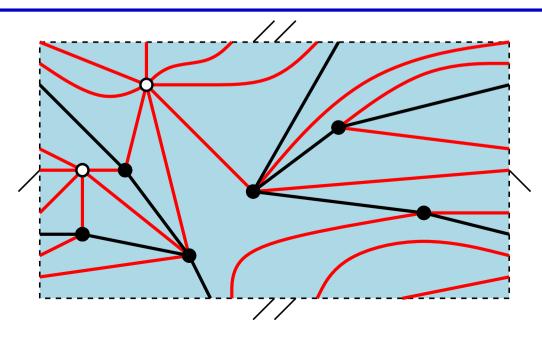
Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M) -$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]

There is a bijection between

ullet the set of rooted maps on $\mathbb S$ with n edges, l vertices and k faces of degree



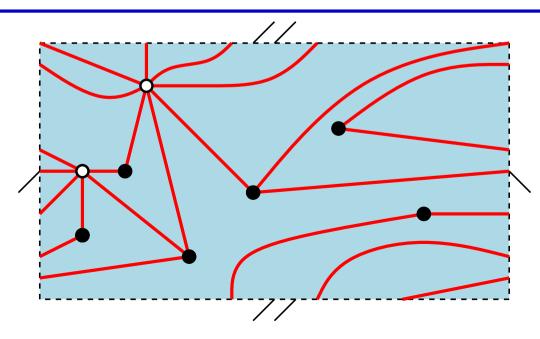
Map M is bipartite if vertices can be colored by two different colors $(V_{\bullet}(M) -$ set of black vertices, $V_{\circ}(M)$ - set of white vertices, root vertex is black by convention) such that each edge connects two vertices of different colors.

Quadrangulation is a map with all faces of degree 4.

Theorem [Tutte 1960]

There is a bijection between

ullet the set of rooted maps on $\mathbb S$ with n edges, l vertices and k faces of degree



Our goal and motivation

Find a bijection between maps and some objects with a WELL-UNDERSTOOD structure!

Our goal and motivation

Find a bijection between maps and some objects with a WELL-UNDERSTOOD structure!

Enumeration of maps by bijective methods:

- bijective explanation of already known results,
- new enumerative results,
- application in related fields (matrix integrals models, permutation factorizations, Hurwitz numbers, Jack symmetric polynomials, etc....?)

Our goal and motivation

Find a bijection between maps and some objects with a WELL-UNDERSTOOD structure!

Enumeration of maps by bijective methods:

- bijective explanation of already known results,
- new enumerative results,

 application in related fields (matrix integrals models, permutation factorizations, Hurwitz numbers, Jack symmetric polynomials, etc....?) Understanding a geometry of a random surface:

growing maps as a discrete model of a continuous manifold,
geometry of a random surface
geometry of a random map,
when its size tends to infinity,
bijection helps to understand a discrete surface as a metric space! II. Bijections for bipartite quadrangulations and tree–like labeled structures

A map is called labeled if its vertices are labeled by integers such that:

- the root vertex has label 1;
- if two vertices are linked by an edge, their labels differ by at most 1. If in addition we have:
 - all the vertex labels are positive,

then the map is called well-labeled.

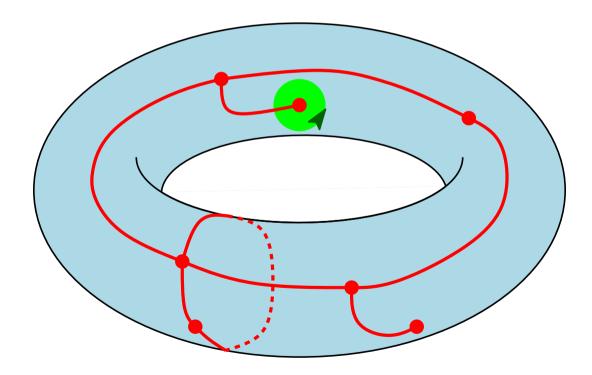
A map is called labeled if its vertices are labeled by integers such that:

• the root vertex has label 1;

• if two vertices are linked by an edge, their labels differ by at most 1. If in addition we have:

• all the vertex labels are positive,

then the map is called well-labeled.



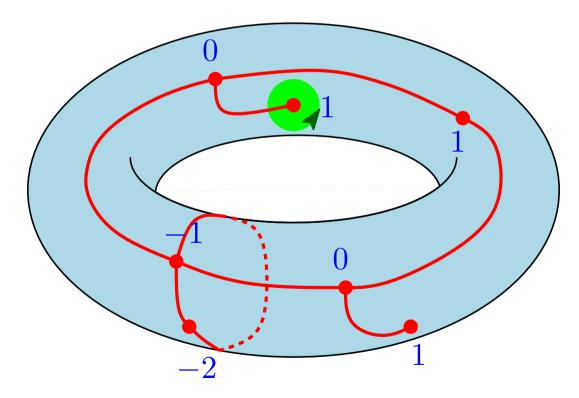
A map is called labeled if its vertices are labeled by integers such that:

• the root vertex has label 1;

• if two vertices are linked by an edge, their labels differ by at most 1. If in addition we have:

• all the vertex labels are positive,

then the map is called well-labeled.



labeled map on a torus

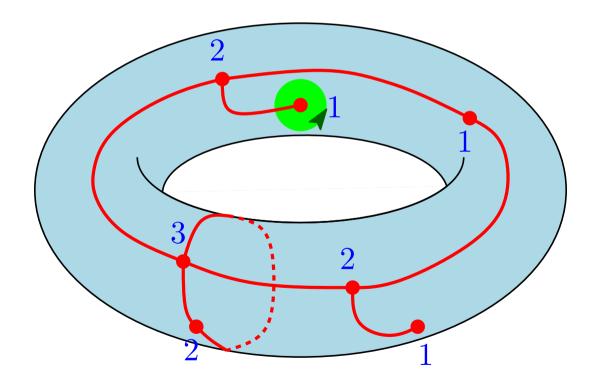
A map is called labeled if its vertices are labeled by integers such that:

• the root vertex has label 1;

• if two vertices are linked by an edge, their labels differ by at most 1. If in addition we have:

• all the vertex labels are positive,

then the map is called well-labeled.



well-labeled map on a torus

Orientable case

Theorem [Marcus, Schaeffer 1996]

There exists a bijection between:

• rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);

• rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label $i \ (i \ge 1)$;

Orientable case

Theorem [Marcus, Schaeffer 1996]

There exists a bijection between:

• rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);

• rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);



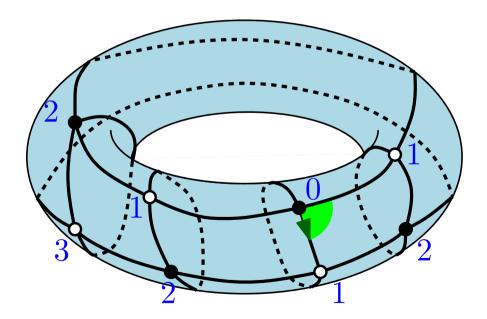
Orientable case

Theorem [Marcus, Schaeffer 1996]

There exists a bijection between:

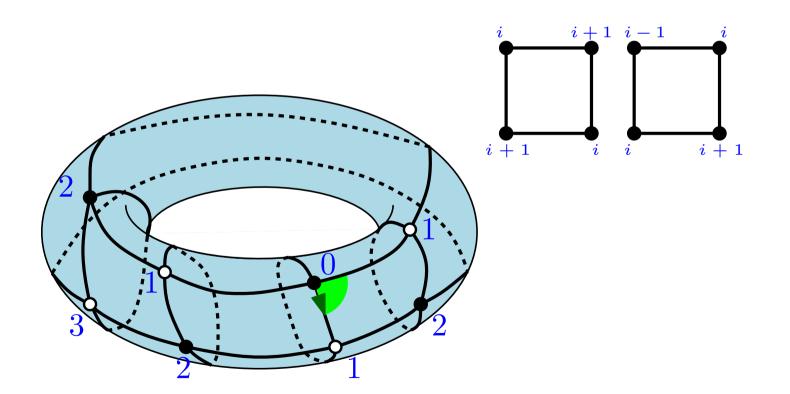
• rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);

• rooted, one-face, well-labeled maps on ORIENTABLE surface S with n edges and N_i vertices of label i ($i \ge 1$);



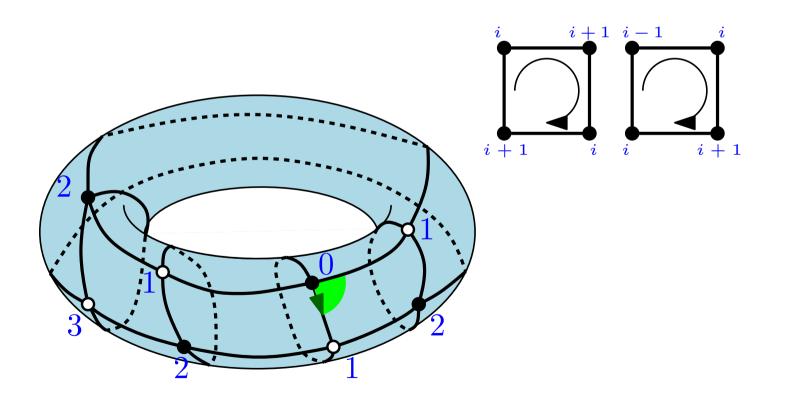
Theorem [Marcus, Schaeffer 1996] There exists a bijection between:

• rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);



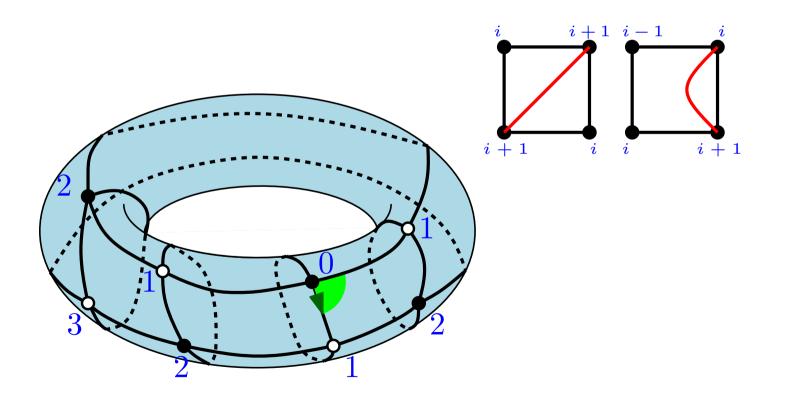
Theorem [Marcus, Schaeffer 1996] There exists a bijection between:

• rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);



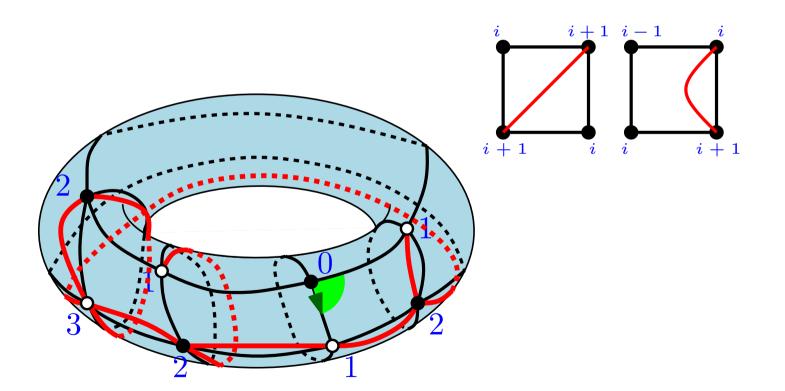
Theorem [Marcus, Schaeffer 1996] There exists a bijection between:

• rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);



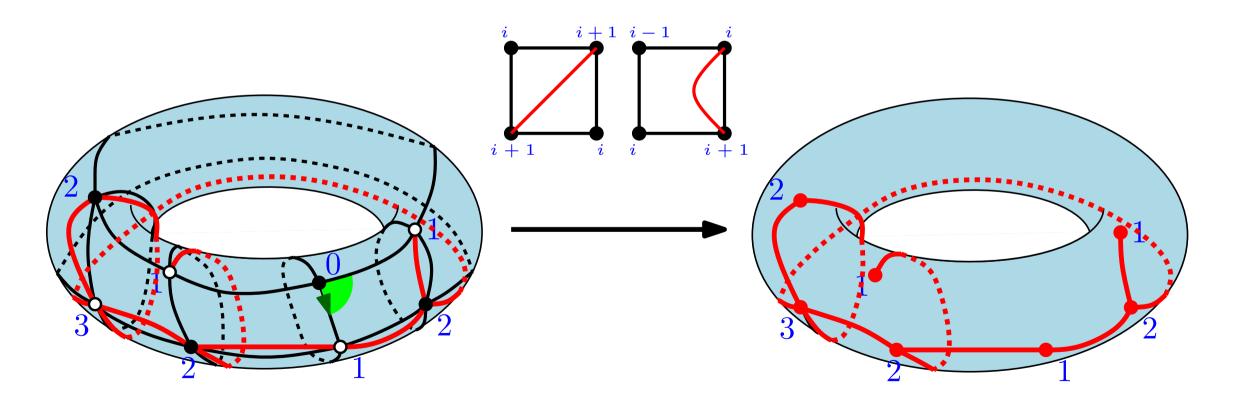
Theorem [Marcus, Schaeffer 1996] There exists a bijection between:

• rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);



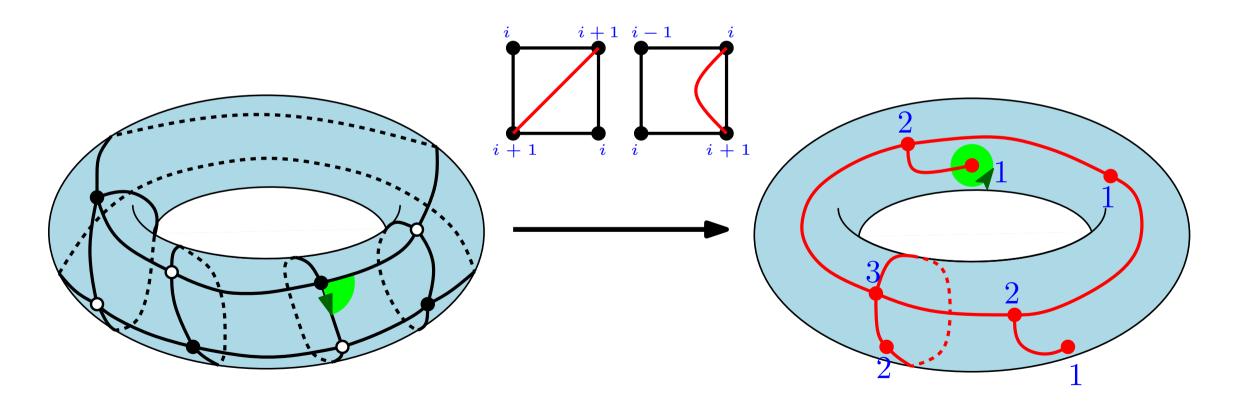
Theorem [Marcus, Schaeffer 1996] There exists a bijection between:

• rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);



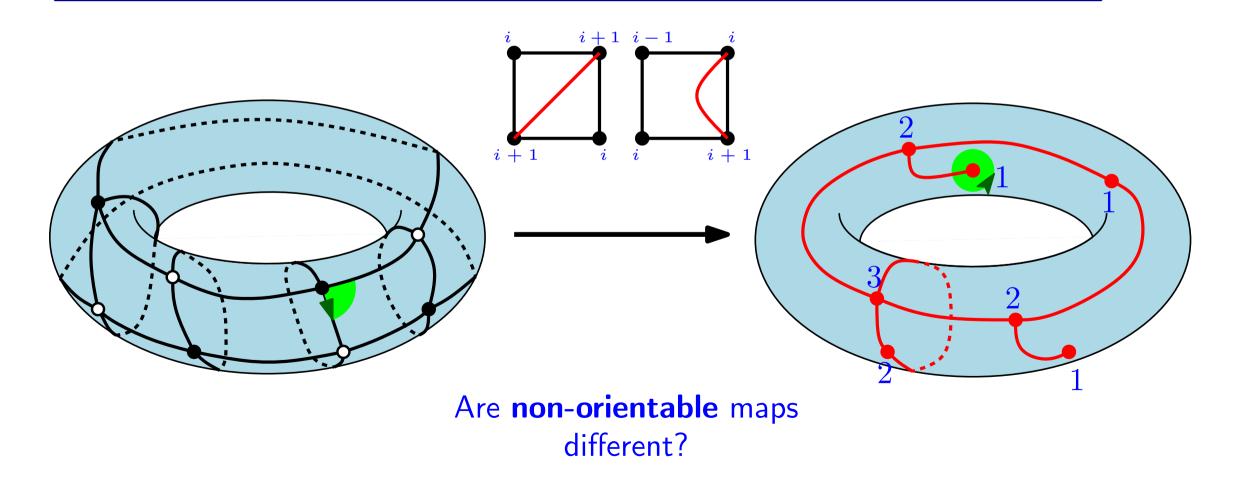
Theorem [Marcus, Schaeffer 1996] There exists a bijection between:

• rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);



Theorem [Marcus, Schaeffer 1996] There exists a bijection between:

• rooted, bipartite quadrangulations on ORIENTABLE surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);



Theorem [Chapuy, D. 2015]

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY surface S with n edges and N_i vertices of label i ($i \ge 1$);

Theorem [Chapuy, D. 2015]

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY surface S with n edges and N_i vertices of label i ($i \ge 1$);

Idea of how to extend Marcus-Schaeffer bijection:

local rules are the same,

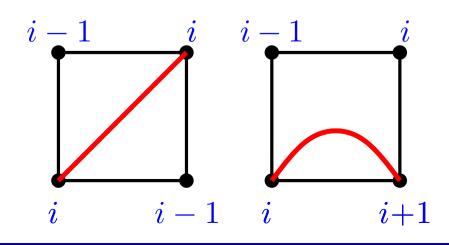
Theorem [Chapuy, D. 2015]

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY surface S with n edges and N_i vertices of label i ($i \ge 1$);

Idea of how to extend Marcus-Schaeffer bijection:

• local rules are the same,



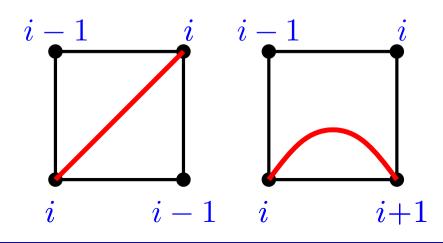
Theorem [Chapuy, D. 2015]

There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY surface S with n edges and N_i vertices of label $i \ (i \ge 1)$;

Idea of how to extend Marcus-Schaeffer bijection:

- local rules are the same,
- the resulting red map is unicellular



Theorem [Chapuy, D. 2015]

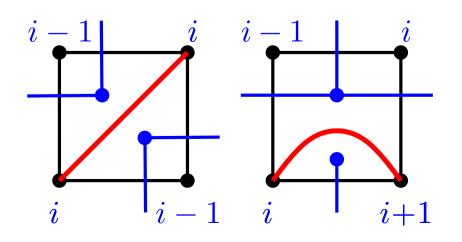
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY surface S with n edges and N_i vertices of label i ($i \ge 1$);

Idea of how to extend Marcus-Schaeffer bijection:

• local rules are the same,

• the resulting red map is unicellular = dual graph has a tree-like structure,



Theorem [Chapuy, D. 2015]

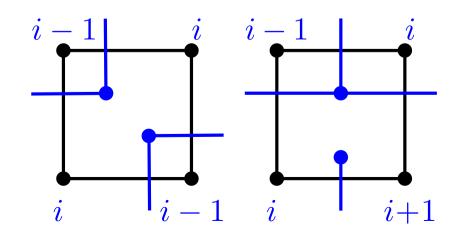
There exists a bijection between:

- rooted, bipartite quadrangulations on ANY surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY surface S with n edges and N_i vertices of label i ($i \ge 1$);

Idea of how to extend Marcus-Schaeffer bijection:

• local rules are the same,

• the resulting red map is **unicellular**. For a given quadrangulation we are going to construct a **blue tree-like graph** (with these local rules)!



Theorem [Chapuy, D. 2015]

There exists a bijection between:

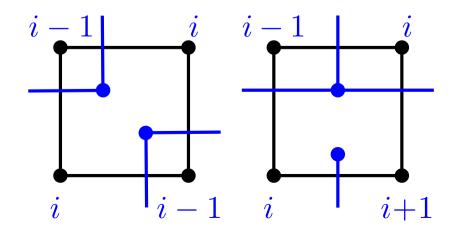
- rooted, bipartite quadrangulations on ANY surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY surface S with n edges and N_i vertices of label i ($i \ge 1$);

Idea of how to extend Marcus-Schaeffer bijection:

• local rules are the same,

• the resulting red map is **unicellular**. For a given quadrangulation we are going to construct a **blue tree-like graph** (with these local rules)!

• position of blue and black edges forces the position of red edges,



Theorem [Chapuy, D. 2015]

There exists a bijection between:

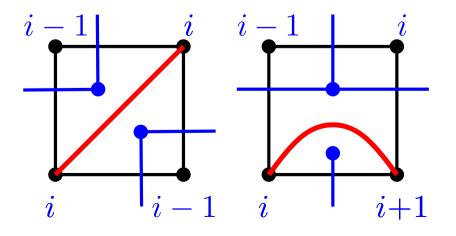
- rooted, bipartite quadrangulations on ANY surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY surface S with n edges and N_i vertices of label i ($i \ge 1$);

Idea of how to extend Marcus-Schaeffer bijection:

• local rules are the same,

• the resulting red map is **unicellular**. For a given quadrangulation we are going to construct a **blue tree-like graph** (with these local rules)!

• position of blue and black edges forces the position of red edges,



Theorem [Chapuy, D. 2015]

There exists a bijection between:

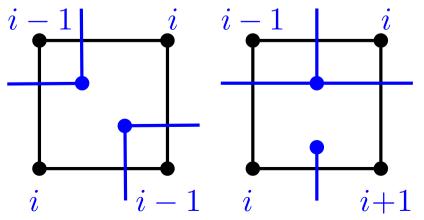
- rooted, bipartite quadrangulations on ANY surface S with n faces and N_i vertices at distance i from the root vertex ($i \ge 1$);
- rooted, one-face, well-labeled maps on ANY surface S with n edges and N_i vertices of label i ($i \ge 1$);

Idea of how to extend Marcus-Schaeffer bijection:

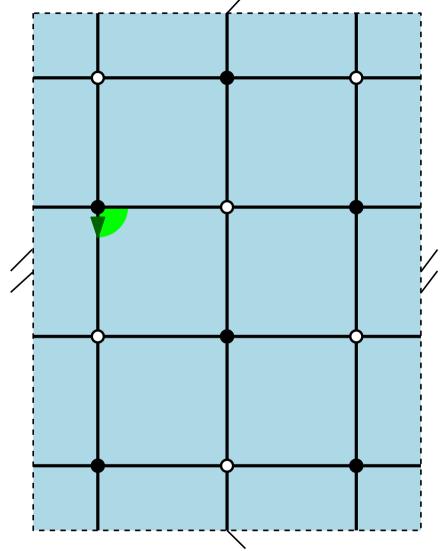
• local rules are the same,

• the resulting red map is **unicellular**. For a given quadrangulation we are going to construct a **blue tree-like graph** (with these local rules)!

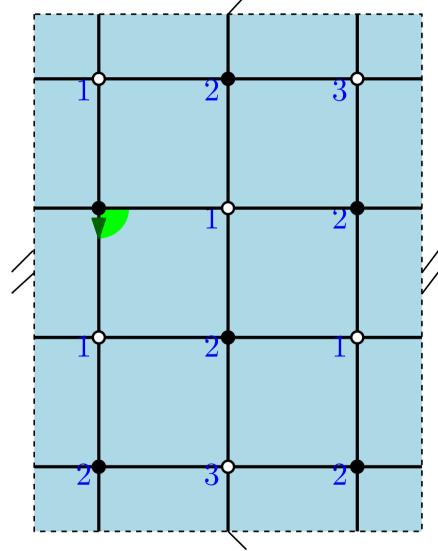
 If the construction of blue graph is local then it is invertible and it leads to a BIJECTION!



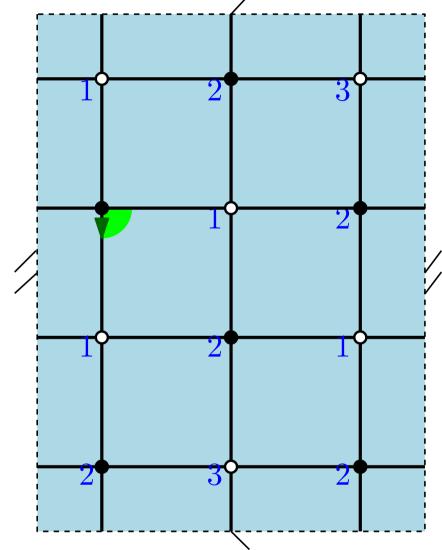
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



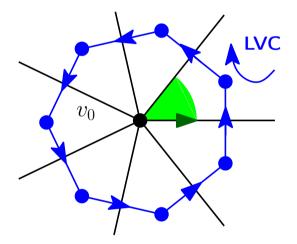
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



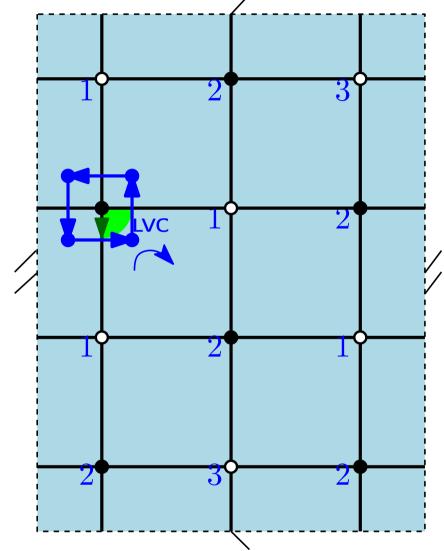
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



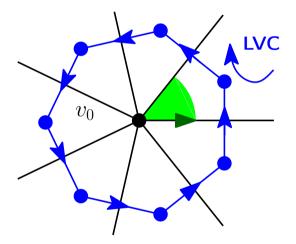
Step 0: Initialization



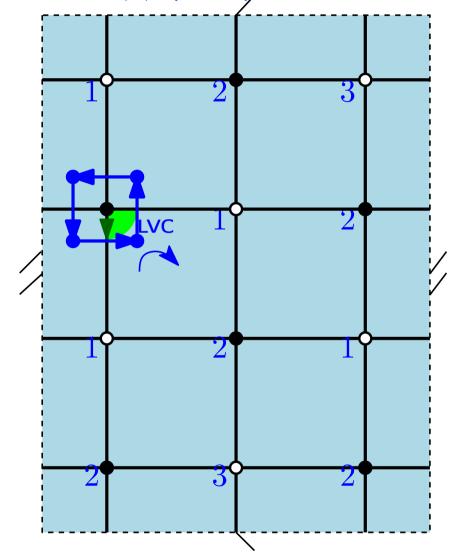
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



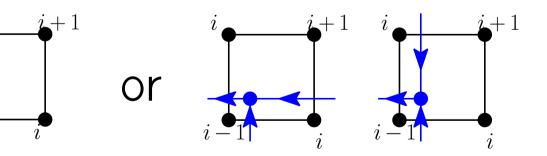
Step 0: Initialization



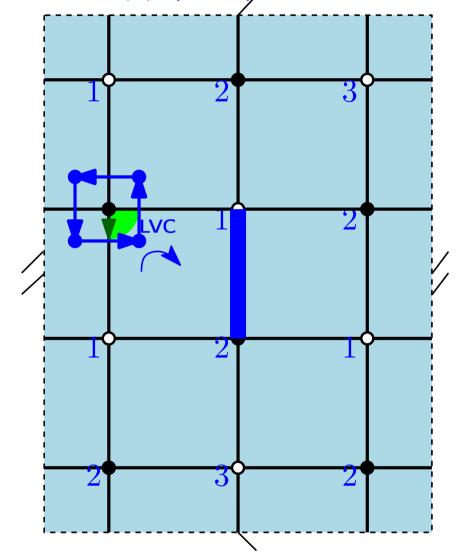
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



Step 1: Choosing where to start



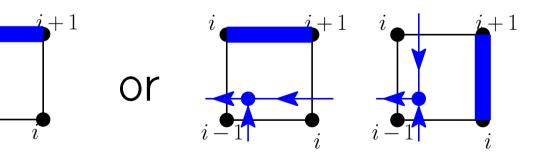
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



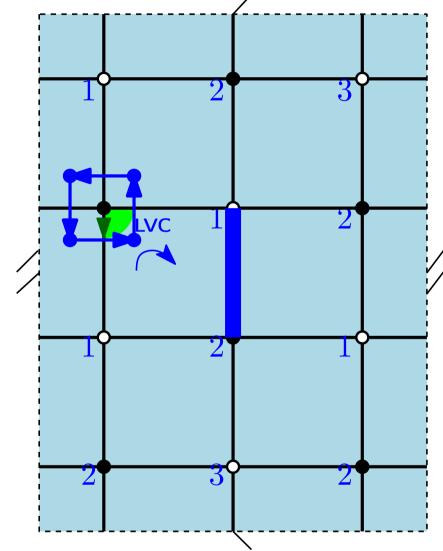
Step 1: Choosing where to start

• we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face F having the following properties: F is of type (i - 1, i, i + 1, i), and F has exactly one blue vertex already placed inside it.

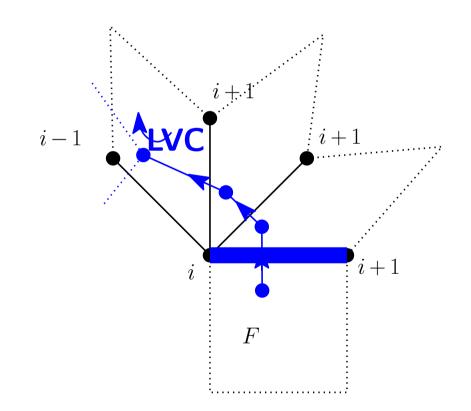
• we choose an edge e in F by the following rule:



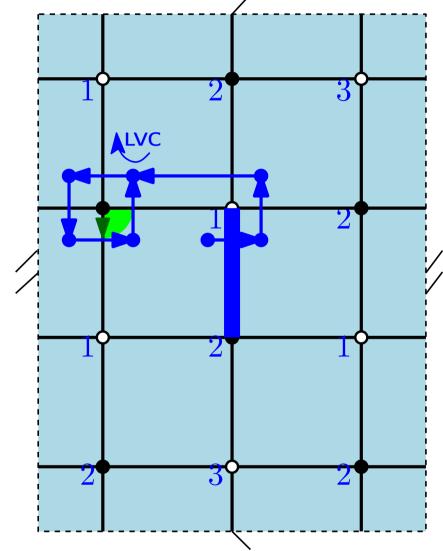
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



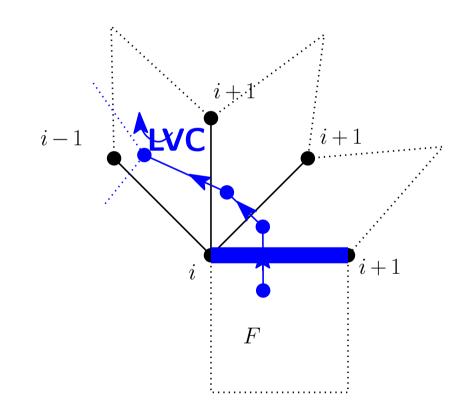
Step 2: Attaching a new branch of blue edges labeled by i starting across e



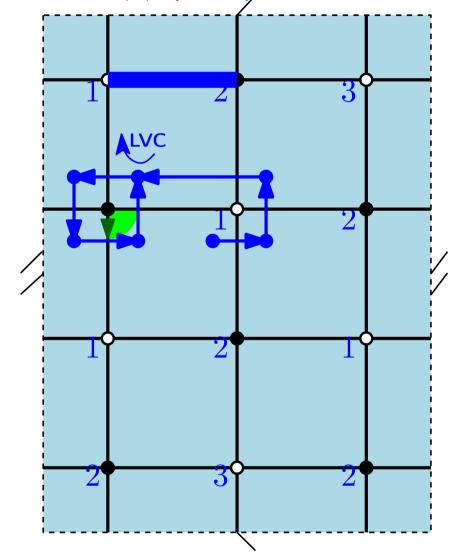
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



Step 2: Attaching a new branch of blue edges labeled by i starting across e



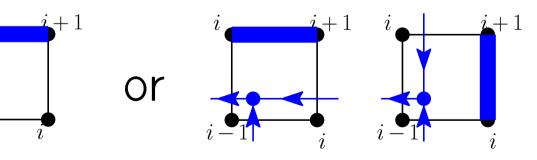
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



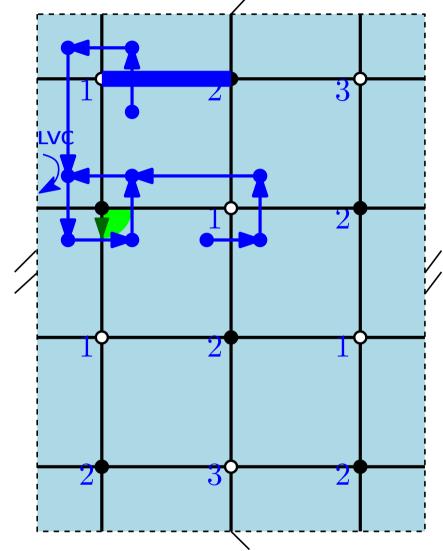
Step 1: Choosing where to start

• we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face F having the following properties: F is of type (i - 1, i, i + 1, i), and F has exactly one blue vertex already placed inside it.

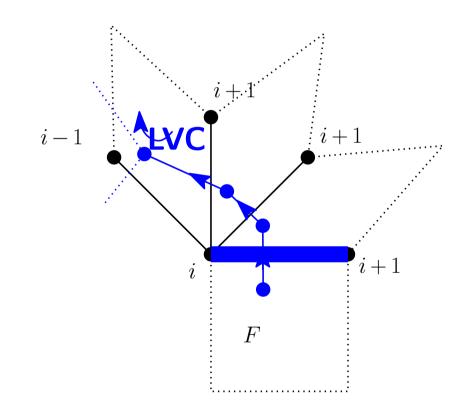
• we choose an edge e in F by the following rule:



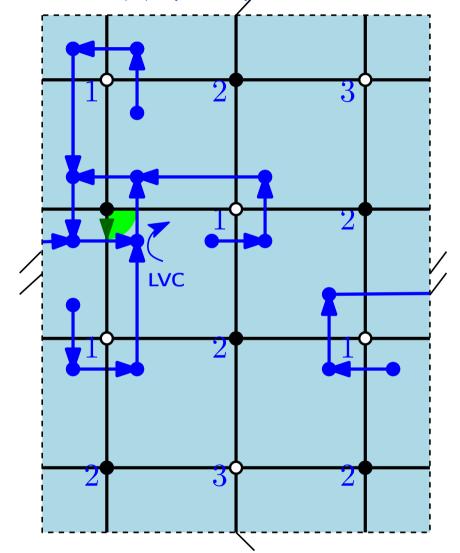
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



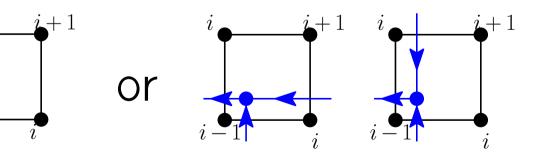
Step 2: Attaching a new branch of blue edges labeled by i starting across e



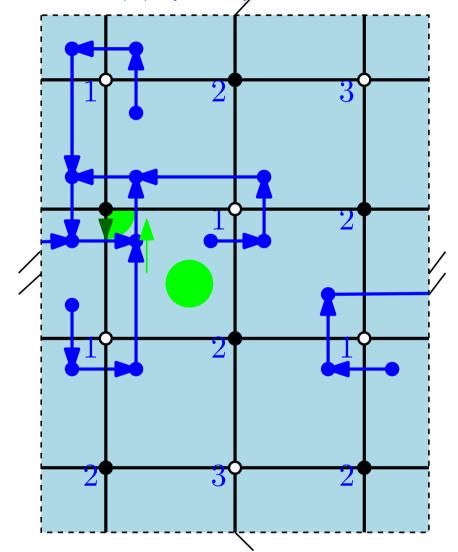
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



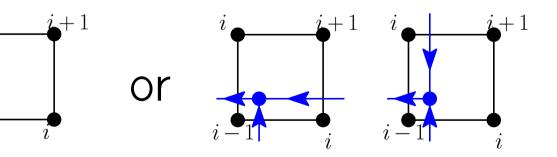
Step 1: Choosing where to start



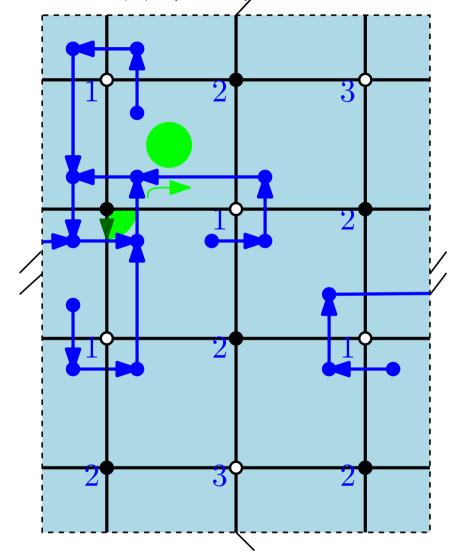
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



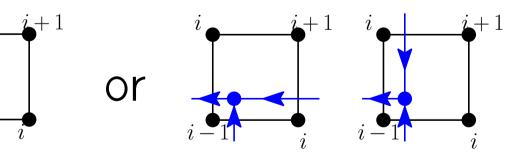
Step 1: Choosing where to start



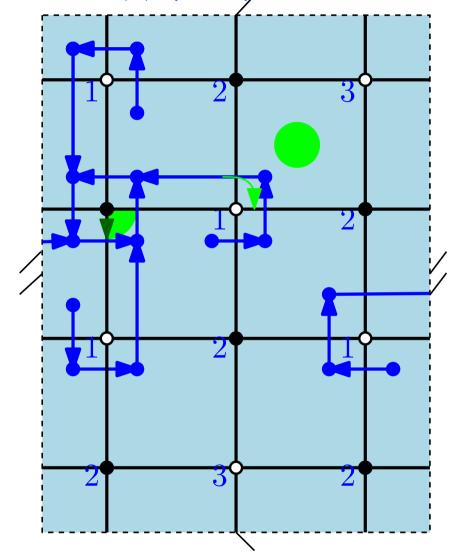
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



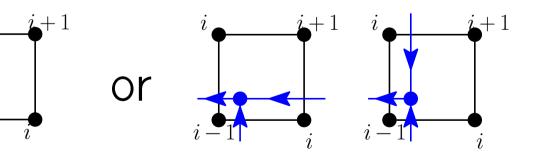
Step 1: Choosing where to start



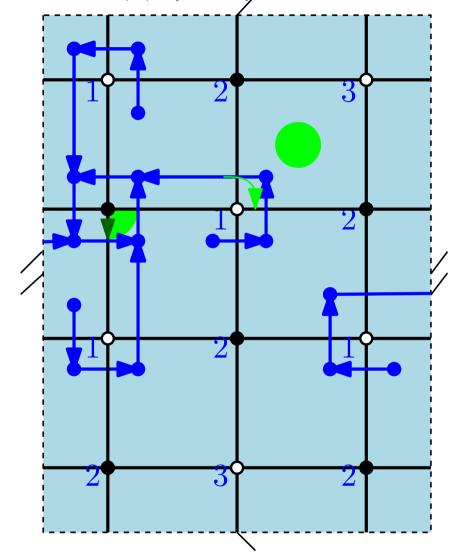
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



Step 1: Choosing where to start



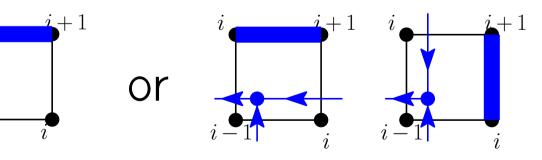
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



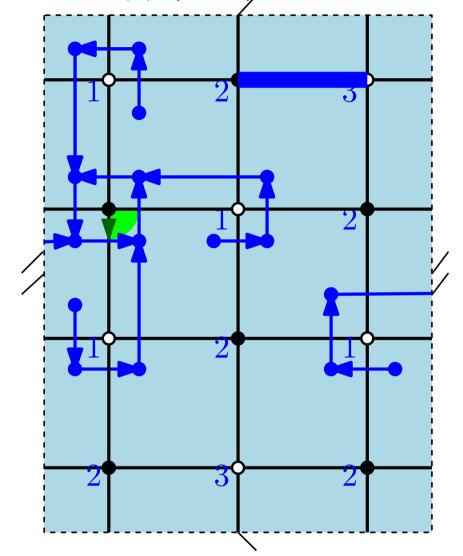
Step 1: Choosing where to start

• we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face F having the following properties: F is of type (i - 1, i, i + 1, i), and F has exactly one blue vertex already placed inside it.

• we choose an edge e in F by the following rule:



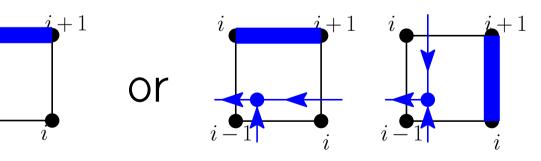
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



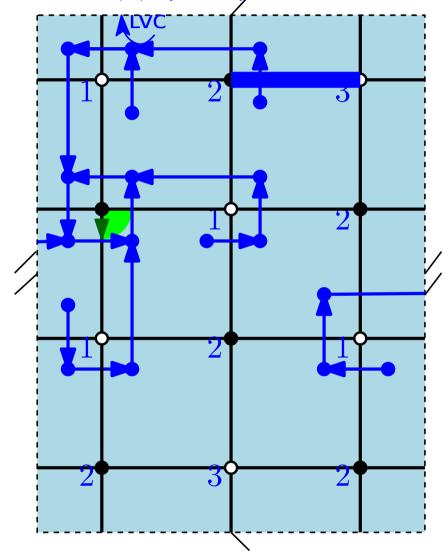
Step 1: Choosing where to start

• we perform the tour of the blue graph, starting from the LVC. We stop as soon as we visit a face F having the following properties: F is of type (i - 1, i, i + 1, i), and F has exactly one blue vertex already placed inside it.

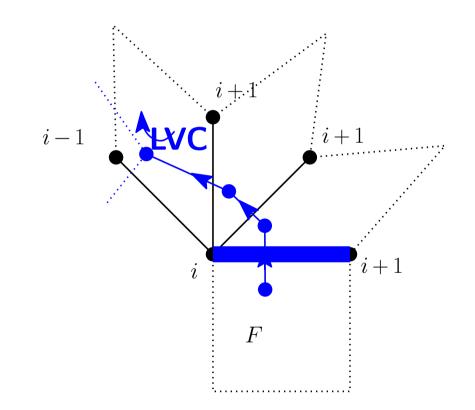
• we choose an edge e in F by the following rule:



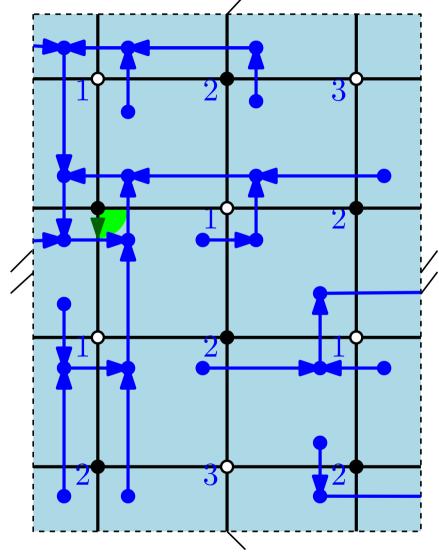
For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



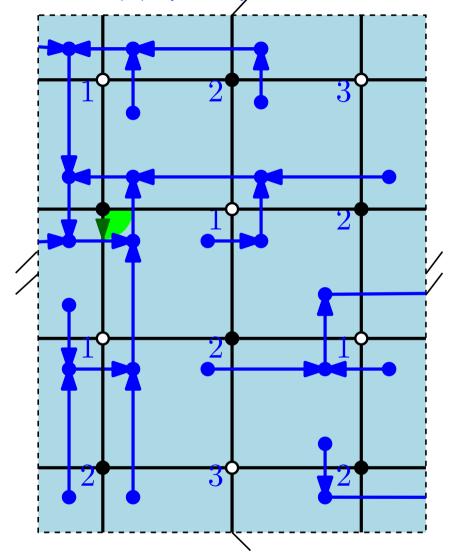
Step 2: Attaching a new branch of blue edges labeled by i starting across e



For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:

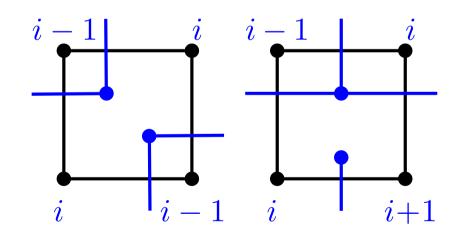


For a given quadrangulation q we construct recursively a Dual Exploration Graph $\nabla(q)$ (DEG) on the same surface:

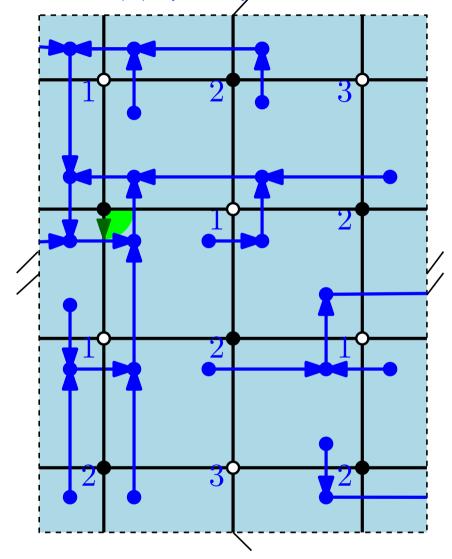


Proposition:

DEG $\nabla(q)$ is formed by a unique oriented cycle encircling root vertex v_0 , to which oriented trees are attached. After the construction of $\nabla(q)$ is complete, each face of q is of one of the two types:

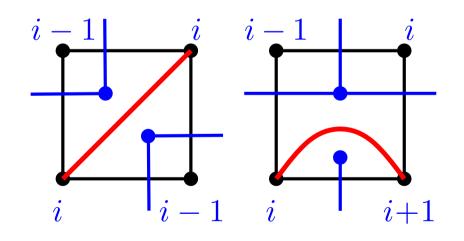


For a given quadrangulation q we construct recursively a Dual Exploration Graph $\nabla(q)$ (DEG) on the same surface:



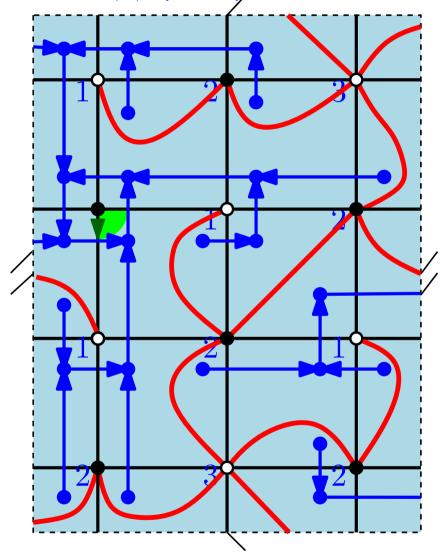
Proposition:

DEG $\nabla(q)$ is formed by a unique oriented cycle encircling root vertex v_0 , to which oriented trees are attached. After the construction of $\nabla(q)$ is complete, each face of q is of one of the two types:



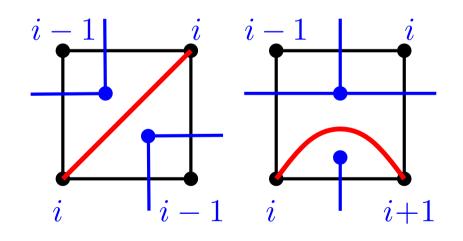
General case (II)

For a given quadrangulation q we construct recursively a Dual Exploration Graph $\nabla(q)$ (DEG) on the same surface:



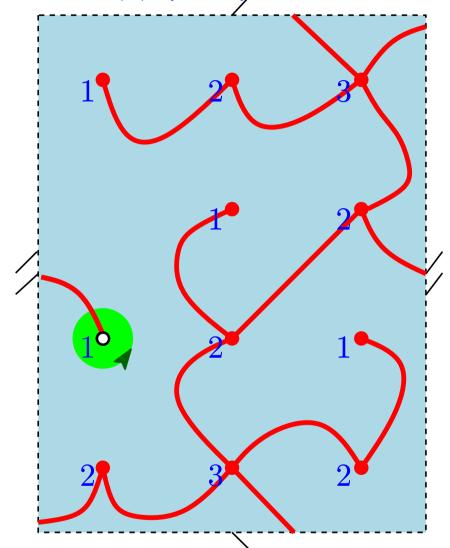
Proposition:

DEG $\nabla(q)$ is formed by a unique oriented cycle encircling root vertex v_0 , to which oriented trees are attached. After the construction of $\nabla(q)$ is complete, each face of q is of one of the two types:



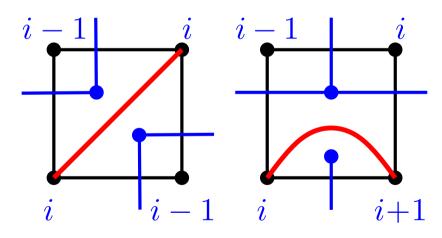
General case (II)

For a given quadrangulation \mathfrak{q} we construct recursively a Dual Exploration Graph $\nabla(\mathfrak{q})$ (DEG) on the same surface:



Proposition:

DEG $\nabla(q)$ is formed by a unique oriented cycle encircling root vertex v_0 , to which oriented trees are attached. After the construction of $\nabla(q)$ is complete, each face of q is of one of the two types:



Corollary:

Red map $\phi(q)$ is a one-face well-labeled rooted map with n edges, where n is the number of faces of q.

General case (III)

{rooted, bipartite quadrangulations on S with n faces and N_i vertices at distance i from the root vertex $(i \ge 1)$ }

 \leftrightarrow

{rooted, WELL-LABELED, one-face maps on S with n edges and N_i vertices of label $i \ (i \ge 1)$ }

General case (III)

{rooted, bipartite quadrangulations on S with n faces and N_i vertices at distance *i* from the root vertex $(i \ge 1)$ \leftrightarrow {rooted, WELL-LABELED, one-face maps on \mathbb{S} with n edges and N_i vertices of label $i \ (i \ge 1)$ \downarrow {rooted, POINTED bipartite quadrangulations on \mathbb{S} with n faces and N_i vertices at distance *i* from the pointed vertex $(i \ge 1)$ \leftrightarrow {rooted, LABELED, one-face maps on S equipped with a sign $\epsilon \in \{+, -\}$ with N_i vertices of label $i + (\ell_{min} - 1)(i \ge 1)\}$

General case (III)

{rooted, bipartite quadrangulations on S with n faces and N_i vertices at distance *i* from the root vertex $(i \ge 1)$ \leftrightarrow {rooted, WELL-LABELED, one-face maps on \mathbb{S} with n edges and N_i vertices of label $i \ (i \ge 1)$ {rooted, POINTED bipartite quadrangulations on \mathbb{S} with n faces and N_i vertices at distance *i* from the pointed vertex $(i \ge 1)$ \leftrightarrow {rooted, LABELED, one-face maps on S equipped with a sign $\epsilon \in \{+, -\}$ with N_i vertices of label $i + (\ell_{min} - 1)(i \ge 1)\}$

> Double rooting trick and Hall's marriage theorem see next slide!

 (q, v_0) - pointed, rooted quadrangulation

 (q, v_0) - pointed, rooted quadrangulation

choose a corner incident to v_0 and declare as a new root corner

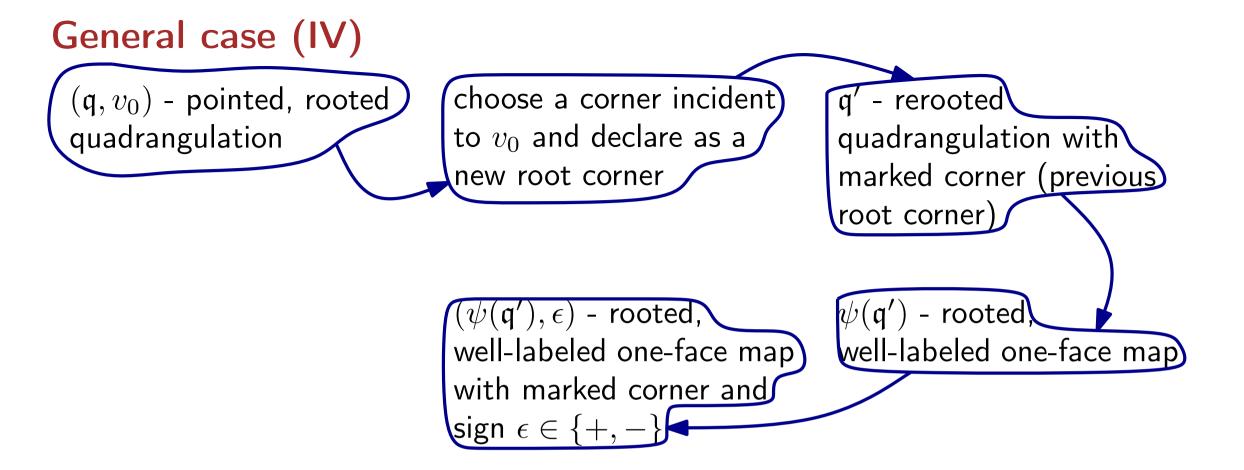
 (q, v_0) - pointed, rooted) quadrangulation choose a corner incident to v_0 and declare as a new root corner

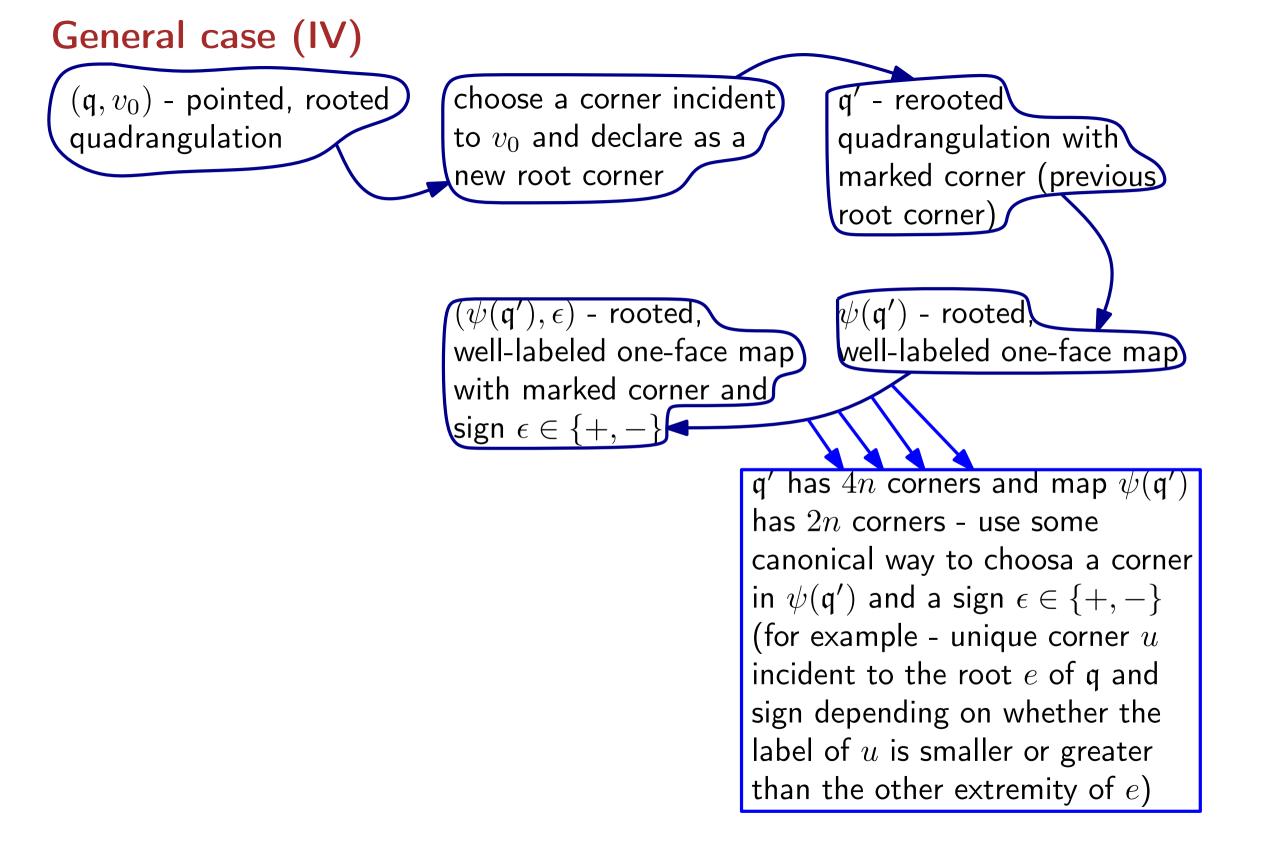
q' - rerooted quadrangulation with marked corner (previous root corner)

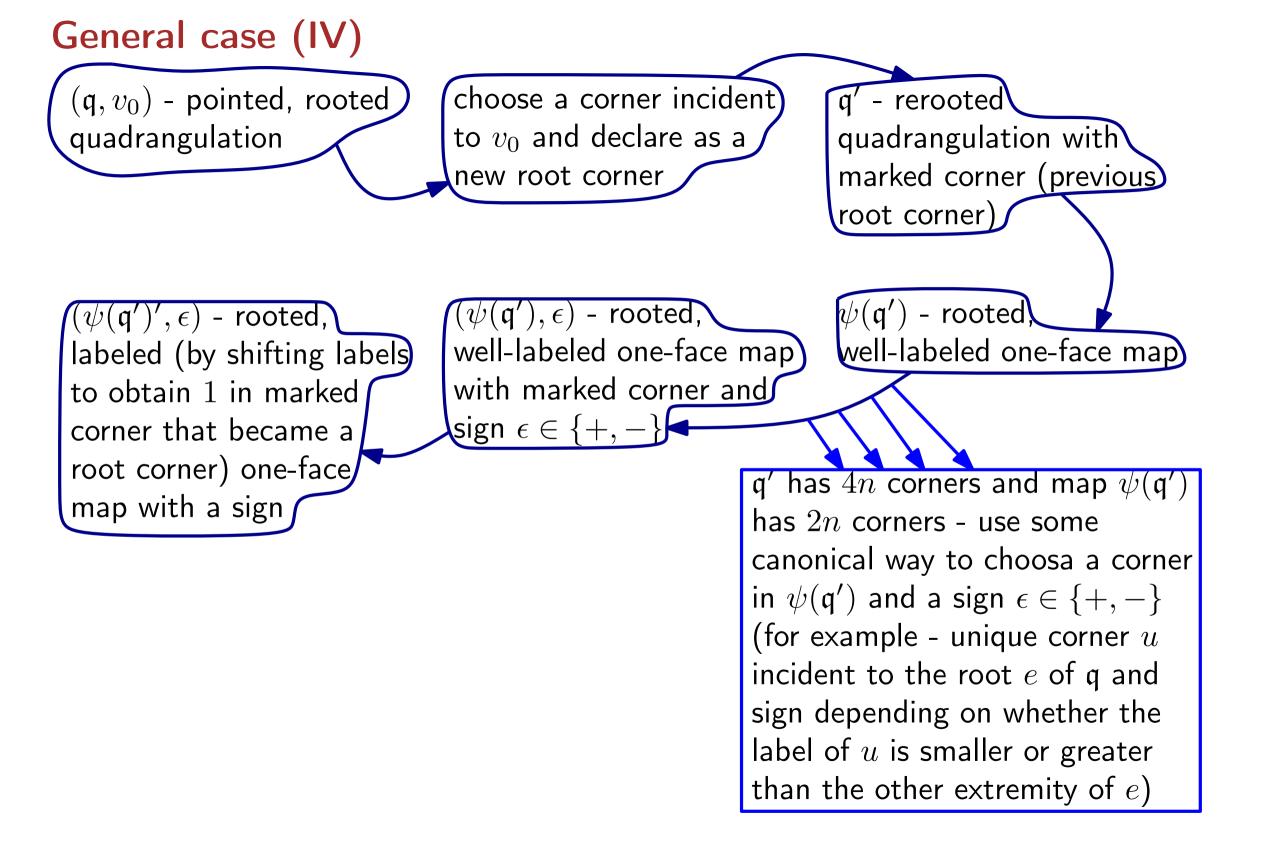
 (q, v_0) - pointed, rooted) quadrangulation

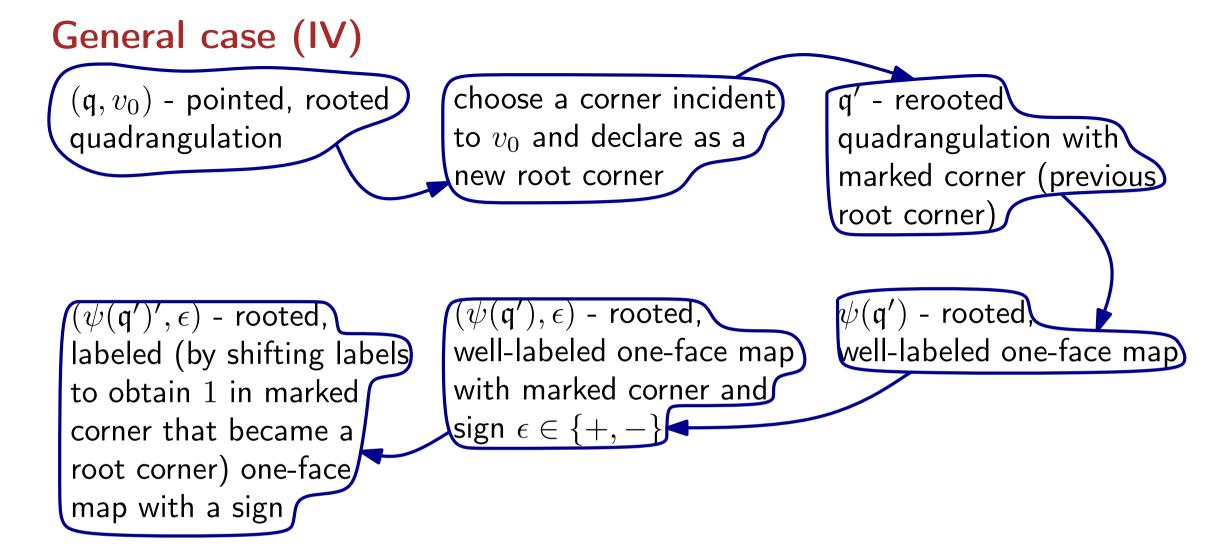
choose a corner incident to v_0 and declare as a new root corner

q' - rerooted quadrangulation with marked corner (previous root corner) $\psi(q')$ - rooted, well-labeled one-face map

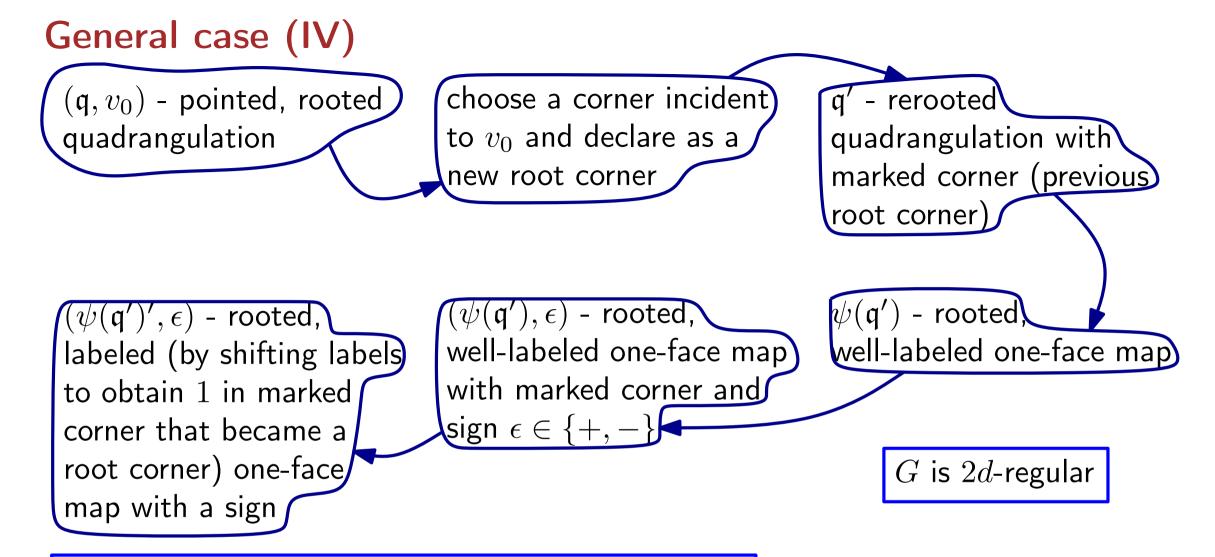




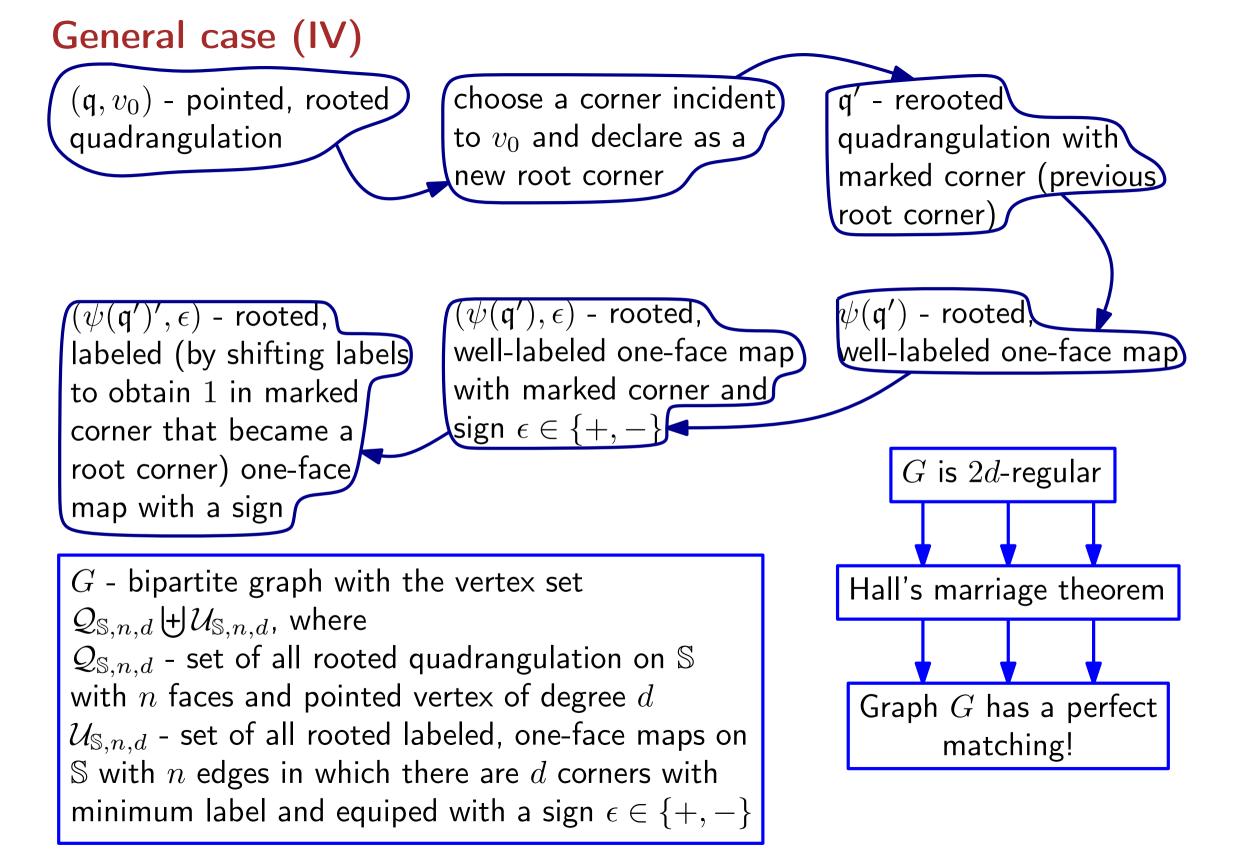




G - bipartite graph with the vertex set $\mathcal{Q}_{\mathbb{S},n,d} \biguplus \mathcal{U}_{\mathbb{S},n,d}$, where $\mathcal{Q}_{\mathbb{S},n,d}$ - set of all rooted quadrangulation on \mathbb{S} with n faces and pointed vertex of degree d $\mathcal{U}_{\mathbb{S},n,d}$ - set of all rooted labeled, one-face maps on \mathbb{S} with n edges in which there are d corners with minimum label and equiped with a sign $\epsilon \in \{+, -\}$



G - bipartite graph with the vertex set $\mathcal{Q}_{\mathbb{S},n,d} \biguplus \mathcal{U}_{\mathbb{S},n,d}$, where $\mathcal{Q}_{\mathbb{S},n,d}$ - set of all rooted quadrangulation on \mathbb{S} with n faces and pointed vertex of degree d $\mathcal{U}_{\mathbb{S},n,d}$ - set of all rooted labeled, one-face maps on \mathbb{S} with n edges in which there are d corners with minimum label and equiped with a sign $\epsilon \in \{+, -\}$



III. Applications

Let us try to enumerate maps with n edges on the projective plane:

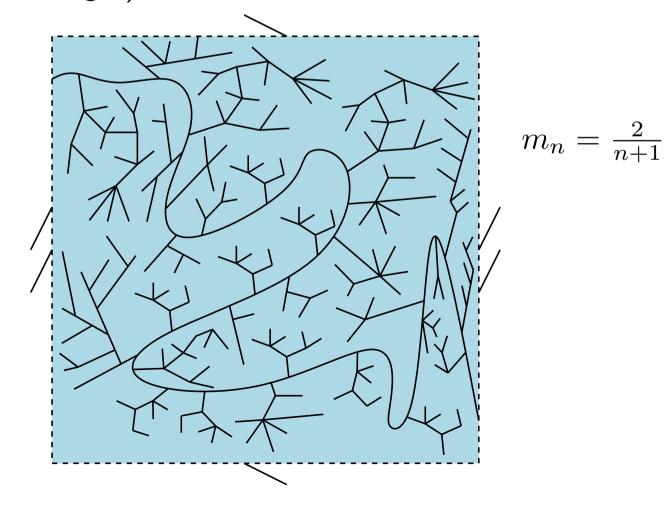
- Let us try to enumerate maps with n edges on the projective plane:
- •number of rooted maps on the projective plane with n edges =
- •number of rooted quadrangulations on the projective plane with n faces =
- •(number of rooted, POINTED quadrangulations on the projective plane with n faces)/(number of vertices = n+1) =
- • $\frac{2}{n+1}$ (number of rooted, labeled, one-face maps on the projective plane with n edges)

Let us try to enumerate maps with n edges on the projective plane:

•number of rooted maps on the projective plane with n edges =

•number of rooted quadrangulations on the projective plane with n faces =

•(number of rooted, POINTED quadrangulations on the projective plane with n faces)/(number of vertices = n+1) =

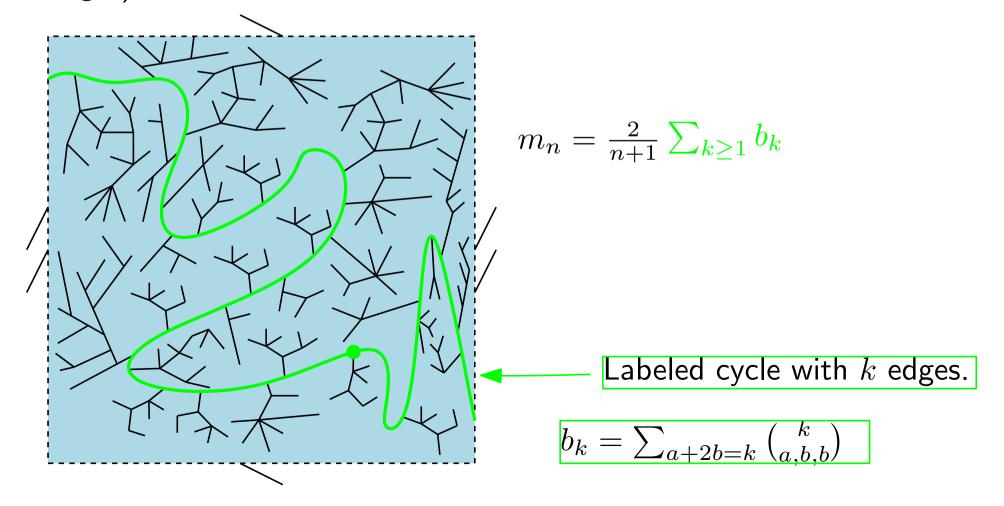


Let us try to enumerate maps with n edges on the projective plane:

•number of rooted maps on the projective plane with n edges =

•number of rooted quadrangulations on the projective plane with n faces =

•(number of rooted, POINTED quadrangulations on the projective plane with n faces)/(number of vertices = n+1) =

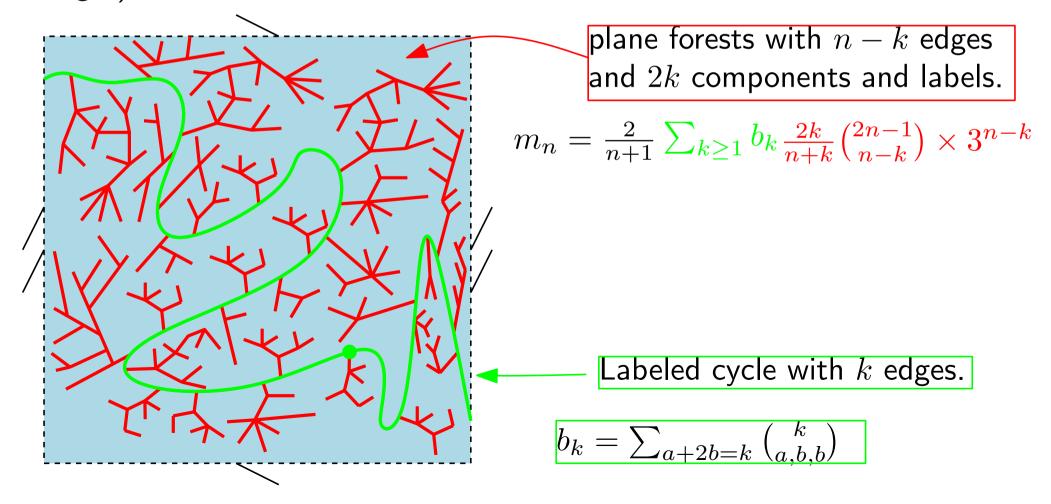


Let us try to enumerate maps with n edges on the projective plane:

•number of rooted maps on the projective plane with n edges =

•number of rooted quadrangulations on the projective plane with n faces =

•(number of rooted, POINTED quadrangulations on the projective plane with n faces)/(number of vertices = n+1) =

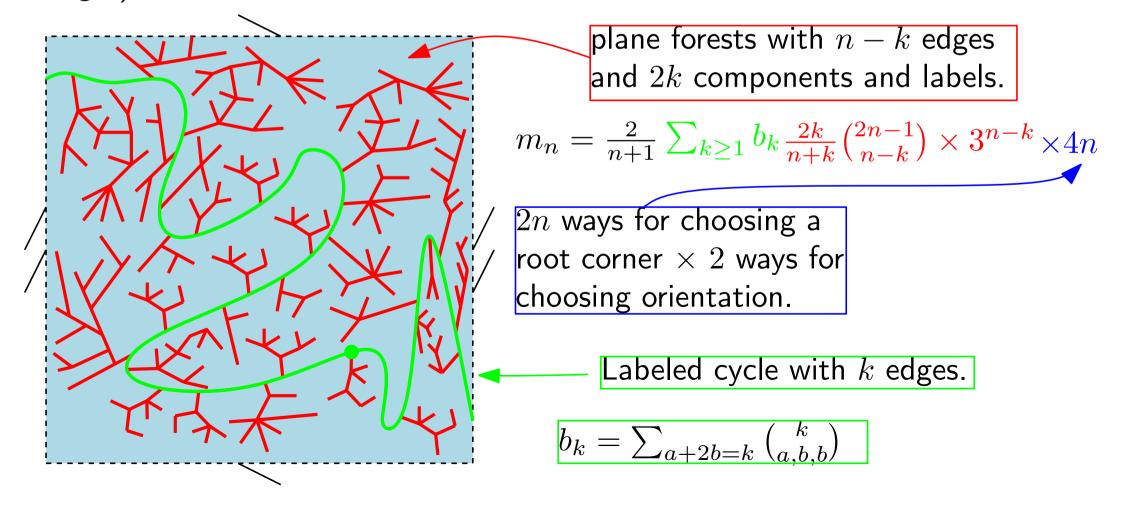


Let us try to enumerate maps with n edges on the projective plane:

•number of rooted maps on the projective plane with n edges =

•number of rooted quadrangulations on the projective plane with n faces =

•(number of rooted, POINTED quadrangulations on the projective plane with n faces)/(number of vertices = n+1) =

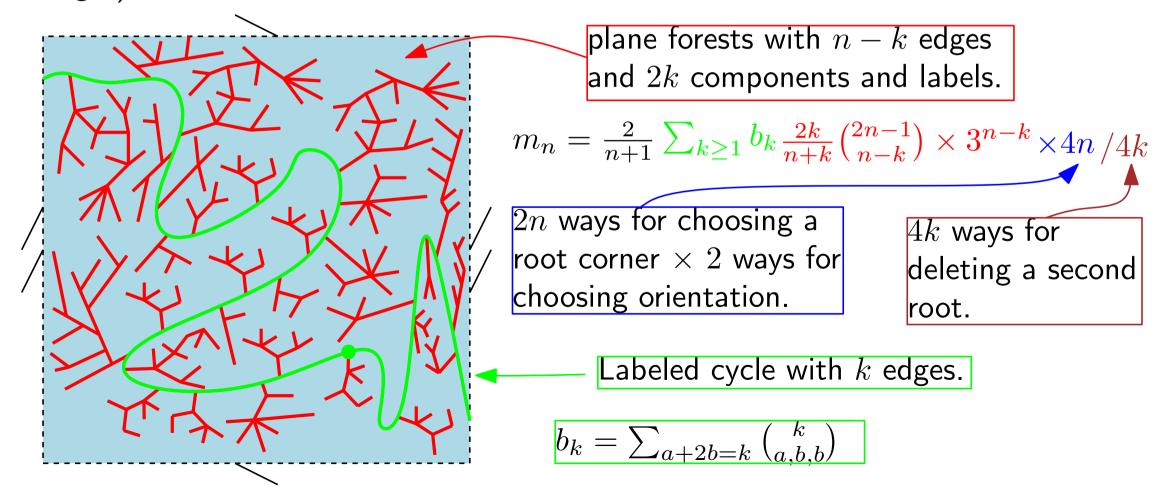


Let us try to enumerate maps with n edges on the projective plane:

•number of rooted maps on the projective plane with n edges =

•number of rooted quadrangulations on the projective plane with n faces =

•(number of rooted, POINTED quadrangulations on the projective plane with n faces)/(number of vertices = n+1) =



Enumeration

Theorem [Bender, Canfield 1986]

Let

$$Q_{\mathbb{S}}(t) := \sum_{n \ge 0} \vec{q}_{\mathbb{S},\bullet} t^n = \sum_{n \ge 0} (n+2-2h) \vec{q}_{\mathbb{S}}(n) t^n$$

be the generating function of rooted maps of type g pointed at a vertex or a face, by the number of edges. Moreover let $U \equiv U(t)$ and $T \equiv T(t)$ be the two formal power series defined by: $T = 1 + 3tT^2$, $U = tT^2(1 + U + U^2)$. Then $Q_{\mathbb{S}}(t)$ is a rational function in U.

Enumeration

Theorem [Bender, Canfield 1986]

Let

$$Q_{\mathbb{S}}(t) := \sum_{n \ge 0} \vec{q}_{\mathbb{S},\bullet} t^n = \sum_{n \ge 0} (n+2-2h) \vec{q}_{\mathbb{S}}(n) t^n$$

be the generating function of rooted maps of type g pointed at a vertex or a face, by the number of edges. Moreover let $U \equiv U(t)$ and $T \equiv T(t)$ be the two formal power series defined by: $T = 1 + 3tT^2$, $U = tT^2(1 + U + U^2)$. Then $Q_{\mathbb{S}}(t)$ is a rational function in U.

Corollary [Bender, Canfield 1986] For each $g \in \{\frac{1}{2}, 1, \frac{3}{2}, 2, ...\}$, there exists a constant p_g such that the number of rooted maps with n edges on the non-orientable surface of type gsatisfies:

$$m_g(n) \sim p_g 12^n n^{\frac{5(g-1)}{2}}.$$

Enumeration

Theorem [Bender, Canfield 1986]

Let

$$Q_{\mathbb{S}}(t) := \sum_{n \ge 0} \vec{q}_{\mathbb{S},\bullet} t^n = \sum_{n \ge 0} (n+2-2h) \vec{q}_{\mathbb{S}}(n) t^n$$

be the generating function of rooted maps of type g pointed at a vertex or a face, by the number of edges. Moreover let $U \equiv U(t)$ and $T \equiv T(t)$ be the two formal power series defined by: $T = 1 + 3tT^2$, $U = tT^2(1 + U + U^2)$. Then $Q_{\mathbb{S}}(t)$ is a rational function in U.

Corollary [Bender, Canfield 1986] For each $g \in \{\frac{1}{2}, 1, \frac{3}{2}, 2, ...\}$, there exists a constant p_g such that the number of rooted maps with n edges on the non-orientable surface of type gsatisfies:

$$m_g(n) \sim p_g 12^n n^{\frac{5(g-1)}{2}}$$

Remark

Our main theorem allows us to recover Bender and Canfield results. In particular we can give some explicit (but very complicated) formula for the constant p_g .

Random maps

Let (\mathcal{M}, v) be a map with distinguished vertex v. We define:

 \bullet radius of a map ${\mathcal M}$ centered at v by the quantity

 $R(\mathcal{M}, v) = \max_{u \in V(\mathcal{M})} d_{\mathcal{M}}(v, u);$

• profile of distances from the distinguished point v (for any r > 0) by:

$$I_{(\mathcal{M},v)}(r) = \#\{u \in V(\mathcal{M}) : d_{\mathcal{M}}(v,u) = r\}.$$

Random maps

Let (\mathcal{M}, v) be a map with distinguished vertex v. We define:

 \bullet radius of a map ${\mathcal M}$ centered at v by the quantity

 $R(\mathcal{M}, v) = \max_{u \in V(\mathcal{M})} d_{\mathcal{M}}(v, u);$

• profile of distances from the distinguished point v (for any r > 0) by:

$$I_{(\mathcal{M},v)}(r) = \#\{u \in V(\mathcal{M}) : d_{\mathcal{M}}(v,u) = r\}.$$

Theorem [Chapuy, D. 2015]

Let q_n be uniformly distributed over the set of rooted, bipartite quadrangulations with n faces on \mathbb{S} , let v_0 be a root vertex of q_n and let v_* be uniformly chosen vertex of q_n . Then, there exists a continuous, stochastic process $L^{\mathbb{S}} = (L_t^{\mathbb{S}}, 0 \le t \le 1)$ such that:

$$\begin{split} & \bullet \frac{9}{8n}^{1/4} R(q_n, v_*) \to \sup L^{\mathbb{S}} - \inf L^{\mathbb{S}}; \\ & \bullet \frac{9}{8n}^{1/4} d_{q_n}(v_0, v_*) \to \sup L^{\mathbb{S}}; \\ & \bullet \frac{I_{(q_n, v_*)} \left((8n/9)^{1/4} \cdot \right)}{n+2-2h} \to \mathcal{I}^{\mathbb{S}}, \\ & \text{where } \mathcal{I}^{\mathbb{S}} \text{ is defined as follows: for every non-negative, measurable} \\ & g: \mathbb{R}_+ \to \mathbb{R}_+, \\ & \qquad \langle \mathcal{I}^{\mathbb{S}}, g \rangle = \int_0^1 dt g(L_t^{\mathbb{S}} - \inf L^{\mathbb{S}}). \end{split}$$

Few words about the process $L^{\mathbb{S}}$ (\mathbb{S} = sphere for simplicity).

Few words about the process $L^{\mathbb{S}}$ ($\mathbb{S} =$ sphere for simplicity).

• Contour process $c_n : [0, 2n] \to \mathbb{R}$ of the rooted, pointed quadrangulation \mathfrak{q}_n with n faces: $c_n(i) = d_{\psi(\mathfrak{q}_n)}(v_i, v_0)$, where v_0 - root vertex of $\psi(\mathfrak{q}_n)$, v_i - vertex visited in the *i*-th step during the walk along the boundary of $\psi(\mathfrak{q}_n)$.

Few words about the process $L^{\mathbb{S}}$ ($\mathbb{S} =$ sphere for simplicity).

• Contour process $c_n : [0, 2n] \to \mathbb{R}$ of the rooted, pointed quadrangulation \mathfrak{q}_n with n faces: $c_n(i) = d_{\psi(\mathfrak{q}_n)}(v_i, v_0)$, where v_0 - root vertex of $\psi(\mathfrak{q}_n)$, v_i - vertex visited in the *i*-th step during the walk along the boundary of $\psi(\mathfrak{q}_n)$.

• after proper normalization, the contour of uniformly chosen random rooted tree with n edges converges in distribution to the co-called normalized Brownian excursion $c^{\mathbb{S}}$ (informally - standard Brownian motion conditioned to remain non-negative on [0, 1] and to take value 0 at the time 1).

Few words about the process $L^{\mathbb{S}}$ ($\mathbb{S} =$ sphere for simplicity).

• Contour process $c_n : [0, 2n] \to \mathbb{R}$ of the rooted, pointed quadrangulation \mathfrak{q}_n with n faces: $c_n(i) = d_{\psi(\mathfrak{q}_n)}(v_i, v_0)$, where v_0 - root vertex of $\psi(\mathfrak{q}_n)$, v_i - vertex visited in the *i*-th step during the walk along the boundary of $\psi(\mathfrak{q}_n)$.

• after proper normalization, the contour of uniformly chosen random rooted tree with n edges converges in distribution to the co-called normalized Brownian excursion $c^{\mathbb{S}}$ (informally - standard Brownian motion conditioned to remain non-negative on [0, 1] and to take value 0 at the time 1).

• Label process $L_n : [0, 2n] \to \mathbb{R}$ of the rooted, pointed quadrangulation \mathfrak{q}_n with n faces: $L_n(i) = \ell(c_i)$, where c_0 - root corner of $\psi(\mathfrak{q}_n)$, c_i - corner visited in the *i*-th step during the walk along the boundary of $\psi(\mathfrak{q}_n)$.

Few words about the process $L^{\mathbb{S}}$ ($\mathbb{S} =$ sphere for simplicity).

• Contour process $c_n : [0, 2n] \to \mathbb{R}$ of the rooted, pointed quadrangulation \mathfrak{q}_n with n faces: $c_n(i) = d_{\psi(\mathfrak{q}_n)}(v_i, v_0)$, where v_0 - root vertex of $\psi(\mathfrak{q}_n)$, v_i - vertex visited in the *i*-th step during the walk along the boundary of $\psi(\mathfrak{q}_n)$.

• after proper normalization, the contour of uniformly chosen random rooted tree with n edges converges in distribution to the co-called normalized Brownian excursion $c^{\mathbb{S}}$ (informally - standard Brownian motion conditioned to remain non-negative on [0, 1] and to take value 0 at the time 1).

• Label process $L_n : [0, 2n] \to \mathbb{R}$ of the rooted, pointed quadrangulation \mathfrak{q}_n with n faces: $L_n(i) = \ell(c_i)$, where c_0 - root corner of $\psi(\mathfrak{q}_n)$, c_i - corner visited in the *i*-th step during the walk along the boundary of $\psi(\mathfrak{q}_n)$.

• after normalization by $\frac{9}{8n}^{1/4}$, label process of uniformly chosen pointed, rooted, planar quadrangulation with n faces converges to the so-called head of the Brownian snake $L^{\mathbb{S}} = (L_t^{\mathbb{S}}, 0 \le t \le 1)$ which is, conditionally on $c^{\mathbb{S}}$, continuous Gaussian process with covariance:

 $Cov(L_s^{\mathbb{S}}, L_t^{\mathbb{S}}) = \inf\{c_u^{\mathbb{S}} : \min(s, t,) \le u \le \max(s, t)\}.$

IV. Further directions

• Generalization of the Bouttier-Di Francesco-Guitter bijection for nonorientable maps (bijection between bipartite 2p-angulations, or, more generally bipartite maps with n faces of prescribed degrees and some kind of nonorientable mobiles?) • Generalization of the Bouttier-Di Francesco-Guitter bijection for nonorientable maps (bijection between bipartite 2p-angulations, or, more generally bipartite maps with n faces of prescribed degrees and some kind of nonorientable mobiles?)

• Studying random maps on ANY surface in Gromov-Hausdorff topology (using our bijection and already established methods we (Bettinelli, Chapuy, D.) can prove a convergence of bipartite quadrangulations up to extraction of SUBSEQUENCE - what about full convergence)?).

THANK YOU!