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Rooted maps

=

Each edge consists of two half-edges. A region between two consecutive half-edges
attached to a vertex is called a corner.
Each edge consists of two half-edges. A region between two consecutive half-edges
attached to a vertex is called a corner. A map is rooted if it is equipped with a
distinguished half-edge (called the root), together with a distinguished side of this
half-edge.

Remark:
Tutte noticed that maps are much simpler to enumerate,
when rooted, because of the lack of symmetry. From now on,
all maps will be rooted!
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Our goal and motivation

Find a bijection between maps and some objects with a
WELL-UNDERSTOOD structure!

Enumeration of maps by bijective
methods:
• bijective explanation of already
known results,
• new enumerative results,
• application in related fields
(matrix integrals models,
permutation factorizations,
Hurwitz numbers, Jack
symmetric polynomials, etc....?)

Understanding a geometry of a
random surface:
• growing maps as a discrete
model of a continuous manifold,
• geometry of a random surface
= geometry of a random map,
when its size tends to infinity,
• bijection helps to understand a
discrete surface as a metric
space!
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Corollary:
Red map φ(q) is a one-face well-labeled
rooted map with n edges, where n is the
number of faces of q.

1
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⇓

{rooted, POINTED bipartite quadrangulations on S with n faces and
Ni vertices at distance i from the pointed vertex (i ≥ 1)}

↔
{rooted, LABELED, one-face maps on S equipped with a sign
ε ∈ {+,−} with Ni vertices of label i+ (`min − 1)(i ≥ 1)}

Double rooting trick and Hall’s marriage theorem -
see next slide!
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(q, v0) - pointed, rooted
quadrangulation

choose a corner incident
to v0 and declare as a
new root corner

q′ - rerooted
quadrangulation with
marked corner (previous
root corner)

ψ(q′) - rooted,
well-labeled one-face map

(ψ(q′), ε) - rooted,
well-labeled one-face map
with marked corner and
sign ε ∈ {+,−}

(ψ(q′)′, ε) - rooted,
labeled (by shifting labels
to obtain 1 in marked
corner that became a
root corner) one-face
map with a sign

G - bipartite graph with the vertex set
QS,n,d

⊎
US,n,d, where

QS,n,d - set of all rooted quadrangulation on S
with n faces and pointed vertex of degree d
US,n,d - set of all rooted labeled, one-face maps on
S with n edges in which there are d corners with
minimum label and equiped with a sign ε ∈ {+,−}

G is 2d-regular

Hall’s marriage theorem

Graph G has a perfect
matching!



III. Applications



Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:



Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:
•number of rooted maps on the projective plane with n edges =
•number of rooted quadrangulations on the projective plane with n faces =
•(number of rooted, POINTED quadrangulations on the projective plane with n
faces)/(number of vertices = n+1) =
• 2
n+1 (number of rooted, labeled, one-face maps on the projective plane with n

edges)



Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:
•number of rooted maps on the projective plane with n edges =
•number of rooted quadrangulations on the projective plane with n faces =
•(number of rooted, POINTED quadrangulations on the projective plane with n
faces)/(number of vertices = n+1) =
• 2
n+1 (number of rooted, labeled, one-face maps on the projective plane with n

edges)

mn = 2
n+1



Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:
•number of rooted maps on the projective plane with n edges =
•number of rooted quadrangulations on the projective plane with n faces =
•(number of rooted, POINTED quadrangulations on the projective plane with n
faces)/(number of vertices = n+1) =
• 2
n+1 (number of rooted, labeled, one-face maps on the projective plane with n

edges)

mn = 2
n+1

Labeled cycle with k edges.

∑
k≥1 bk

bk =
∑
a+2b=k

(
k

a,b,b

)



Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:
•number of rooted maps on the projective plane with n edges =
•number of rooted quadrangulations on the projective plane with n faces =
•(number of rooted, POINTED quadrangulations on the projective plane with n
faces)/(number of vertices = n+1) =
• 2
n+1 (number of rooted, labeled, one-face maps on the projective plane with n

edges)

mn = 2
n+1

Labeled cycle with k edges.

∑
k≥1 bk

bk =
∑
a+2b=k

(
k

a,b,b

)

plane forests with n− k edges
and 2k components and labels.

2k
n+k

(
2n−1
n−k

)
× 3n−k



Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:
•number of rooted maps on the projective plane with n edges =
•number of rooted quadrangulations on the projective plane with n faces =
•(number of rooted, POINTED quadrangulations on the projective plane with n
faces)/(number of vertices = n+1) =
• 2
n+1 (number of rooted, labeled, one-face maps on the projective plane with n

edges)

mn = 2
n+1

Labeled cycle with k edges.

∑
k≥1 bk

bk =
∑
a+2b=k

(
k

a,b,b

)

plane forests with n− k edges
and 2k components and labels.

2k
n+k

(
2n−1
n−k

)
× 3n−k×4n

2n ways for choosing a
root corner × 2 ways for
choosing orientation.



Enumeration - toy example

Let us try to enumerate maps with n edges on the projective plane:
•number of rooted maps on the projective plane with n edges =
•number of rooted quadrangulations on the projective plane with n faces =
•(number of rooted, POINTED quadrangulations on the projective plane with n
faces)/(number of vertices = n+1) =
• 2
n+1 (number of rooted, labeled, one-face maps on the projective plane with n

edges)

mn = 2
n+1

Labeled cycle with k edges.

∑
k≥1 bk

bk =
∑
a+2b=k

(
k

a,b,b

)

plane forests with n− k edges
and 2k components and labels.

2k
n+k

(
2n−1
n−k

)
× 3n−k×4n

2n ways for choosing a
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/4k

4k ways for
deleting a second
root.
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be the generating function of rooted maps of type g pointed at a vertex or a
face, by the number of edges. Moreover let U ≡ U(t) and T ≡ T (t) be the
two formal power series defined by: T = 1+3tT 2, U = tT 2(1+U +U2).
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Remark
Our main theorem allows us to recover Bender and Canfield results. In
particular we can give some explicit (but very complicated) formula for the
constant pg.



Random maps

Let (M, v) be a map with distinguished vertex v. We define:
• radius of a mapM centered at v by the quantity

R(M, v) = maxu∈V (M) dM(v, u);
• profile of distances from the distinguished point v (for any r > 0) by:

I(M,v)(r) = #{u ∈ V (M) : dM(v, u) = r}.



Random maps

Let (M, v) be a map with distinguished vertex v. We define:
• radius of a mapM centered at v by the quantity

R(M, v) = maxu∈V (M) dM(v, u);
• profile of distances from the distinguished point v (for any r > 0) by:

I(M,v)(r) = #{u ∈ V (M) : dM(v, u) = r}.

Theorem [Chapuy, D. 2015]
Let qn be uniformly distributed over the set of rooted, bipartite
quadrangulations with n faces on S, let v0 be a root vertex of qn and let v∗
be uniformly chosen vertex of qn. Then, there exists a continuous, stochastic
process LS = (LS

t , 0 ≤ t ≤ 1) such that:

• 9
8n

1/4
R(qn, v∗)→ supLS − inf LS;

• 9
8n

1/4
dqn(v0, v∗)→ supLS;

• I(qn,v∗)((8n/9)1/4·)
n+2−2h → IS,

where IS is defined as follows: for every non-negative, measurable
g : R+ → R+,

〈IS, g〉 =
∫ 1

0
dtg(LS

t − inf LS).
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qn with n faces: cn(i) = dψ(qn)(vi, v0), where v0 - root vertex of ψ(qn), vi -
vertex visited in the i-th step during the walk along the boundary of ψ(qn).

• after proper normalization, the contour of uniformly chosen random rooted
tree with n edges converges in distribution to the co-called normalized
Brownian excursion cS (informally - standard Brownian motion conditioned
to remain non-negative on [0, 1] and to take value 0 at the time 1).

• Label process Ln : [0, 2n]→ R of the rooted, pointed quadrangulation qn
with n faces: Ln(i) = `(ci), where c0 - root corner of ψ(qn), ci - corner
visited in the i-th step during the walk along the boundary of ψ(qn).

• after normalization by 9
8n

1/4, label process of uniformly chosen pointed,
rooted, planar quadrangulation with n faces converges to the so-called head
of the Brownian snake LS = (LS

t , 0 ≤ t ≤ 1) which is, conditionally on cS,
continuous Gaussian process with covariance:

Cov(LS
s, L

S
t ) = inf{cSu : min(s, t, ) ≤ u ≤ max(s, t)}.
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• Generalization of the Bouttier-Di Francesco-Guitter bijection for non-
orientable maps (bijection between bipartite 2p-angulations, or, more generally
bipartite maps with n faces of prescribed degrees and some kind of non-
orientable mobiles?)



• Generalization of the Bouttier-Di Francesco-Guitter bijection for non-
orientable maps (bijection between bipartite 2p-angulations, or, more generally
bipartite maps with n faces of prescribed degrees and some kind of non-
orientable mobiles?)

• Studying random maps on ANY surface in Gromov-Hausdorff topology (using
our bijection and already established methods we (Bettinelli, Chapuy, D.)
can prove a convergence of bipartite quadrangulations up to extraction of
SUBSEQUENCE - what about full convergance)?).
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