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Exploratory data analysis
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Setup: K C R% a compact set, pi,--- ,pn data points sampled along (or close to) K
Goal: recover structural information about K, knowing only p1,--- ,pn



Challenges in data analysis
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Inferring the topology of data

algebraic invariants for classification

Bo=p02=1 >
B =2

A.T. in the 21st century

algebraic signatures for inference
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Intuitive viewpoint: hierarchical clustering




Intuitive viewpoint: hierarchical clustering

E (single-linkage)




Intuitive viewpoint: hierarchical clustering
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Intuitive viewpoint: hierarchical clustering

conn, ==
% —1
“...0.. “ene, —— ] |
foq,  Beo =y
®®as® ®%%e® =
% % %% %% = H-" (single-linkage)
% % % % 4
ot‘ .i.:.. Ot' 3:.. — 1
DTS CloL0) = B
o . ==
goe, % - R
.~. .~‘ = H |
.... ..“. -
% % —
©%es® et = —
= = | | | |
0 2 4 6 8 10 12 14




Intuitive viewpoint: hierarchical clustering

E (single-linkage)
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Intuitive viewpoint: hierarchical clustering

E (single-linkage)
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Intuitive viewpoint: hierarchical clustering

dendrogram — barcode
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Intuitive viewpoint: hierarchical clustering

dendrogram — barcode




Intuitive viewpoint: hierarchical clustering

barcode is:

- less (but still) informative

- more stable




Intuitive viewpoint: hierarchical clustering

barcode is:

- less (but still) informative
- more stable
- generalizable




Intuitive viewpoint: hierarchical clustering
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Intuitive viewpoint: hierarchical clustering

barcode is:

- less (but still) informative
- more stable
- generalizable




Mathematical viewpoint

Filtration: 7 C Fy C F3 C Fy C Fy---

Example 1: offsets filtration (nested family of unions of balls, cf. previous slide)
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Filtration: 7 C Fy C F3 C Fy C Fy---

Example 1: offsets filtration (nested family of unions of balls, cf. previous slide)

Example 2: simplicial filtration (nested family of simplicial complexes)
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Mathematical viewpoint

Filtration: 7 C Fy C F3 C Fy C Fy---

Example 1: offsets filtration (nested family of unions of balls, cf. previous slide)
Example 2: simplicial filtration (nested family of simplicial complexes)

Example 3: sublevel-sets filtration (family of sublevel sets of a function f : X — R)

R




Mathematical viewpoint

Filtration: 7 C Fy C F3 C Fy C Fy---

topological level
(homology functor) ----eeemcoeemmmcemeei e

algebraic level

Persistence module: H.(F1) — H.(F2) — H.(F3) — H.(Fy) — H.(F5) - --



Mathematical viewpoint

Zigzag. F1 C F, D F3 O Fy C Fy---

topological level
(homology functor) ----eeemcoeemmmcemeei e

algebraic level

Zigzag module: H.(F1) — H.(F2) < H.(F3) < H.(F4) = H.(F5)---



Mathematical viewpoint

(1-homology functor)

(o) (01) , (%) (07)

k— >k’ —5k—>k"—5>k* -



Mathematical viewpoint

(1-homology functor)

(00)

0 (6) . (o1) 2

E— > k*? <" k<" k?



Mathematical viewpoint

Theorem. Let V be a persistence/zigzag module over an index set T' C R.
Then, V decomposes as a direct sum of interval modules I[b*, d*]:

VI, d]

jeJ

>

(the barcode is a complete descriptor of the algebraic structure of V)



Mathematical viewpoint

Theorem. Let V be a persistence/zigzag module over an index set T' C R.
Then, V decomposes as a direct sum of interval modules I[b*, d*]:

i<b* [b*, d¥] 1>d”

in the following cases:
e ' is finite [Gabriel 1972] [Auslander 1974],

e all arrows are forward and V is pointwise finite-dimensional (i.e. every
space V; has finite dimension) [Webb 1985] [Crawley-Boevey 2012].

Moreover, when it exists, the decomposition is unique up to isomorphism and
permutation of the terms [Azumaya 1950].

(Note: this is independent of the choice of field k.)




Persistence Modules vs. Quiver Representations

k: field of coefficients

(6) ., (01) .5 (00)

persistence/zigzag module: k2o k2<% <"l g2 000 g2
a b C d
module type: e —>e<——e<——eo >



Persistence Modules vs. Quiver Representations

k: field of coefficients

(6) ., (01) .5 (00)

quiver representation: PRI FERALLAN Sy 'S SR
(path) quiver: :$5¢5é2$3



Outline

e quivers and representations, classification, Gabriel's theorem
e reflection functors, proof of Gabriel's theorem (A,, case)
e application 1: computing persistence for zigzags

e application 2: zigzags for topological inference



Quivers and Representations

Definition: A qguiver Q consists of two sets )y, ()1 and two maps s, :
1 — )o. The elements in )y are called the vertices of Q, while those
of ()1 are called the arrows. The source map s assigns a source s, to
every arrow a € ()1, while the target map t assigns a target t,.
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Quivers and Representations

Definition: A qguiver Q consists of two sets )y, ()1 and two maps s, :
1 — )o. The elements in )y are called the vertices of Q, while those
of ()1 are called the arrows. The source map s assigns a source s, to
every arrow a € ()1, while the target map t assigns a target t,.

Dynkin quivers:
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Quivers and Representations

Definition: A qguiver Q consists of two sets )y, ()1 and two maps s, :
1 — )o. The elements in )y are called the vertices of Q, while those
of ()1 are called the arrows. The source map s assigns a source s, to
every arrow a € ()1, while the target map t assigns a target t,.

Dynkin quivers:

20
SUGESNS St ST a2 IR S St R R
20
n—1 ‘
° Er o — o ° ° ° °
/ 1 3 4 5 6 7
Dn(nzll) : 5 — on—2 2@

Se

5
—®

|

we
N
e
oe
e
oL )



Quivers and Representations

Definition: A representation of Q over a field k is a pair V = (V;, v,)
consisting of a set of k-vector spaces {V; | i € Qo} together with a set
of k-linear maps {v, : Vs, = Vi, |a € Q1}.

bQ/.X 1@1@/ N;Q




Quivers and Representations

Definition: A representation of Q over a field k is a pair V = (V;, v,)
consisting of a set of k-vector spaces {V; | i € Qo} together with a set
of k-linear maps {v, : Vs, = Vi, |a € Q1}.

bQ/.X C/\kQ

[ J
2 C 3

Q c Repg(Q)

Note: diagram commutativity is not required



Quivers and Representations

Definition: A morphism ¢ between two k-representations V, W of Q
s a set of k-linear maps ¢; : V; — W, such that w, o 95, = ¢, ov, for
every arrow a € Q1.

. 1 / N Y
bQ / x Ck N k>
2 g

® ! |
2 C 3 ! \
S A

1 ‘ y

) Y (89)
1 N —1)
CV (10) »
> |2



Quivers and Representations

Definition: A morphism ¢ between two k-representations V, W of Q
s a set of k-linear maps ¢; : V; — W, such that w, o 95, = ¢, ov, for

every arrow a € Q1.

(o)

k — > k?

(1)

(01)
< <"

(0 —-1)

k2
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every quadrangle commutes



Quivers and Representations

Definition: A morphism ¢ between two k-representations V, W of Q
s a set of k-linear maps ¢; : V; — W, such that w, o 95, = ¢, ov, for
every arrow a € Q1.

B ., oo, 0

k— > k<" k<—" k> — > K?

1 0 1| (0-1) 0 every quadrangle commutes

Note: ¢ isomorphism iff every ¢; isomorphism



The Category of Representations

The representations of a quiver Q = (Qg, Q)1), together with their mor-
phisms, form a category called Rep, (Q). This category is abelian:

e it contains a zero object, namely the trivial representation

0 ——0<—0<—0——=20



The Category of Representations

The representations of a quiver Q = (Qg, Q)1), together with their mor-
phisms, form a category called Rep, (Q). This category is abelian:

e it contains a zero object, namely the trivial representation

e it has internal and external direct sums, defined pointwise. For any V, W, the
representation V @& W has spaces V; @ W, for ¢« € Qo and maps vg @ wg =

Va 0
( 0w, )fora€Q1




The Category of Representations

The representations of a quiver @ = (Qq, 1), together with their mor-
phisms, form a category called Rep, (Q). This category is abelian:

e it contains a zero object, namely the trivial representation

e it has internal and external direct sums, defined pointwise. For any V, W, the
representation V @& W has spaces V; @ W, for ¢« € Qo and maps vg @ wg =

Va 0
( 0w, )foraEQ1

e every morphism has a kernel, an image and a cokernel, defined pointwise.

— a morphism ¢ is injective iff ker = 0, and surjective iff coker ¢ = 0.

k(ﬁkQ% (o 1) kQ@kQ
l l ool
Y 1 Y 0 Y
k%O%k< k > ()
0 0 0 ((1))

ker ¢ = 0 — =k’ <——0< k > k? coker o = 0



The Category of Representations

The representations of a quiver @ = (Qq, 1), together with their mor-
phisms, form a category called Rep, (Q). This category is abelian:

e it contains a zero object, namely the trivial representation

e it has internal and external direct sums, defined pointwise. For any V, W, the
representation V @& W has spaces V; @ W, for ¢« € Qo and maps vg @ wg =

Va 0
( 0w, )foraEQ1

e every morphism has a kernel, an image and a cokernel, defined pointwise.

— a morphism ¢ is injective iff ker = 0, and surjective iff coker ¢ = 0.
WARNING: no semisimplicity (subrepresentations may not be summands)

Ve k— sk

W= 0—"sk



The Classification Problem

Goal: Classify the representations of a given quiver Q = (Qo, Q1) up
to isomorphism.



The Classification Problem

Goal: Classify the representations of a given quiver Q = (Qo, Q1) up
to isomorphism.

— simplifying assumptions:
e  is finite and connected

e study the subcategory rep, (Q) of finite-dimensional representations

dimV = (dim V4, -+ ,dim V,,) ',

dimV = |[dim V|, = ) dimV;.

1=1



The Classification Problem

Goal: Classify the representations of a given quiver Q = (Qo, Q1) up
to isomorphism.

— simplifying assumptions:
e  is finite and connected

e study the subcategory rep, (Q) of finite-dimensional representations

Theorem: [Krull-Remak-Schmidt-Azumayal
VV € rep,(Q), 3 Vq,---,V,. indecomposable st. V=V, ® ---DV,.
The decomposition is unique up to iIsomorphism and reordering.

note: V indecomposable iff there are no U, W # 0 such that V=U o W



The Classification Problem

Goal: Classify the representations of a given quiver Q = (Qq, Q1) up
to isomorphism.

— simplifying assumptions:
e  is finite and connected

e study the subcategory rep, (Q) of finite-dimensional representations

Theorem: [Krull-Remak-Schmidt-Azumayal
VV € rep,(Q), 3 Vq,---,V,. indecomposable st. V=V, ® ---DV,.
The decomposition is unique up to isomorphism and reordering.

— problem becomes to identify the indecomposable representations of Q

(# from identifying representations with no subrepresentations)

(no semisimplicity)



Gabriel's Theorem

Theorem: [Gabriel ]

Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

20
A > 1 — o — E
SUER A S A
20
n—1 ‘
) Er ° ° ° ) o — o
/ 1 3 4 5 6 7
Dyp(n > 4) :—5— — on—2 20
° E's ° ° ° ) ° °
n 1 3 4 5 6 7

0o



Gabriel's Theorem

Theorem: [Gabriel I]

Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

(does not depend on the choice of field and of arrow orientations)

20
A > 1 — e — E
SUER A S A
20
n—1 ‘
) Er ° ° ° ) o — o
/ 1 3 4 5 6 7
Dyp(n > 4) e —¢— - —en-2 20
° Es ° ° ° ° ° °
n 1 3 4 5 6 7

0o



Gabriel's Theorem

Theorem: [Gabriel ]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?



Gabriel's Theorem

Theorem: [Gabriel ]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?

Theorem: [Gabriel Il]

Assuming Q is Dynkin with n vertices, the map V +— dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.



Gabriel's Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in rep,(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?

Theorem: [Gabriel 1]

Assuming Q i1s Dynkin with n vertices, the map V — dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

(isom. classes of indecomposables are fully characterized by their dim. vectors)



Gabriel's Theorem
Tits form: given Q = (Qo, Q1) with |Qo| =nand z = (x1,--- ,z,) € Z",

qQ (Qj) — Z’LEQO x% o ZCLEQl xsamta°

Proposition: qq is positive definite (qg(x) > 0 Vx # 0) iff Q is Dynkin.

example: Q of type A, : . ° o

®
2 n—1

n n—1
qo(z) = fo — Z TiTi+1
1=1 1=1

.

1 1 1
Zzi(a?i—wi+1)2+2:c%+§ >0
i=1

=0iffz = (0, --,0)



Gabriel's Theorem

Tits form: given Q = (Qo, Q1) with |Qo| =n and z = (x1,--- ,x,) € Z",

qQ (Qj) — Z'LEQO 'CE% o ZCLEQl ajsaajta°

Root: z € Z™ \ {0} is a root if qg(z) < 1. It is positive if x; > 0 Vi.



Gabriel's Theorem

Tits form: given Q = (Qo, Q1) with |Qo| =n and z = (x1,--- ,x,) € Z",

qQ (Qj) — Z'LEQO 'CE% o ZCLEQl ajsaajta°

Root: z € Z™ \ {0} is a root if qg(z) < 1. It is positive if x; > 0 Vi.

Proposition: If Q is Dynkin, then the set of positive roots of qq is finite.



Gabriel's Theorem

Tits form: given Q = (Qo, Q1) with |Qo| =n and z = (x1,--- ,x,) € Z",

qQ (:’C) — Z’LEQO 'CE?? o ZCLEQl xsamta°

Root: z € Z™ \ {0} is a root if qg(z) < 1. It is positive if x; > 0 Vi.

Proposition: If Q is Dynkin, then the set of positive roots of qq is finite.

Theorem: [Gabriel Il]

Assuming Q is Dynkin with n vertices, the map V +— dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.



Gabriel's Theorem

example: Q of type A,,: o .
n n—1
DI
1 1
— Z — ZCZ—|—1 —I— 533% —+ _33?21

:1|ffx:((),--- 0,1,---,1,0,---

,0)

S@



Gabriel's Theorem

example: Q of type A,: o . "o o
n n—1
IR
1 1
= Z — Tiy1) “+ §$% + —$,,27J

:1|ffx:((),--- 0,1,---,1,0,---,0)

the corresponding indecomp. representations are isomorphic to Ig|b, d|:




Reflection Functors

Advantage: explains the fact that only the dimension vectors play a role
in the identification of indecomposable representations. In particular,
arrow orientations are irrelevant.

idea: modify quivers by reversing arrows, and study the effect on their
representations (peeling off summands).



Reflection Functors

%5%§<

o o > @
1 4 5) \
/ \ Sink
source

. source
sink

Definition: sink = only incoming arrows; source = only outgoing arrows



Reflection Functors

o —>0< @< ° > @
1 2 3 1 5

s10Q o< 0 <—— @< ° > @
1 2 3 1 5

S o < ° > @ < ° > @
20 1 2 3 1 5
sS40 o —>0<—0—>0<—0
1 2 3 1 5

S5Q : ° >0 <———0<———0<—@
1 2 3 1 5)

Definition: reflection s; = reverse all arrows incident to sink/source ¢



Reflection Functors

o — >0 < @< ° > @

1 2 3 1 5

s10Q o< 0 <——— @< ° > @
1 2 3 1 5

S o < ° > @ < ° > @
24 1 2 3 1 5
S4Q O —0<—0 —>0<— 0
1 2 3 1 5

S5Q : ° >0 <0< @e<— @
1 2 3 1 5)

Definition: reflection functor RQ—L = functor Rep,(Q) — Rep,(s;Q)



Reflection Functors

Let V= (V;,v,) € Rep,(Q), let ¢ be a sink




Reflection Functors
Let V= (V;,v,) € Rep,(Q), let ¢ be a sink

Definition: RV = (W;, w,) is defined by :

o W; =V, forall j #i
)/— (arrows incident to %)

e W, = Vg4 foralla,géjS




Reflection Functors
Let V= (V;,v,) € Rep,(Q), let ¢ be a sink

Definition: RV = (W;, w,) is defined by :

o W; =V, forall j #i
)/— (arrows incident to %)

e W, = Vg4 foralla,géjS

o W, = kerg; : EB Vs, — Vi
aEQ"i

($Sa)a€Q7i — Z Vo (Ts,)
aEQi




Reflection Functors
Let V= (V;,v,) € Rep,(Q), let ¢ be a sink

Definition: RV = (W;, w,) is defined by :

b
e W; =V; forall j # 1 :\k
b/

(arrows incident to %)
» N N
1,0 q—

e w, = v, for all a & Q} / !

o W, = kerg; : EB Vs, — Vi
aEQ"i

(xsa)aEQi — Z Vo (Ts,)
aEQi

e for a € Q!, let b be the opposite arrow, and let w;, be the composition:

WSb — W’L — kel‘fz —> ®C€Q?i VSC — VSa — Wsa — Wtb

A |

(canonical inclusion) (projection to component Vg )



Reflection Functors
Let V= (V;,v,) € Rep,(Q), let ¢ be a sink

Definition: RV = (W;, w,) is defined by :

b
o W, =V, for all j #1 :\}
b/

b (arrows incident to %)
' g b
i 1o = o
® w, = v, for all a & Q} o
o W, = keré&; : EB Ve — V, intuition: W; carries the information

€0l passing through V; in V

(xsa)aEQi — Z Vo (Ts,)
aEQi

e for a € Q!, let b be the opposite arrow, and let w;, be the composition:

WSb — Wq/ — kel‘fz —> ®C€Q?i VSC — VSa — Wsa — Wtb

A |

(canonical inclusion) (projection to component Vg )



Reflection Functors

Let V= (V;,v,) € Rep,(Q), let ¢ be a state

SOUrce

Definition: =¥ = (W;, w,) is defined by :

RV
o W, =V for all j # i \‘%

)/— (arrows incident to %)

owa:vaforallagéQ’i /\

o Wi =kexlr:| P Vi, <+ Vi

coker (; acQl

e for a € Q!, let b be the opposite arrow, and let w;, be the composition:

st = Wta = ‘/ta — @CEQ?L V;gc — cokerCi = Wi = Wtb

A |

(canonical inclusion) (quotient modulo im ¢ ;)



Reflection Functors

Let V= (V;,v,) € Repi(Q), let ¢ be a state

SOUrce

Definition: =¥ = (W;, w,) is defined by :

RV
o W, =V for all j # i \‘%

)/— (arrows incident to %)

owa:vaforallagéQ’i /\

o Wi =kexlr:| P Vi, <+ Vi
coker (; acQl

intuition: this is the operation dual to
T; —> (Ua(xi))aeQ’i the previous one (take V; = ker¢;)
1

e for a € Q!, let b be the opposite arrow, and let w;, be the composition:

st — Wta — ‘/ta —> @CEQ;&L V;gc — cokerCi — Wi — Wtb

A |

(canonical inclusion) (quotient modulo im ()



R;V :

R:RIV:

Reflection Functors

Vi —— V5 < V3 < Va > V5

Up

Vi LVQ%Vgé\/}Llervd

Vg (3 Ve mod ker vy
Vi——Vo<— V3 <— V) > V4 / ker vy




Reflection Functors

V: Ve V=" Va= Yy, W
R;V: V]_LVQLVSLVALQI{GT’UCZ

(}/)“qu(l

ot Va (N Ve mod ker vy

V= R:RIV @ SE, where r = dim coker v




R;V:

Reflection Functors

Va Up Ve Vd
Vi —— V5 < V3 < Va > V5
Ve Vd
V1 < ker vg + vy > V3 < Vi — V5
N
T1 T3
Y




Reflection Functors

Va Vp Ve Vd
V Vi——= Vo < V3 < V4 > V5
RERIV: V . VieVs oy oy, Moy,
2 °v2 7 1 ker vg +vp 3 4 5
A
(—,0) (0,—)
Va+Up

ker vg + vpC > V1 V3 > V5



Reflection Functors

Va Up Ve Ud
Vo Vi—— Vo < V3 < Vi——Vj5
X Vb
(ék‘“roo}
_ Ve Ud
R, R;V : %] > ke‘ilfj‘fvb < V3 =<— V) ——= Vs
A

(—,0) (0,—)

Vg +v
ker vg + vpC > V1 V3 "> Vo

VR, RIV @S, where r = dim coker v, + v



Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]

Let Q be a finite connected quiver and let V be a representation of Q. If
V=U®W, then for any source or sink 7 € (), RiiV = RfU@RfW.

If now V is indecomposable:
1. If ¢+ € Qg is a sink, then two cases are possible:

o V=L5,: In this case, RZFV — (.

o V Z §;: In this case, R;FV IS nonzero and Indecomposable,
R; RV =V, and the dimension vectors = of V and y of R,V
are related to each other by the following formula:

Zj it # 1
Ys =\ —x; + Z:L‘Sa if j =1.

acQ1
tao=1



Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]

Let Q be a finite connected quiver and let V be a representation of Q. If
V=U®W, then for any source or sink 7 € (), RiiV = RfU@RfW.

If now V is indecomposable:
2. If 1 € (g is a source, then two cases are possible:

o V=5;: in this case, R, V = 0.

o V 2 §;: In this case, 'R,V is nonzero and indecomposable,
R R;V =V, and the dimension vectors = of V and y of R,V
are related to each other by the following formula:

Zj it j 7



Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]
Let Q be a finite connected quiver and let V be a representation of Q. If

V=U®W, then for any source or sink 7 € (), R,L-iV = Rf:U@RgtW.

Corollary: Reflection Functors preserve the Tits form values except at
simple representations:

For ¢ source/sink and V indecomposable,
e cither V=5, in which case qSiQ(di_mRiiV) = 0,
o or ¢s,o(dim R; V) = gq(V).

For V arbitrary,
VeV, @ -3V, BN, = qsiq(di_meV) = qq(dimV; & ---pV,)



Reflection Functors

Example: Q of type A, i sink, V= B’_, Ig[b;, d;] € repy(Q):

/\

N



Reflection Functors

Example: Q of type A, i sink, V= B’_, Ig[b;, d;] € repy(Q):

N LY

Vi Vit
\ / +
RV
+X7 ~ r +
Rz’ V = @jzl Rz ]IQ [b]’, dj], where
r 0 if i =0b; =dj;
Is,qle +1,d;] ift=0b; <dj;
Is.qle, d;] ifi4+1=0b; <d;;
+ Cd.] — s; QLY @7 7 = %
Rilalbj dil = 10y i—1] ifb; < d; =
Is,qlbj, 7] ifb; <d; =1—1;
\ I[S,L-Q:bj,dj] otherwise.




Reflection Functors

Example: Q of type A,,, 7 sink, V = @;:1

Diamond (forced exact by RJF)/ \

1%

R;I_V = @2:1 R,j_]lg [b]‘, dj], where

RjHQ[ijdj] —

Diamond Principle [Carlsson, de Silva]

9

TN N O~ S S

N

+
e

S N

- - - Q‘

]

¥

i

Iqlb;,d;] € repg(Q):

RV

ifi:bj :dj;
ifi:bj < dj;
ifi—|—1=bj de;
if b; < d; =1
ifbj de :’i—l;
otherwise.



Proof of Gabriel's Theorem (A, case)

Theorem: [Gabriel |, A,, type]
Assuming Q is of type A,,, every isomorphism class of indecomposable
representations in rep, (Q) contains Ig|b, d] for some 1 < b < d < n.



Proof of Gabriel's Theorem (A, case)

Theorem: [Gabriel |, A,, type]
Assuming Q is of type A,,, every isomorphism class of indecomposable
representations in rep, (Q) contains Ig|b, d] for some 1 < b < d < n.

What we are currently able to do:

e turn indecomposable representations of Q into indecomposable rep-
resentations of reflections of Q (or zero)

e while doing so, preserve the value of the Tits form (or zero)



Proof of Gabriel's Theorem (A, case)

Theorem: [Gabriel |, A,, type]
Assuming Q is of type A,,, every isomorphism class of indecomposable
representations in rep, (Q) contains Ig|b, d] for some 1 < b < d < n.

What we are currently able to do:

e turn indecomposable representations of Q into indecomposable rep-
resentations of reflections of Q (or zero)

e while doing so, preserve the value of the Tits form (or zero)

— idea: turn Q into itself via sequences of reflections, and observe the
evolution of the indecomposables and their Tits form values



Proof of Gabriel's Theorem (A, case)

Y

Special case: linear quiver L,,: e > o

> @
n_

Y
S@

1

Let V € rep,(L,,) indecomposable, dimV = (x1, zo, - - - ,$n_1,£0n)T

— apply reflections s1s9 - - - s,,_15,L, and observe evolution of dim V¥V



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,: o >~ @ > >0 — > @
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1,22, -+, Tn_1,Tn)
dim RV =0o0r (z1,22,  + ,Tn_1,Tn_1 — Tn)
dim R RV =0o0r (z1,72,  ,Tn—2 — Tn, Tn_1 — Tn)
dl_mR; e °R;L|__1R7—1|_V = 0 or (w17a71 — Tn, " 3y n—2 — Tn,Tn—1 — xn)—r

: T
dlmRiLRéF . -R,j;_lR;tV =0or (—Tp,T1 — Tn, "+ ,Tp—-92 — Tn,Tn—1 — Tn)



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,: o >~ @ > >0 — > @
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1,22, -+, Tn_1,Tn)
dim RV =0o0r (z1,22,  + ,Tn_1,Tn_1 — Tn)
dim R RV =0o0r (z1,72,  ,Tn—2 — Tn, Tn_1 — Tn)
dl_mR; e -R;t_lR;tV = 0 or (xlaxl — Tn, " 3y n—2 — Tn,Tn—1 — xn)—r

N
L
dmRRY - RI_ RIV=0or (@,wl — T, Tn—2 — Tn, Tn—1 — Tn) |

— CtTV=R R} - R RIV=0orz, =0



Proof of Gabriel's Theorem (A, case)

. : . . : ° >~ o > > @ > @
Special case: linear quiver L,, . ; "o 1
Let V € repy(L,,) indecomposable, dimV = (z1, 22, - ,Tp_1,7,) "
dimCTV =0 or (0,x1,x2, - ,a?n—Q,ZEn—l)T
d1mC+C+V: 0 or (07073317"' 7$n—37$n—2)T

dim C+"°C+V:OOF (070707"' 707$1)T
T N —

n—1 times

dimCT--.CTV=0
\—

n times



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,;: o > @ > >0 —> o
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1, zo, - - - ,$n_1,$n)T
dimCTV =0 or (0,x1,x2, - ,CBn—Q,ZEn—l)T
d1mC+C+V =0 or (0707:1317 Tt 7$n—37$n—2)—r
dim CT---CTV=0o0r(0,0,0,---,0,21) "
N———
—1 ti L . .
PTEHME = Fiig, e ison,ds st RERS - RERIV =0
+ + >t
dim CT---CTV=0 Rigoy Ry Riy V7O
N———

n times



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,: o >~ @ > >0 —> @
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1,22, -+, Tn_1,Tn)
p - - + o+ + 4y —
d21,%2,--- ,%5—1,1%s S.t. RisRis_1 . -RZ-QRMV =0
+ + o+
Ris_1 x 'Ring’lV #+0
— Ri_l x 72:; RZV Is indecomposable and isomorphic to S, for some 1 < r < n

\

( Reflection Functor Thm)



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,: o >~ @ > >0 —> @
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1,22, -+, Tn_1,Tn)
p - - + o+ + 4y —
d21,%2,--- ,%5—1,1%s S.t. RisRis_1 . -RZ-QRMV =0
+ + o+
Ris_1 x 'Ring’lV #+0
— R,j_l x 72:; RZV Is indecomposable and isomorphic to S, for some 1 < r < n

—> qL,, (dimV) = Qs; _,siyLn (dimR,j_ ) R;;R,:V) =dqs;__

% g

'(Corollary)

"'Sian (dler) =1

1



Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,: o >~ @ > >0 —> @
1 2 n—1 n
Let V € rep,(L,,) indecomposable, dimV = (x1,22, -+, Tn_1,Tn)
p - - + o+ + 4y —
d21,%2,--- ,%5—1,1%s S.t. RisRis_1 . -RZ-QRMV =0
+ + o+
Ris_1 x 'Ring’lV #+0
— R,j_l x 72:; RZV Is indecomposable and isomorphic to S, for some 1 < r < n

—> qL,, (dimV) = Qs; _,siyLn (dimR,j_ ) R;;R,:V) =dqs;__

S_

"'Sian (dler) =1

1

—> dimV =dimI;_[b,d] forsome 1 <b<d<n=— V=1 [bd]

\

'(Example)




Proof of Gabriel's Theorem (A, case)

Special case: linear quiver L,,: o > o > >0 ——>@
n_
Let V € rep, (L,) indecomposable, dimV = (z1, 29, - ,Tn_1,Tpn)
p - - + o+ + 4y —
d21,%2,--- ,%5—1,1%s S.t. RisRis_1 x -RZ-QRhV =0
+ + o+
Ris_l x 'RigRi1V #+0
— R;r_l x R,j; RZV Is indecomposable and isomorphic to S, for some 1 < r < n

—> qL,, (dimV) = Gs;__,-siiLn (dimR,j_ ) R;;R,:V) =dqs;__

S_

“‘Sian (dlm Sfr‘) =1

1

—> dimV =dimI;_[b,d] forsome 1 <b<d<n=— V=1 [bd]

Algo: apply Coxeter functor to peel off summands Iy, [b;, n] and to shift other
summands to the right. Repeat until all summands have been peeled off.



Proof of Gabriel's Theorem (A, case)

A, -type quiver Q:

—@
NO
| @

— goal: find a sequence of indices 41,79, -+ ,15_1,%5 S.t.

RIRS - RIRSV=0forall Ve rep,(Q)

S@



Proof of Gabriel's Theorem (A, case)

A, -type quiver Q:

— @
NO
| @

— goal: find a sequence of indices 41,79, -+ ,15_1,%5 S.t.

RIRS - RIRIV=0forall Ve rep,(Q)

ls—1

— idea: turn Q into L,,, then use the same sequence a before

S@



Proof of Gabriel's Theorem (A, case)

A, -type quiver Q:

- embed Q in a giant pyramid

B\ o

N J

NN TN
NN 7

NSNS



Proof of Gabriel's Theorem (A, case)

A, -type quiver Q:

- embed Q in a giant pyramid

- travel down the pyramid to its bottom L,

— travelling one level down reverses the leftmost backward arrow

e.g. S1892S53 reverses O < ®
3 4




Proof of Gabriel's Theorem (A, case)

A, -type quiver Q:

- embed Q in a giant pyramid

- travel down the pyramid to its bottom L,

— travelling one level down reverses the leftmost backward arrow

€e.g. S1S9253 reverses O < ®
3 4

- each diamond °
VAN
le
NS
®

17— @11

Is travelled down using R;F



Proof of Gabriel's Theorem (A, case)

A, -type quiver Q:

- embed Q in a giant pyramid

- travel down the pyramid to its bottom L,

— travelling one level down reverses the leftmost backward arrow

e.g. S189S53 reverses @ <——— @
3 4

- each diamond °
VAN
le
NS
®

17— @11

Is travelled down using R:r

— algo. to compute zigzag persistence

(at the algebraic level — maintain bases)



Proof of Gabriel's Theorem (A, case)

Theorem: [Gabriel Il]

Assuming Q is Dynkin with n vertices, the map V +— dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

10



Proof of Gabriel's Theorem (A, case)

Theorem: [Gabriel Il]

Assuming Q is Dynkin with n vertices, the map V +— dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

What we know:
e the positive roots of qq are the dimension vectors of interval modules Ig|b, d|

e each isomorphism class C' of indecomposables contains > 1 interval module

10



Proof of Gabriel's Theorem (A, case)

Theorem: [Gabriel Il]

Assuming Q is Dynkin with n vertices, the map V +— dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

What we know:

e the positive roots of qq are the dimension vectors of interval modules Ig|b, d|

e each isomorphism class C' of indecomposables contains > 1 interval module

Additional observations:
e =~ interval modules are 2, therefore each class C' contains 1 interval module

e cach interval module is indecomposable (endomorphism ring isom. to k)

10



Application 1: Persistence Computation

o

Kl Kz Ki—|—1 Kn
@ ‘L \;
H(K?) - —— H(KG) —— H(Kiq1) — H(Kn)

- every horizontal map is either forward or backward
- the K; are simplicial complexes, the inclusions are elementary

- the H(K;) are vector spaces connected by linear maps (quiver representation)

K ? > K U{o}

A ~ f inj. of corank 1 f surj. of nullity 1

11



Application 1: Persistence Computation

o

Kl Kz Ki—|—1 Kn
v v ; v v
H(K1) . —— H(K;) —— H(Ki41) - —— H(K>)

- every horizontal map is either forward or backward
- the K; are simplicial complexes, the inclusions are elementary

- the H(K;) are vector spaces connected by linear maps (quiver representation)

Algorithms for when all maps are forward:
- Gaussian elimination: worst-case O(n?), highly optimized in practice

- Fast matrix multiplication: worst-case O(n®), not implemented

Algorithms for when maps can be forward or backward:

- Gaussian elimination + right filtration functor: worst-case O(n?’),

not optimized 14



Application 1: Persistence Computation

We compute of the persistent homology of:

(o}

K4 Ko e — K

n—1

K11

12



Application 1: Persistence Computation

We compute of the persistent homology of:

(o}

K Ko e — K Kita — Kn—1 Ky
by maintaining a compatible homology basis for

K o — K [Carlsson, de Silva "10],[C,deS, Morozov '09]
N—— e —

K([1; ]

12



Application 1: Persistence Computation

We compute of the persistent homology of:

(o}

K1 Ko e —— K K1 — Ky Ky
by maintaining a compatible homology basis for (Maria, O. '15]
K . Kq;:K,ﬁn&K,ﬁn_le;an_QTm;---é@

W

K|1; ]

12



Application 1: Persistence Computation

We compute of the persistent homology of:

(o}

K1 Ko o — K K1 — Kn1 Ky
by maintaining a compatible homology basis for (Maria, O. '15]
K . Kq;:K,ﬁn&K,ﬁn_le;an_QTm;---é@
KI[1; 4]
K U{o}
- arrow reflection if — is forward e K \ / K —
1 1
KU{r}
- arrow transposition if <— is backward < \T
\T\ /0'
K U{c} 15



Application 1: Persistence Computation

Theorem: Exact Diamond Principle [Carlsson, de Silva "10]
Under the exactness hypothesis on the diamond:

b Wi _ 4
/ \
Vii— o — Vi Viei, — - — V),

Interval decompositions of V, W are related as follows:
b i- 1 0 i+1 d

0

\Y
W

13



Application 1: Persistence Computation

Theorem: Injective/Surjective Diamond Principles [Maria, O. '15]
For f injective of corank 1 or surjective of nullity 1:

W = Ff_Wi_ ¢

Viss SV,

/ \
T Vi1
T~y 1

Interval decompositions of V, W are related through greedy rule.
1 2 3 4 5 6 7

13



Application 1: Persistence Computation

Theorem: Transposition Diamond Principle [Maria, O. '15]

For an exact diamond + morphisms inj. of corank 1 or surj. of nullity 1:

W = b Wi _a
/ \

Ve — Vi VW
V = a =V, = °

b b’ i1 ‘i

= <

13



Application 1: Persistence Computation

Concluding remarks on this application:

e extensions of Exact Diamond Principle / Reflection Functors

(cf. injective/surjective diamonds and transposition diamonds)

e same asymptotic complexity: O(n?) in the worst case

e better performances than [CdSM'09] in practice (x0.2)

e extension to cohomology — significant improvement expected

(x0.01)

14



Application 2: Zigzags for homology inference

° °
o °
o ®
®
§ °
° )
° °
° )
® ®
) °
) °
° °
® o
°. o
*tecece®”’
Setup: K C R% a compact set, pi,--- ,pn data points sampled along (or close to) K
Goal: infer the topology (homology) of K, knowing only p1,--- ,pn

15



Application 2: Zigzags for homology inference

Manufactured Data Set

1 . .
(u, v) — :7§(COS(2WIO,Sln(2ﬁlﬂ,CIﬁ(QWlO,SLﬂ(QﬁU})

(R mod Z)?

source: http://http://en.wikipedia.org/wiki/Clifford_torus

16



Application 2: Zlgzags for homology inference

EREN Piidd Manufactured Data Set
EEEREE ] 1 2000 data points

Sy sERE Pl %% P é E (u, v) — x/_(COS(QWIO sin(27w), cos(27v), sin(27v))

N | :

ge :

o |ii Pl s
5 : 1: | : 1r ; ,'E =: § % ‘%»i

16

source: http://http://en.wikipedia.org/wiki/Clifford_torus



Appllcatlon 2 Zlgzags for homology inference

Manufactured Data Set
2000 data points

) =
< [

>
Bett1, .
| Rips
Betti, >
Bettiy
| | | | |

16



Appllcatlon 2 Zlgzags for homology inference

Manufactured Data Set
2000 data points

comput. limit 3-sphere (37 - 10° simplices)
-
Betti; : : .
: h RIpS
Betti, p-
Bettiy
| | | | |
4 3 2 ] 0

16



Appllcatlon 2 Zlgzags for homology inference

2000 data points

Manufactured Data Set

(12 - 10° simplices)

-

BEﬁi]

Betti,

Bettis

mesh-based

[HMOS10]

16



Appllcatlon 2 Zlgzags for homology inference

2000 data points

Bettig
Betti;
Betti,

Bettis

Manufactured Data Set

(200 - 103 simplices)

=

(0S14]

16



Application 2: Zigzags for homology inference

Manufactured Data Set

What we learn from this experiment:

e commonly used filtrations ((VZech, Rips, alpha, witness, graph-induced) become

d
2
’

huge at large scales and/or in high ambient dimensions: 2™, n2, etc.

e approximations (mesh-based, sparse Rips, simplicial maps) may introduce

defects in the barcodes: extra noise, over-simplification, etc.

e it is possible to take advantage of both worlds...

16



Application 2: Zigzags for homology inference

Rips filtration
Input: P C R? finite

Ro(P) = clique complex of intersection graph of balls of radius «

+ nerve of union of balls of radius o (Cech complex)

Rips filtration: {R4(P)} %

a=0

17



Application 2: Zigzags for homology inference

Approach
Input: P C R? finite

Params: p > n > 0, ordering p1,--- ,pn of P (e.g. furthest-point order)

17



Application 2: Zigzags for homology inference

Approach
Input: P C R? finite

Params: p > n > 0, ordering p1,--- ,pn of P (e.g. furthest-point order)

o let P, = {p1,---,p:} be the i-th prefix, and €; = du(P;, P) the i-th scale

e Vi, compute R, (P;) and R ¢, (P;)

Rpé‘l (Pl) RP€2 (PQ) Rpé‘s (P3)
le (Pl) R??€2 (PQ) RWS (P3)

17



Application 2: Zigzags for homology inference

Approach
Input: P C R? finite

Params: p > n > 0, ordering p1,--- ,pn of P (e.g. furthest-point order)
o let P, = {p1,---,p:} be the i-th prefix, and €; = du(P;, P) the i-th scale
e Vi, compute R, (P;) and R, (P;)
e [CO08] Vi, compute r; = rankHR, ., (P;) — HR ¢, (F;)

Output: plot r; against ¢;

Rpé‘l (Pl) RP€2 (PQ) Rpé‘s (P3)
le (Pl) R??€2 (PQ) RWS (P3)

17



Application 2: Zigzags for homology inference

Approach
Input: P C R? finite

Params: p > n > 0, ordering p1,--- ,pn of P (e.g. furthest-point order)

o let P, = {p1,---,p:} be the i-th prefix, and €; = du(P;, P) the i-th scale
e Vi, compute R, (P;) and R ¢, (P;)

e [0S14] relate the R, ., (Pi) — Ry, (P;) through the following zigzag:

Rp&:l (P2) Ropes (Ps)
Rpsl (Pl) RP£2 (PQ) RP€3 (P3)
R’%l (Pl) R??«?Q (PQ) R’%s (P3)

17



Application 2: Zigzags for homology inference

Approach
Input: P C R? finite

Params: p > n > 0, ordering p1,--- ,pn of P (e.g. furthest-point order)
o let P, = {p1,---,p:} be the i-th prefix, and €; = du(P;, P) the i-th scale

e Vi, compute R, (P;) and R ¢, (P;)

e [0S14] relate the R, ., (Pi) — Ry, (P;) through the following zigzag:

Rpsl (P2) Ropes (Ps)
RP€1 (Pl) Rpez (PQ) Rpes (PS)
le (Pl) R??«?Q (PQ) RWS (P3)

17



Application 2: Zigzags for homology inference

Approach
Input: P C R? finite

Params: p > n > 0, ordering p1,--- ,pn of P (e.g. furthest-point order)
o let P, = {p1,---,p:} be the i-th prefix, and €; = du(P;, P) the i-th scale

e Vi, compute R, (P;) and R ¢, (P;)

e [0S14] relate the R, ., (Pi) — Ry, (P;) through the following zigzag:

Rpsl (P2) Ropes (Ps)
RP€1 (Pl) Rpez (PQ) Rpes (PS)
T T oR-Z7 T
le (Pl) R??«?Q (PQ) RWS (P3)

17



Application 2: Zigzags for homology inference

Thm: "If P is e-close to X in the Hausdorff distance, with ¢ < ©(1) wfs(X),
then there exists a sweet range of scales |O(g), Q(wfs(X))] such that the oR-ZZ
restricted to this range has a persistence barcode made only of full-length intervals,
revealing the homology of X, and of ephemeral (length zero) intervals.”

- >
sweet range

18



Application 2: Zigzags for homology inference

Thm: Let p and n be multipliers such that p > 10 and ﬁ% <n< %j' Let X C R?
be a compact set and let P C R® be such that di (P, X) < ¢ with

Jan—3 n—3/9q p—29qn—4 p—204n —4
69an = 3p+n " 6(p—20qn) (494 + 1)p — 2047

Then, for any k < [ such that

8<min{

}Wfs(X).

3 4 1 1

max{ © : - } < €g,€; < min {—WfS(X) — €, (wfs(X) — 6)} :
Ygn—3 p—2094n—4 6 Vap + 1

the oR-ZZ restricted to Rpe, (Piy1) < -+ < Rne,(P;) has a persistence bar-

code made only of full-length intervals and ephemeral (length zero) intervals, the

number of full-length intervals being equal to the dimension of H.(X") for any
A€ (0,wfs(X)).

18



Application 2: Zigzags for homology inference

Thm: Let p and n be multipliers such that p > 10 and ﬁ% <n< %j' Let X C R?
be a compact set and let P C R® be such that di (P, X) < ¢ with

. [Yan—3 n—3/0qg p—20gn—4 p—204n —4
£ <(min : : : wis(X).
6047 3p+mn  6(p—20gn)  (40q4+1)p—294n

Then, for any k < [ such that O(1)
4 1 1
max{ o : © } < €g,€; < min {—WfS(X) — &, (wfs(X) — 6)} :
Ygn—3 p—2094n—4 6 Vap + 1

the oR-ZZ restricted to Rpe, (Piy1) < -+ < Rne,(P;) has a persistence bar-
code made only of full-length intervals and ephemeral (length zero) intervals, the

number of full-length intervals being equal to the dimension of H.(X") for any
A€ (0,wfs(X)).

18



Application 2: Zigzags for homology inference

Thm: Let p and 1 be multipliers such that p > 10 and = <n < 5=—. Let X C R
be a compact set and let P C R? be such that dg (P, X) <e€ W|th
gn — — —294m — 4 — 294m — 4
€<min{ dn 3, g S/ﬁd7 p— 29gm P Van }Wfs(X).
6047 3p+mn  6(p—20gn)  (40q4+1)p—294n

Then, for any k£ < [ such that (w

fs(X
a { i <€ g1 < fs(X) — e, fs(X) — €)
max , mm W — (wfs — €
Ogn —3° ,0—219d77 k l 79d +1

the oR-ZZ restricted to Rpgk Pk+1 .-+ < Rue,(P;) has a persistence bar-
code made only of full-length intervals and ephemeral (Iength zero) intervals, the

number of full-length intervals being equal to the dimension of H.(X") for any
A€ (0,wfs(X)).

18



Application 2: Zigzags for homology inference

2000 data points

(200 - 103 simplices)

BEttiU > >

Betth [OS ].3]

Betti,

Betti —

18



Application 2: Zigzags for homology inference

proof strategy:

YAVAY

(Piy1)

"76 +1

19



Application 2: Zigzags for homology inference

proof strategy:

- not much control over the topological behavior of Rips complexes
- exploit interleaving with Cech complexes (cf. standard persistence)
- turn oR-ZZ into some Cech-based zigzag while tracking changes in PD

- perform two types of low-level modifications:
e arrow reversal

e arrows composition / splitting

19



Application 2: Zigzags for homology inference

Thm (Arrow Reversal):
" Any arrow in a zigzag module can be reversed while preserving the persistence
diagram. The properties of the reverse map also help preserve commutativity.”

og—Pp o —Pp o« P o og—Pp odqdq— o« P o

Thm (Arrow Composition/Splitting):
" Contiguous arrows with same orientation in a zigzag module can be composed,
with the same effect on the persistence diagram as in standard persistence.”

od—Pp o —Pp o —Ppo«gPp o o> o o« P o
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Application 2: Zigzags for homology inference

Thm (Arrow Reversal):
" Any arrow in a zigzag module can be reversed while preserving the persistence
diagram. The properties of the reverse map also help preserve commutativity.”

og—Pp o —Pp o« P o og—Pp odqdq— o« P o

Thm (Arrow Composition/Splitting):
" Contiguous arrows with same orientation in a zigzag module can be composed,
with the same effect on the persistence diagram as in standard persistence.”

od—Pp o —Pp o —Ppo«gPp o o> o o« P o

— proofs by decomposition (use Gabriel's theorem)
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=14Yqn and p= £
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Application 2: Zigzags for homology inference

Complexity bounds
e Assume the ordering of P is by furthest point sampling.

Thm (size bound): Let m be the doubling dimension of (P, d). Then, at any time

the number of k-simplices in the current complex is:
- 20(kdlogp)) P| for the M-ZZ, oR-ZZ and iR-ZZ of parameters p > 1,

~ 9@ (kdlog g)\Pl for the dM-ZZ of parameters p, (.

Thm (running time bound): Let m be the doubling dimension of (P,d). Then,

the total number of k-simplices inserted in the zigzag is:
- 90(kdlog ) P| for the M-ZZ and iR-ZZ of parameters p > 7,

_ @ (kdlog g)\P] for the dM-ZZ of parameters p, (,
- 9@ (kdlogr)) P|2 for the oR-ZZ of parameters p > 1.

20



Application 2: Zigzags for homology inference

Concluding remarks on this application:

e Rips-based zigzags with the following properties:

- controlled size and running time

- Improved signal-to-noise ratio in the barcode

- Analysis based on arrow reflections (similar but # from reflection functors)

e Perspectives:

- to be coupled with efficient algorithms of zigzag persistence: cf. application 1

- zigzag with other complexes: witness complex, graph-induced complex, etc.
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