
Reflections in Persistence and Quiver Theory

Steve Oudot – Geometrica group, INRIA Saclay – Île-de-France

GT Combinatoire — March 11, 2015

(co-)homology functors connect the topological level to the algebraic level. Conversely, the algebraic level provides stable signatures to be exploited at the topological level

Spectral sequences

1

Persistence

Morse theory

Clustering

Size theory

representation theory
polynomial rings

quivers / path algebras

hierarchical
mode analysis

0
-p

ers.

interpretation
algo.

sta
bilit

y
th

m
s

decom
pos. thm

s

quivers / path algebras

topological

algebraic

2

Quiver theory

persistence

signatures

decomp.
thms.

K is the circle in this example, the pi’s form the point cloud

typical properties: geometric approximation, connected components, topology, curvature measures, etc.

Exploratory data analysis

Setup: K ⊂ Rd a compact set, p1, · · · , pn data points sampled along (or close to) K

Goal: recover structural information about K, knowing only p1, · · · , pn

3

Challenges in data analysis

1 Scale

4

Challenges in data analysis

1 Scale

4

like homology groups, or the dimension of their free part (called Betti numbers)

This is our goal at large. To achieve it, we use concepts and tools from algebraic topology (A.T.).Inferring the topology of data

5

algebraic invariants for classification

algebraic signatures for inference

β0 = β2 = 1
β1 = 2

A.T. in the 20th century

A.T. in the 21st century

β0 β1 β2

Intuitive viewpoint: hierarchical clustering

6

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

(single-linkage)

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

(single-linkage)

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

(single-linkage)

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

(single-linkage)

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

(single-linkage)

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

(single-linkage)

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

(single-linkage)

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

(single-linkage)

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

dendrogram is:

- informative

- unstable

(single-linkage)

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

dendrogram → barcode

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

dendrogram → barcode

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

dendrogram → barcode

Intuitive viewpoint: hierarchical clustering

6

2 4 6 8 10 12 14 160

barcode is:

- less (but still) informative

- more stable

Intuitive viewpoint: hierarchical clustering

6

barcode is:

- less (but still) informative

- more stable

- generalizable

4 8 12 16 20 24 28 320

Intuitive viewpoint: hierarchical clustering

6

barcode is:

- less (but still) informative

- more stable

- generalizable

4 8 12 16 20 24 28 320

Intuitive viewpoint: hierarchical clustering

6

barcode is:

- less (but still) informative

- more stable

- generalizable

4 8 12 16 20 24 28 320

Intuitive viewpoint: hierarchical clustering

6

barcode is:

- less (but still) informative

- more stable

- generalizable

4 8 12 16 20 24 28 320

Intuitive viewpoint: hierarchical clustering

6

barcode is:

- less (but still) informative

- more stable

- generalizable

4 8 12 16 20 24 28 320

Intuitive viewpoint: hierarchical clustering

6

barcode is:

- less (but still) informative

- more stable

- generalizable

4 8 12 16 20 24 28 320

Note: for simplicity I am indexing the family over the integers, but in fact it can be indexed over any subset of the reals.

Mathematical viewpoint

F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 · · ·

Example 1: offsets filtration (nested family of unions of balls, cf. previous slide)

Filtration:

1

Note: for simplicity I am indexing the family over the integers, but in fact it can be indexed over any subset of the reals.

Mathematical viewpoint

F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 · · ·

d

a b

c d

a b

cd

a b

cd

a b

c

a b

d

a b

c

F1 F2 F3 F4 F5 F6

Example 1: offsets filtration (nested family of unions of balls, cf. previous slide)

Example 2: simplicial filtration (nested family of simplicial complexes)

Filtration:

1

Note: for simplicity I am indexing the family over the integers, but in fact it can be indexed over any subset of the reals.

Mathematical viewpoint

F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 · · ·

Example 1: offsets filtration (nested family of unions of balls, cf. previous slide)

Example 2: simplicial filtration (nested family of simplicial complexes)

Example 3: sublevel-sets filtration (family of sublevel sets of a function f : X → R)

α

X

R

Fα := f−1((−∞, α])

Filtration:

1

Note: for simplicity I am indexing the family over the integers, but in fact it can be indexed over any subset of the reals.

the functor is parametrized by a field of coefficients, omitted in the notations

Mathematical viewpoint

F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 · · ·

(homology functor)

Persistence module: H∗(F1)→ H∗(F2)→ H∗(F3)→ H∗(F4)→ H∗(F5) · · ·

topological level

algebraic levelalgebraic level
k

Filtration:

1

the functor is parametrized by a field of coefficients, omitted in the notations

Mathematical viewpoint

(homology functor)

topological level

algebraic levelalgebraic level
k

Zigzag:

H∗(F1)→ H∗(F2)← H∗(F3)← H∗(F4)→ H∗(F5) · · ·

F1 ⊆ F2 ⊇ F3 ⊇ F4 ⊆ F5 · · ·

Zigzag module:

1

Mathematical viewpoint

k
(1
0)
// k2 (0 1) // k

(0
1)
// k2

(1 0
0 1)
// k2 · · ·

Example:

1

(1-homology functor)
k

⊆ ⊆ ⊆ ⊆

Mathematical viewpoint

Example:

1

(1-homology functor)
k

⊆ ⊇ ⊇ ⊆

k
0 // k2 k

(1
0)

oo k2(0 1)oo
(0 1
0 0)
// k2 · · ·

forward means that all arrows i→ j satisfy i ≤ j, with the relation i ≤ j ≤ kĩ ≤ k

There is a natural way to extend path quivers with consistent orientations to arbitrary index sets in R

Note: the stars indicate limits from below or above, depending on whether the interval b, d is open, closed, or half-open.

Theorem. Let V be a persistence/zigzag module over an index set T ⊆ R.
Then, V decomposes as a direct sum of interval modules I[b∗, d∗]:

0
0 · · · 0

0
0

k
1 · · · 1

k
0

0
0 · · · 0

0︸ ︷︷ ︸
i<b∗

︸ ︷︷ ︸
[b∗, d∗]

︸ ︷︷ ︸
i>d∗

in the following cases:

• T is finite [Gabriel 1972] [Auslander 1974],

• all arrows are forward and V is pointwise finite-dimensional (i.e. every
space Vt has finite dimension) [Webb 1985] [Crawley-Boevey 2012].

Moreover, when it exists, the decomposition is unique up to isomorphism and
permutation of the terms [Azumaya 1950].

(Note: this is independent of the choice of field k.)

Mathematical viewpoint

(the barcode is a complete descriptor of the algebraic structure of V)

1

V ∼=
⊕
j∈J

I[b∗j , d∗j]

forward means that all arrows i→ j satisfy i ≤ j, with the relation i ≤ j ≤ kĩ ≤ k

There is a natural way to extend path quivers with consistent orientations to arbitrary index sets in R

Note: the stars indicate limits from below or above, depending on whether the interval b, d is open, closed, or half-open.

Theorem. Let V be a persistence/zigzag module over an index set T ⊆ R.
Then, V decomposes as a direct sum of interval modules I[b∗, d∗]:

0
0 · · · 0

0
0

k
1 · · · 1

k
0

0
0 · · · 0

0︸ ︷︷ ︸
i<b∗

︸ ︷︷ ︸
[b∗, d∗]

︸ ︷︷ ︸
i>d∗

in the following cases:

• T is finite [Gabriel 1972] [Auslander 1974],

• all arrows are forward and V is pointwise finite-dimensional (i.e. every
space Vt has finite dimension) [Webb 1985] [Crawley-Boevey 2012].

Moreover, when it exists, the decomposition is unique up to isomorphism and
permutation of the terms [Azumaya 1950].

(Note: this is independent of the choice of field k.)

Mathematical viewpoint

1

2

Persistence Modules vs. Quiver Representations

•
1

a // •
2

•
3

boo •
4

coo d // •
5

k: field of coefficients

persistence/zigzag module:

module type:

k
0 // k2 k

(1
0)

oo k2(0 1)oo
(0 1
0 0)
// k2

2

Persistence Modules vs. Quiver Representations

•
1

a // •
2

•
3

boo •
4

coo d // •
5

k: field of coefficients

quiver representation:

(path) quiver:

k
0 // k2 k

(1
0)

oo k2(0 1)oo
(0 1
0 0)
// k2

3

Outline

• quivers and representations, classification, Gabriel’s theorem

• reflection functors, proof of Gabriel’s theorem (An case)

• application 1: computing persistence for zigzags

• application 2: zigzags for topological inference

roughly speaking, a quiver is a (potentially infinite) directed multigraph

4

Quivers and Representations

Definition: A quiver Q consists of two sets Q0, Q1 and two maps s, t :
Q1 → Q0. The elements in Q0 are called the vertices of Q, while those
of Q1 are called the arrows. The source map s assigns a source sa to
every arrow a ∈ Q1, while the target map t assigns a target ta.

•1

•
2

a

??
b

--
c

// •
3

d

__
e

__ •

• •

Q Q̄

roughly speaking, a quiver is a (potentially infinite) directed multigraph

4

Quivers and Representations

Definition: A quiver Q consists of two sets Q0, Q1 and two maps s, t :
Q1 → Q0. The elements in Q0 are called the vertices of Q, while those
of Q1 are called the arrows. The source map s assigns a source sa to
every arrow a ∈ Q1, while the target map t assigns a target ta.

Dynkin quivers:
•2

An(n ≥ 1) •
1

•
2

· · · •
n−1

•
n

E6 •
1

•
3

•
4

•
5

•
6

•2

•
n−1

E7 •
1

•
3

•
4

•
5

•
6

•
7

Dn(n ≥ 4) •
1

•
2

· · · •n−2 •2

•
n

E8 •
1

•
3

•
4

•
5

•
6

•
7

•
8

roughly speaking, a quiver is a (potentially infinite) directed multigraph

4

Quivers and Representations

Definition: A quiver Q consists of two sets Q0, Q1 and two maps s, t :
Q1 → Q0. The elements in Q0 are called the vertices of Q, while those
of Q1 are called the arrows. The source map s assigns a source sa to
every arrow a ∈ Q1, while the target map t assigns a target ta.

Dynkin quivers:
•2

An(n ≥ 1) •
1

•
2

· · · •
n−1

•
n

E6 •
1

•
3

•
4

•
5

•
6

•2

•
n−1

E7 •
1

•
3

•
4

•
5

•
6

•
7

Dn(n ≥ 4) •
1

•
2

· · · •n−2 •2

•
n

E8 •
1

•
3

•
4

•
5

•
6

•
7

•
8

4

Quivers and Representations

•1

•
2

a

??
b

--
c

// •
3

d

__
e

__

Q

k

k

1

@@

1

--
(1
0)

// k2
0

__
(0 1)

__

Definition: A representation of Q over a field k is a pair V = (Vi, va)
consisting of a set of k-vector spaces {Vi | i ∈ Q0} together with a set
of k-linear maps {va : Vsa → Vta | a ∈ Q1}.

∈ Repk(Q)

4

Quivers and Representations

•1

•
2

a

??
b

--
c

// •
3

d

__
e

__

Q

k

k

1

@@

1

--
(1
0)

// k2
0

__
(0 1)

__

Definition: A representation of Q over a field k is a pair V = (Vi, va)
consisting of a set of k-vector spaces {Vi | i ∈ Q0} together with a set
of k-linear maps {va : Vsa → Vta | a ∈ Q1}.

∈ Repk(Q)

Note: diagram commutativity is not required

4

Quivers and Representations

Definition: A morphism φ between two k-representations V,W of Q
is a set of k-linear maps φi : Vi →Wi such that wa ◦ φsa = φta ◦ va for
every arrow a ∈ Q1.

projection onto first coordinate

•1

•
2

a

??
b

--
c

// •
3

d

__
e

__

Q

k

k

1

@@

1

--
(1
0)

// k2
0

__
(0 1)

__

∈ Repk(Q)

k

k

−1
@@

1

--
(1
0)

// k2
(1 0)

__
(1 −1)

__
(
0 0
0 1

)−1
1

4

Quivers and Representations

Definition: A morphism φ between two k-representations V,W of Q
is a set of k-linear maps φi : Vi →Wi such that wa ◦ φsa = φta ◦ va for
every arrow a ∈ Q1.

k

(
1
0

)
//

1

��

k2

0

��

k

(
1
1

)
oo

−1

��

k2
(0 1)oo

(
1 0
0 1

)
//

(0 −1)

��

k2

0

��
k

0 // 0 k
0oo k

1oo 0 // 0

every quadrangle commutes

4

Quivers and Representations

Definition: A morphism φ between two k-representations V,W of Q
is a set of k-linear maps φi : Vi →Wi such that wa ◦ φsa = φta ◦ va for
every arrow a ∈ Q1.

k

(
1
0

)
//

1

��

k2

0

��

k

(
1
1

)
oo

−1

��

k2
(0 1)oo

(
1 0
0 1

)
//

(0 −1)

��

k2

0

��
k

0 // 0 k
0oo k

1oo 0 // 0

every quadrangle commutes

Note: φ isomorphism iff every φi isomorphism

5

The Category of Representations

The representations of a quiver Q = (Q0, Q1), together with their mor-
phisms, form a category called Repk(Q). This category is abelian:

0 // 0 0oo 0 //oo 0

• it contains a zero object, namely the trivial representation

5

The Category of Representations

The representations of a quiver Q = (Q0, Q1), together with their mor-
phisms, form a category called Repk(Q). This category is abelian:

• it contains a zero object, namely the trivial representation

• it has internal and external direct sums, defined pointwise. For any V,W, the
representation V ⊕W has spaces Vi ⊕Wi for i ∈ Q0 and maps va ⊕ wa =(

va 0
0 wa

)
for a ∈ Q1

k

(
1
0

)
// k2 k

(
1
1

)
oo k2

(0 1)oo
(
1 0
0 1

)
// k2

⊕
k

0 // 0 k
0oo k

1oo 0 // 0

=

k2

(
1 0
0 0

)
// k2 k2

(
1 0
1 0

)
oo k3

(
0 1 0
0 0 1

)
oo

(
1 0 0
0 1 0

)
// k2

5

The Category of Representations

The representations of a quiver Q = (Q0, Q1), together with their mor-
phisms, form a category called Repk(Q). This category is abelian:

• it contains a zero object, namely the trivial representation

• it has internal and external direct sums, defined pointwise. For any V,W, the
representation V ⊕W has spaces Vi ⊕Wi for i ∈ Q0 and maps va ⊕ wa =(

va 0
0 wa

)
for a ∈ Q1

• every morphism has a kernel, an image and a cokernel, defined pointwise.

→ a morphism φ is injective iff kerφ = 0, and surjective iff cokerφ = 0.

k

(
1
0

)
//

1

��

k2

0

��

k

(
1
1

)
oo

−1

��

k2
(0 1)oo

(
1 0
0 1

)
//

(0 −1)

��

k2

0

��
k

0 // 0 k
0oo k

1oo 0 // 0

kerφ = 0
0 // k2 0

0oo k
0oo

(
1
0

)
// k2 cokerφ = 0

many of the nice properties of vector spaces carry over to quiver representations. However, not all of them do, e.g. semisimplicity (basis completion theorem).

5

The Category of Representations

The representations of a quiver Q = (Q0, Q1), together with their mor-
phisms, form a category called Repk(Q). This category is abelian:

• it contains a zero object, namely the trivial representation

• it has internal and external direct sums, defined pointwise. For any V,W, the
representation V ⊕W has spaces Vi ⊕Wi for i ∈ Q0 and maps va ⊕ wa =(

va 0
0 wa

)
for a ∈ Q1

• every morphism has a kernel, an image and a cokernel, defined pointwise.

→ a morphism φ is injective iff kerφ = 0, and surjective iff cokerφ = 0.

WARNING: no semisimplicity (subrepresentations may not be summands)

V = k
1 // k

W = 0
0 // k

6

The Classification Problem

Goal: Classify the representations of a given quiver Q = (Q0, Q1) up
to isomorphism.

dimV = (dimV1, · · · ,dimVn)>,

dimV = ‖dimV‖1 =
n∑

i=1

dimVi.

6

The Classification Problem

Goal: Classify the representations of a given quiver Q = (Q0, Q1) up
to isomorphism.

→ simplifying assumptions:

• Q is finite and connected

• study the subcategory repk(Q) of finite-dimensional representations

this is our first non-trivial result

6

The Classification Problem

Goal: Classify the representations of a given quiver Q = (Q0, Q1) up
to isomorphism.

→ simplifying assumptions:

• Q is finite and connected

• study the subcategory repk(Q) of finite-dimensional representations

Theorem: [Krull-Remak-Schmidt-Azumaya]
∀V ∈ repk(Q), ∃ V1, · · · ,Vr indecomposable s.t. V ∼= V1 ⊕ · · · ⊕ Vr.
The decomposition is unique up to isomorphism and reordering.

note: V indecomposable iff there are no U,W 6= 0 such that V ∼= U⊕W

thus, problem is harder than for single vector spaces

6

The Classification Problem

Goal: Classify the representations of a given quiver Q = (Q0, Q1) up
to isomorphism.

→ simplifying assumptions:

• Q is finite and connected

• study the subcategory repk(Q) of finite-dimensional representations

Theorem: [Krull-Remak-Schmidt-Azumaya]
∀V ∈ repk(Q), ∃ V1, · · · ,Vr indecomposable s.t. V ∼= V1 ⊕ · · · ⊕ Vr.
The decomposition is unique up to isomorphism and reordering.

→ problem becomes to identify the indecomposable representations of Q

(6= from identifying representations with no subrepresentations)

(no semisimplicity)

7

Gabriel’s Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

•2

An(n ≥ 1) •
1

•
2

· · · •
n−1

•
n

E6 •
1

•
3

•
4

•
5

•
6

•2

•
n−1

E7 •
1

•
3

•
4

•
5

•
6

•
7

Dn(n ≥ 4) •
1

•
2

· · · •n−2 •2

•
n

E8 •
1

•
3

•
4

•
5

•
6

•
7

•
8

This result introduces a dichotomy between the finite connected quivers. The Dynkin ones, for which classifying indecomposable representations is ”easy”, and the rest, for which the classification is ”harder”. Unfortunately, there are very few Dynkin quivers.

7

Gabriel’s Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

•2

An(n ≥ 1) •
1

•
2

· · · •
n−1

•
n

E6 •
1

•
3

•
4

•
5

•
6

•2

•
n−1

E7 •
1

•
3

•
4

•
5

•
6

•
7

Dn(n ≥ 4) •
1

•
2

· · · •n−2 •2

•
n

E8 •
1

•
3

•
4

•
5

•
6

•
7

•
8

(does not depend on the choice of field and of arrow orientations)

7

Gabriel’s Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?

7

Gabriel’s Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?

Theorem: [Gabriel II]
Assuming Q is Dynkin with n vertices, the map V 7→ dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

7

Gabriel’s Theorem

Theorem: [Gabriel I]
Assuming Q is finite and connected, there are finitely many isomorphism
classes of indecomposable representations in repk(Q) iff Q is Dynkin.

Q given that Q is Dynkin, how to identify indecomposable representations?

Theorem: [Gabriel II]
Assuming Q is Dynkin with n vertices, the map V 7→ dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

(isom. classes of indecomposables are fully characterized by their dim. vectors)

For every node of Q add the corresponding diagonal term. For every arrow subtract the corresponding off-diagonal term.

the positive-definiteness of the Tits form characterizes the Dynkin quivers

7

Gabriel’s Theorem

Tits form: given Q = (Q0, Q1) with |Q0| = n and x = (x1, · · · , xn) ∈ Zn,

qQ(x) =
∑

i∈Q0
x2i −

∑
a∈Q1

xsaxta .

Proposition: qQ is positive definite (qQ(x) > 0 ∀x 6= 0) iff Q is Dynkin.

example: Q of type An: •
1

•
2

· · · •
n−1

•
n

qQ(x) =
n∑
i=1

x2i −
n−1∑
i=1

xixi+1

=

n−1∑
i=1

1

2
(xi − xi+1)2 +

1

2
x21 +

1

2
x2n ≥ 0

= 0 iff x = (0, · · · , 0)

For every node of Q add the corresponding diagonal term. For every arrow subtract the corresponding off-diagonal term.

7

Gabriel’s Theorem

Tits form: given Q = (Q0, Q1) with |Q0| = n and x = (x1, · · · , xn) ∈ Zn,

qQ(x) =
∑

i∈Q0
x2i −

∑
a∈Q1

xsaxta .

Root: x ∈ Zn \ {0} is a root if qQ(x) ≤ 1. It is positive if xi ≥ 0 ∀i.

proof by a volume argument (volume of ellipsoid because matrix is invertible with positive eigenvalues ⇒ sublevel set of quadratic form is an ellipsoid)

For every node of Q add the corresponding diagonal term. For every arrow subtract the corresponding off-diagonal term.

7

Gabriel’s Theorem

Tits form: given Q = (Q0, Q1) with |Q0| = n and x = (x1, · · · , xn) ∈ Zn,

qQ(x) =
∑

i∈Q0
x2i −

∑
a∈Q1

xsaxta .

Root: x ∈ Zn \ {0} is a root if qQ(x) ≤ 1. It is positive if xi ≥ 0 ∀i.

Proposition: If Q is Dynkin, then the set of positive roots of qQ is finite.

proof by a volume argument (volume of ellipsoid because matrix is invertible with positive eigenvalues ⇒ sublevel set of quadratic form is an ellipsoid)

For every node of Q add the corresponding diagonal term. For every arrow subtract the corresponding off-diagonal term.

thus, we know that when Q is Dynkin, its Tits form is positive definite with finitely many positive roots in Zn. The second part of Gabriel’s theorem establishes then the dimension vector assignment as a bijection between the set of isomorphism classes of (finite-dimensional) indecomposable representations of Q and the set of positive roots of qQ.

7

Gabriel’s Theorem

Tits form: given Q = (Q0, Q1) with |Q0| = n and x = (x1, · · · , xn) ∈ Zn,

qQ(x) =
∑

i∈Q0
x2i −

∑
a∈Q1

xsaxta .

Root: x ∈ Zn \ {0} is a root if qQ(x) ≤ 1. It is positive if xi ≥ 0 ∀i.

Proposition: If Q is Dynkin, then the set of positive roots of qQ is finite.

Theorem: [Gabriel II]
Assuming Q is Dynkin with n vertices, the map V 7→ dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

there can be two ”jumps” 0→ 1 and 1→ 0 in the sum, or only one jump and x1 = 1 or xn = 1, or zero jump and x1 = xn = 1.

7

Gabriel’s Theorem

example: Q of type An: •
1

•
2

· · · •
n−1

•
n

qQ(x) =
n∑

i=1

x2i −
n−1∑
i=1

xixi+1

=
n−1∑
i=1

1

2
(xi − xi+1)2 +

1

2
x21 +

1

2
x2n

= 1 iff x = (0, · · · , 0, 1, · · · , 1, 0, · · · , 0)

the maps between copies of k are either isomorphisms or zero. If one of them (say vi : Vi ↔ Vi+1) is zero, then the representation V is decomposable into V v[1, i]⊕ V[i+ 1, n].

there can be two ”jumps” 0→ 1 and 1→ 0 in the sum, or only one jump and x1 = 1 or xn = 1, or zero jump and x1 = xn = 1.

7

Gabriel’s Theorem

example: Q of type An: •
1

•
2

· · · •
n−1

•
n

qQ(x) =
n∑

i=1

x2i −
n−1∑
i=1

xixi+1

=
n−1∑
i=1

1

2
(xi − xi+1)2 +

1

2
x21 +

1

2
x2n

= 1 iff x = (0, · · · , 0, 1, · · · , 1, 0, · · · , 0)

the corresponding indecomp. representations are isomorphic to IQ[b, d]:

0
0 · · · 0

0
0

k
1 · · · 1

k
0

0
0 · · · 0

0︸ ︷︷ ︸
[1, b−1]

︸ ︷︷ ︸
[b, d]

︸ ︷︷ ︸
[d+1, n]

A good part of the remaining time will be devoted to proving Gabriel’s theorem, at least in the special case of An-type quivers, which is the one of utmost interest to us. Several proofs exist, including the original one of Gabriel’s. I want to give you the proof by Bernstein, Gelfand and Ponomarev, which introduces a key ingredient that proved useful far beyond Gabriel’s theorem in the theory of representations. Furthermore, I strongly believe it can be of use for persistence theory.

8

Reflection Functors

Advantage: explains the fact that only the dimension vectors play a role
in the identification of indecomposable representations. In particular,
arrow orientations are irrelevant.

idea: modify quivers by reversing arrows, and study the effect on their
representations (peeling off summands).

8

Reflection Functors

•
1

// •
2

•
3

oo •
4

oo // •
5

source
source

sink

sink

Definition: sink = only incoming arrows; source = only outgoing arrows

8

Reflection Functors

•
1

// •
2

•
3

oo •
4

oo // •
5

s1Q : •
1

•
2

oo •
3

oo •
4

oo // •
5

s2Q : •
1

•
2

oo // •
3

•
4

oo // •
5

s4Q : •
1

// •
2

•
3

oo // •
4

•
5

oo

s5Q : •
1

// •
2

•
3

oo •
4

oo •
5

oo

Definition: reflection si = reverse all arrows incident to sink/source i

the functor turns representations of Q into representations of siQ. The + or - sign indicates whether node i was a sink (+) or a source (-) initially. The functor’s definition depends on this sign. The transformation of representations is functorial and it preserves direct sum decompositions, so the role of the functor is to cast the decomposition problem on one quiver onto the one on the reflected quiver.

8

Reflection Functors

•
1

// •
2

•
3

oo •
4

oo // •
5

s1Q : •
1

•
2

oo •
3

oo •
4

oo // •
5

s2Q : •
1

•
2

oo // •
3

•
4

oo // •
5

s4Q : •
1

// •
2

•
3

oo // •
4

•
5

oo

s5Q : •
1

// •
2

•
3

oo •
4

oo •
5

oo

Definition: reflection functor R±i = functor Repk(Q)→ Repk(siQ)

8

Reflection Functors

i

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

8

Reflection Functors

i

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

(arrows incident to i)

8

Reflection Functors

i

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

(xsa)a∈Qi1
7−→

∑
a∈Qi1

va(xsa)

• Wi = ker ξi :
⊕
a∈Qi1

Vsa −→ Vi

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

(arrows incident to i)

8

Reflection Functors

i

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

(xsa)a∈Qi1
7−→

∑
a∈Qi1

va(xsa)

• Wi = ker ξi :
⊕
a∈Qi1

Vsa −→ Vi

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

• for a ∈ Qi1, let b be the opposite arrow, and let wb be the composition:

Wsb = Wi = ker ξi ↪−→
⊕
c∈Qi1

Vsc −→ Vsa = Wsa = Wtb

(canonical inclusion) (projection to component Vsa)

(arrows incident to i)

a
b

a′

b′

this is best seen when i has 2 incoming arrows. In that case, Wi is the kernel of the sum of the incoming maps, i.e. it measures how much the two maps are redundent, i.e. how much information passes through i. In fact, it also contains the information lost while entering Vi. The only info it does not carry is the one stored at Vi only. Specific examples will be given shortly

8

Reflection Functors

i

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

(xsa)a∈Qi1
7−→

∑
a∈Qi1

va(xsa)

• Wi = ker ξi :
⊕
a∈Qi1

Vsa −→ Vi

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

• for a ∈ Qi1, let b be the opposite arrow, and let wb be the composition:

Wsb = Wi = ker ξi ↪−→
⊕
c∈Qi1

Vsc −→ Vsa = Wsa = Wtb

(canonical inclusion) (projection to component Vsa)

intuition: Wi carries the information
passing through Vi in V

(arrows incident to i)

a
b

a′

b′

ζi simply ”pushes” xi through all the incident maps at once

8

Reflection Functors

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

• Wi = ker ξi :
⊕
a∈Qi1

Vsa −→ Vi

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

• for a ∈ Qi1, let b be the opposite arrow, and let wb be the composition:

i

source

R−i V

coker ζi

xi 7−→ (va(xi))a∈Qi1

←−

Wsb = Wta = Vta ↪−→
⊕
c∈Qi1

Vtc −→ coker ζi = Wi = Wtb

(arrows incident to i)

(canonical inclusion) (quotient modulo im ζi)

a
b

a′

b′

when Vi = ker ξi, the quotient of
⊕
a∈Qi1

Vta modulo the cokernel of ζi is isomorphic to the image of ξi, so Wi really contains the information carried originally (before even applying R+
i) minus the one stored at index i only. Let us give specific examples to illustrate this property.

ζi simply ”pushes” xi through all the incident maps at once

8

Reflection Functors

Let V = (Vi, va) ∈ Repk(Q), let i be a sink

• Wi = ker ξi :
⊕
a∈Qi1

Vsa −→ Vi

Definition: R+
i V = (Wi, wa) is defined by :

• Wj = Vj for all j 6= i

• wa = va for all a /∈ Qi1

• for a ∈ Qi1, let b be the opposite arrow, and let wb be the composition:

i

source

R−i V

coker ζi

xi 7−→ (va(xi))a∈Qi1

←−

Wsb = Wta = Vta ↪−→
⊕
c∈Qi1

Vtc −→ coker ζi = Wi = Wtb

(arrows incident to i)

(canonical inclusion) (quotient modulo im ζi)

a
b

a′

b′

intuition: this is the operation dual to
the previous one (take Vi = ker ξi)

8

Reflection Functors

V : V1
va // V2 V3

vboo V4
vcoo vd // V5

R+
5 V : V1

va // V2 V3
vboo V4

vcoo ker vd? _oo

R−5 R
+
5 V : V1

va // V2 V3
vboo V4

vcoo mod ker vd // V4/ ker vd

we have R−5 R
+
5 V ∼= V whenever vd is surjective. Otherwise, V decomposes into R−5 R

+
5 V plus a number of copies of the simple representation S5 having k at node 5 and 0 at every other node

8

Reflection Functors

V : V1
va // V2 V3

vboo V4
vcoo vd // V5

R+
5 V : V1

va // V2 V3
vboo V4

vcoo ker vd? _oo

R−5 R
+
5 V : V1

va // V2 V3
vboo V4

vcoo mod ker vd // V4/ ker vd

V ∼= R−5 R
+
5 V⊕ Sr5, where r = dim coker vd

∼= im vd

8

Reflection Functors

V : V1
va // V2 V3

vboo V4
vcoo vd // V5

R+
2 V : V1 ker va + vboo //

_�

��

V3 V4
vcoo vd // V5

V1 ⊕ V3

π1

bb

π3

<<

the new space at node 2 is defined as the cokernel of the (previous vertical) canonical inclusion. Thus, the new space is isomorphic to the image of va + vb. Note that the new vertical map is the quotient modulo the kernel of va + vb

8

Reflection Functors

V : V1
va // V2 V3

vboo V4
vcoo vd // V5

R−2 R
+
2 V : V1 //

(−,0)

��

V1⊕V3
ker va+vb

V3oo

(0,−)

��

V4
vcoo vd // V5

ker va + vb
� � // V1 ⊕ V3

OO

va+vb // V2

we have R−2 R
+
2 V ∼= V whenever V2 = im va + vb. Otherwise, V decomposes into R−2 R

+
2 V plus a number of copies of the simple representation S2 having k at node 2 and 0 at every other node

the new space at node 2 is defined as the cokernel of the (previous vertical) canonical inclusion. Thus, the new space is isomorphic to the image of va + vb. Note that the new vertical map is the quotient modulo the kernel of va + vb

8

Reflection Functors

V : V1
va // V2 V3

vboo V4
vcoo vd // V5

R−2 R
+
2 V : V1 //

(−,0)

��

V1⊕V3
ker va+vb

V3oo

(0,−)

��

V4
vcoo vd // V5

ker va + vb
� � // V1 ⊕ V3

OO

va+vb // V2

V ∼= R−2 R
+
2 V⊕ Sr2, where r = dim coker va + vb

∼= im va + vb

at node i, Vi is replaced by Wi = ker ξi, whose dimension is dim⊕a∈Qi1Vsa − dim im
∑
a∈Qi1

va, where here the image is the entire space Vi since V is indecomposable

the theorem also provides rules to match the indecomposables (or rather their dimension vectors)

the functor preserves direct sum decompositions

8

Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]
Let Q be a finite connected quiver and let V be a representation of Q. If
V ∼= U⊕W, then for any source or sink i ∈ Q0, R±i V ∼= R

±
i U⊕R

±
i W.

If now V is indecomposable:
1. If i ∈ Q0 is a sink, then two cases are possible:

• V ∼= Si: in this case, R+
i V = 0.

• V � Si: in this case, R+
i V is nonzero and indecomposable,

R−i R
+
i V ∼= V, and the dimension vectors x of V and y of R+

i V
are related to each other by the following formula:

yj =


xj if j 6= i;

−xi +
∑
a∈Q1

ta=i

xsa if j = i.

here again, the formula is given by dimension considerations at node i. Indeed, Vi is replaced by Wi = coker ζi, whose dimension is dim⊕a∈Qi1Vsa − dim im ζi, where here the image is isomorphic to Vi since V is indecomposable

8

Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]
Let Q be a finite connected quiver and let V be a representation of Q. If
V ∼= U⊕W, then for any source or sink i ∈ Q0, R±i V ∼= R

±
i U⊕R

±
i W.

If now V is indecomposable:
2. If i ∈ Q0 is a source, then two cases are possible:

• V ∼= Si: in this case, R−i V = 0.

• V � Si: in this case, R−i V is nonzero and indecomposable,
R+

i R
−
i V ∼= V, and the dimension vectors x of V and y of R−i V

are related to each other by the following formula:

yj =


xj if j 6= i;

−xi +
∑
a∈Q1

sa=i

xta if j = i.

this is because reflection functors preserve direct sums, and the dimension vector of a direct sum is the sum of the dimension vectors of the terms

8

Reflection Functors

Theorem: [Bernstein, Gelfand, Ponomarev]
Let Q be a finite connected quiver and let V be a representation of Q. If
V ∼= U⊕W, then for any source or sink i ∈ Q0, R±i V ∼= R

±
i U⊕R

±
i W.

[...]

Corollary: Reflection Functors preserve the Tits form values except at
simple representations:

For i source/sink and V indecomposable,

• either V ∼= Si, in which case qsiQ(dimR±i V) = 0,

• or qsiQ(dimR±i V) = qQ(V).

For V arbitrary,
V ∼= V1 ⊕ · · · ⊕ Vr ⊕ Ssi =⇒ qsiQ(dimR±i V) = qQ(dimV1 ⊕ · · · ⊕ Vr)

8

Reflection Functors

Vi

V1 · · · Vi−1

<<

Vi+1

bb

· · · Vn

Wi

bb <<

Example: Q of type An, i sink, V ∼=
⊕r

j=1 IQ[bj , dj] ∈ repk(Q):

V

R+
i V

8

Reflection Functors

Vi

V1 · · · Vi−1

<<

Vi+1

bb

· · · Vn

Wi

bb <<

Example: Q of type An, i sink, V ∼=
⊕r

j=1 IQ[bj , dj] ∈ repk(Q):

V

R+
i V

R+
i V ∼=

⊕r
j=1R

+
i IQ[bj , dj], where

R+
i IQ[bj , dj] =



0 if i = bj = dj ;
IsiQ[i+ 1, dj] if i = bj < dj ;
IsiQ[i, dj] if i+ 1 = bj ≤ dj ;
IsiQ[bj , i− 1] if bj < dj = i;
IsiQ[bj , i] if bj ≤ dj = i− 1;
IsiQ[bj , dj] otherwise.

8

Reflection Functors

Vi

V1 · · · Vi−1

<<

Vi+1

bb

· · · Vn

Wi

bb <<

Example: Q of type An, i sink, V ∼=
⊕r

j=1 IQ[bj , dj] ∈ repk(Q):

V

R+
i V

R+
i V ∼=

⊕r
j=1R

+
i IQ[bj , dj], where

R+
i IQ[bj , dj] =



0 if i = bj = dj ;
IsiQ[i+ 1, dj] if i = bj < dj ;
IsiQ[i, dj] if i+ 1 = bj ≤ dj ;
IsiQ[bj , i− 1] if bj < dj = i;
IsiQ[bj , i] if bj ≤ dj = i− 1;
IsiQ[bj , dj] otherwise.

Diamond (forced exact by R+
i)

Diamond Principle [Carlsson, de Silva]

This is what we want to prove. This statement implies Gabriel’s Theorem I for An-type quivers because an interval representation cannot be in two isomorphism classes at a time (equivalence relation), and since there are finitely many interval representations, the number of isomorphism classes of indecomposable representations of Q must then be finite.

9

Proof of Gabriel’s Theorem (An case)

Theorem: [Gabriel I, An type]
Assuming Q is of type An, every isomorphism class of indecomposable
representations in repk(Q) contains IQ[b, d] for some 1 ≤ b ≤ d ≤ n.

This is what we want to prove. This statement implies Gabriel’s Theorem I for An-type quivers because an interval representation cannot be in two isomorphism classes at a time (equivalence relation), and since there are finitely many interval representations, the number of isomorphism classes of indecomposable representations of Q must then be finite.

9

Proof of Gabriel’s Theorem (An case)

Theorem: [Gabriel I, An type]
Assuming Q is of type An, every isomorphism class of indecomposable
representations in repk(Q) contains IQ[b, d] for some 1 ≤ b ≤ d ≤ n.

What we are currently able to do:

• turn indecomposable representations of Q into indecomposable rep-
resentations of reflections of Q (or zero)

• while doing so, preserve the value of the Tits form (or zero)

This is what we want to prove. This statement implies Gabriel’s Theorem I for An-type quivers because an interval representation cannot be in two isomorphism classes at a time (equivalence relation), and since there are finitely many interval representations, the number of isomorphism classes of indecomposable representations of Q must then be finite.

9

Proof of Gabriel’s Theorem (An case)

Theorem: [Gabriel I, An type]
Assuming Q is of type An, every isomorphism class of indecomposable
representations in repk(Q) contains IQ[b, d] for some 1 ≤ b ≤ d ≤ n.

What we are currently able to do:

• turn indecomposable representations of Q into indecomposable rep-
resentations of reflections of Q (or zero)

• while doing so, preserve the value of the Tits form (or zero)

→ idea: turn Q into itself via sequences of reflections, and observe the
evolution of the indecomposables and their Tits form values

9

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

→ apply reflections s1s2 · · · sn−1snLn and observe evolution of dimV

for the first line, go back to the formula given in the Reflection Functor Theorem

9

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

dimR+
nV = 0 or (x1, x2, · · · , xn−1, xn−1 − xn)>

dimR+
n−1R

+
nV = 0 or (x1, x2, · · · , xn−2 − xn, xn−1 − xn)>

· · ·

dimR+
2 · · ·R

+
n−1R

+
nV = 0 or (x1, x1 − xn, · · · , xn−2 − xn, xn−1 − xn)>

dimR+
1 R

+
2 · · ·R

+
n−1R

+
nV = 0 or (−xn, x1 − xn, · · · , xn−2 − xn, xn−1 − xn)>

At this stage, either xn 6= 0 and the summand V has been peeled off the decomposition, or xn = 0 and the summand V has been shifted to the right. Thus, C+ peels off all summands ending at index n and shifts all other summands to the right. This functor is called the Coxeter functor, due to its connection to the Coxeter transformations in Lie group theory. Let us now iterate the process and still observe the evolution of the dimension vector.

for the first line, go back to the formula given in the Reflection Functor Theorem

9

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

dimR+
nV = 0 or (x1, x2, · · · , xn−1, xn−1 − xn)>

dimR+
n−1R

+
nV = 0 or (x1, x2, · · · , xn−2 − xn, xn−1 − xn)>

· · ·

dimR+
2 · · ·R

+
n−1R

+
nV = 0 or (x1, x1 − xn, · · · , xn−2 − xn, xn−1 − xn)>

dimR+
1 R

+
2 · · ·R

+
n−1R

+
nV = 0 or (−xn, x1 − xn, · · · , xn−2 − xn, xn−1 − xn)>

=⇒ C+V = R+
1 R

+
2 · · ·R

+
n−1R

+
nV = 0 or xn = 0

≤
0

The first line is where we are standing right now in the process. Note: to continue the process, we need the dimension vector to be nonzero, therefore we must have xn = 0. Then, the new dimension vector is the same as the initial one, with all coordinates shifted to the right.

9

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

dim C+V = 0 or (0, x1, x2, · · · , xn−2, xn−1)>

dim C+C+V = 0 or (0, 0, x1, · · · , xn−3, xn−2)>

· · ·

dim C+ · · · C+︸ ︷︷ ︸
n−1 times

V = 0 or (0, 0, 0, · · · , 0, x1)>

dim C+ · · · C+︸ ︷︷ ︸
n times

V = 0

The sequence of indices can be with repetitions. If we choose a minimal sequence taking V to 0, then we have that the truncated sequence sends V to a nonzero decomposable representation, and by the Reflection Functor Theorem, this representation must be a simple representation Sr.

The first line is where we are standing right now in the process. Note: to continue the process, we need the dimension vector to be nonzero, therefore we must have xn = 0. Then, the new dimension vector is the same as the initial one, with all coordinates shifted to the right.

9

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

dim C+V = 0 or (0, x1, x2, · · · , xn−2, xn−1)>

dim C+C+V = 0 or (0, 0, x1, · · · , xn−3, xn−2)>

· · ·

dim C+ · · · C+︸ ︷︷ ︸
n−1 times

V = 0 or (0, 0, 0, · · · , 0, x1)>

dim C+ · · · C+︸ ︷︷ ︸
n times

V = 0

⇒ ∃i1, i2, · · · , is−1, is s.t. R+
is
R+
is−1

· · ·R+
i2
R+
i1
V = 0

R+
is−1

· · ·R+
i2
R+
i1
V 6= 0

9

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

∃i1, i2, · · · , is−1, is s.t. R+
is
R+
is−1

· · ·R+
i2
R+
i1
V = 0

R+
is−1

· · ·R+
i2
R+
i1
V 6= 0

=⇒ R+
is−1

· · ·R+
i2
R+
i1
V is indecomposable and isomorphic to Sr for some 1 ≤ r ≤ n

(Reflection Functor Thm)

9

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

∃i1, i2, · · · , is−1, is s.t. R+
is
R+
is−1

· · ·R+
i2
R+
i1
V = 0

R+
is−1

· · ·R+
i2
R+
i1
V 6= 0

=⇒ R+
is−1

· · ·R+
i2
R+
i1
V is indecomposable and isomorphic to Sr for some 1 ≤ r ≤ n

=⇒ qLn (dimV) = qsis−1
···si1 Ln (dimR+

is−1
· · ·R+

i2
R+
i1
V) = qsis−1

···si1 Ln (dim Sr) = 1

(Corollary)

9

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

∃i1, i2, · · · , is−1, is s.t. R+
is
R+
is−1

· · ·R+
i2
R+
i1
V = 0

R+
is−1

· · ·R+
i2
R+
i1
V 6= 0

=⇒ R+
is−1

· · ·R+
i2
R+
i1
V is indecomposable and isomorphic to Sr for some 1 ≤ r ≤ n

=⇒ qLn (dimV) = qsis−1
···si1 Ln (dimR+

is−1
· · ·R+

i2
R+
i1
V) = qsis−1

···si1 Ln (dim Sr) = 1

=⇒ dimV = dim ILn [b, d] for some 1 ≤ b ≤ d ≤ n =⇒ V ∼= ILn [b, d]

(Example)

�

9

Proof of Gabriel’s Theorem (An case)

Special case: linear quiver Ln: •
1

// •
2

// · · · // •
n−1

// •
n

Let V ∈ repk(Ln) indecomposable, dimV = (x1, x2, · · · , xn−1, xn)>

∃i1, i2, · · · , is−1, is s.t. R+
is
R+
is−1

· · ·R+
i2
R+
i1
V = 0

R+
is−1

· · ·R+
i2
R+
i1
V 6= 0

=⇒ R+
is−1

· · ·R+
i2
R+
i1
V is indecomposable and isomorphic to Sr for some 1 ≤ r ≤ n

=⇒ qLn (dimV) = qsis−1
···si1 Ln (dimR+

is−1
· · ·R+

i2
R+
i1
V) = qsis−1

···si1 Ln (dim Sr) = 1

=⇒ dimV = dim ILn [b, d] for some 1 ≤ b ≤ d ≤ n =⇒ V ∼= ILn [b, d]

�
Algo: apply Coxeter functor to peel off summands ILn [bi, n] and to shift other
summands to the right. Repeat until all summands have been peeled off.

then we can take a minimal such sequence for any given indecomposable representation V, and unfold the same reasoning as before

9

Proof of Gabriel’s Theorem (An case)

An-type quiver Q: •
1

•
2

· · · •
n−1

•
n

→ goal: find a sequence of indices i1, i2, · · · , is−1, is s.t.

R+
is
R+

is−1
· · ·R+

i2
R+

i1
V = 0 for all V ∈ repk(Q)

then we can take a minimal such sequence for any given indecomposable representation V, and unfold the same reasoning as before

9

Proof of Gabriel’s Theorem (An case)

An-type quiver Q: •
1

•
2

· · · •
n−1

•
n

→ goal: find a sequence of indices i1, i2, · · · , is−1, is s.t.

R+
is
R+

is−1
· · ·R+

i2
R+

i1
V = 0 for all V ∈ repk(Q)

→ idea: turn Q into Ln, then use the same sequence a before

9

Proof of Gabriel’s Theorem (An case)

An-type quiver Q:
•

•

__

•

??

•

__

•

__ ??

•

__

•

??

•

__ ??

•

__

•

__ ??

•

__ ??

•

??

•

__ ??

•

__ ??

•

??

1 2 3 4 5

QQ

- embed Q in a giant pyramid

9

Proof of Gabriel’s Theorem (An case)

An-type quiver Q:
•

•

__

•

??

•

__

•

__ ??

•

__

•

??

•

__ ??

•

__

•

__ ??

•

__ ??

•

??

•

__ ??

•

__ ??

•

??

1 2 3 4 5

Q

Ln

Q

- embed Q in a giant pyramid

- travel down the pyramid to its bottom Ln

→ travelling one level down reverses the leftmost backward arrow

e.g. s1s2s3 reverses •
3

•
4

oo

9

Proof of Gabriel’s Theorem (An case)

An-type quiver Q:
•

•

__

•

??

•

__

•

__ ??

•

__

•

??

•

__ ??

•

__

•

__ ??

•

__ ??

•

??

•

__ ??

•

__ ??

•

??

1 2 3 4 5

Q

Ln

Q

- embed Q in a giant pyramid

- travel down the pyramid to its bottom Ln

- each diamond •

•i−1

??

• i+1

__

•
i

__ ??

→ travelling one level down reverses the leftmost backward arrow

e.g. s1s2s3 reverses •
3

•
4

oo

is travelled down using R+
i

the algorithm reduces to standard zigzag persistence by sequences of reflections. Meanwhile, compatible bases are maintained

9

Proof of Gabriel’s Theorem (An case)

An-type quiver Q:
•

•

__

•

??

•

__

•

__ ??

•

__

•

??

•

__ ??

•

__

•

__ ??

•

__ ??

•

??

•

__ ??

•

__ ??

•

??

1 2 3 4 5

Q

Ln

Q

- embed Q in a giant pyramid

- travel down the pyramid to its bottom Ln

- each diamond •

•i−1

??

• i+1

__

•
i

__ ??

→ travelling one level down reverses the leftmost backward arrow

e.g. s1s2s3 reverses •
3

•
4

oo

is travelled down using R+
i

→ algo. to compute zigzag persistence

(at the algebraic level → maintain bases)

Theorem: [Gabriel II]
Assuming Q is Dynkin with n vertices, the map V 7→ dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

10

Proof of Gabriel’s Theorem (An case)

Theorem: [Gabriel II]
Assuming Q is Dynkin with n vertices, the map V 7→ dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

10

Proof of Gabriel’s Theorem (An case)

What we know:

• the positive roots of qQ are the dimension vectors of interval modules IQ[b, d]

• each isomorphism class C of indecomposables contains ≥ 1 interval module

Theorem: [Gabriel II]
Assuming Q is Dynkin with n vertices, the map V 7→ dimV induces
a bijection between the set of isomorphism classes of indecomposable
representations of Q and the set of positive roots of the Tits form of Q.

10

Proof of Gabriel’s Theorem (An case)

What we know:

• the positive roots of qQ are the dimension vectors of interval modules IQ[b, d]

• each isomorphism class C of indecomposables contains ≥ 1 interval module

Additional observations:

• 6= interval modules are �, therefore each class C contains 1 interval module

• each interval module is indecomposable (endomorphism ring isom. to k)

�

11

Application 1: Persistence Computation

K1

��

· · · Ki

��

Ki+1
σ

��

· · · Kn

��
H(K1) · · · H(Ki) H(Ki+1)

f
· · · H(Kn)

- every horizontal map is either forward or backward

- the Ki are simplicial complexes, the inclusions are elementary

- the H(Ki) are vector spaces connected by linear maps (quiver representation)

K
σ //

��

K ∪ {σ}

��
H(K)

f

︷ ︸︸ ︷
ker f = [∂σ]

// H(K ∪ {σ})

f inj. of corank 1 f surj. of nullity 1

11

Application 1: Persistence Computation

K1

��

· · · Ki

��

Ki+1
σ

��

· · · Kn

��
H(K1) · · · H(Ki) H(Ki+1)

f
· · · H(Kn)

- every horizontal map is either forward or backward

- the Ki are simplicial complexes, the inclusions are elementary

- the H(Ki) are vector spaces connected by linear maps (quiver representation)

Algorithms for when all maps are forward:

- Gaussian elimination: worst-case O(n3), highly optimized in practice

- Fast matrix multiplication: worst-case O(nω), not implemented

Algorithms for when maps can be forward or backward:

- Gaussian elimination + right filtration functor: worst-case O(n3),

not optimizednot optimized

12

Application 1: Persistence Computation

We compute of the persistent homology of:

K1 K2 · · · Ki Ki+1
σ · · · Kn−1 Kn

12

Application 1: Persistence Computation

We compute of the persistent homology of:

K1 K2 · · · Ki Ki+1
σ · · · Kn−1 Kn

by maintaining a compatible homology basis for

K1 · · · Ki [Carlsson, de Silva ’10],[C,deS, Morozov ’09]︸ ︷︷ ︸
K[1; i]

Note: m ≤ i since some simplices may be removed in the prefix

12

Application 1: Persistence Computation

We compute of the persistent homology of:

K1 K2 · · · Ki Ki+1
σ · · · Kn−1 Kn

by maintaining a compatible homology basis for

K1 · · · Ki = K′m oo
τm

K′m−1
oo τm−1

K′m−2
oo τm−2 · · · oo

τ1 ∅︸ ︷︷ ︸
K[1; i]

[Maria, O. ’15]

under the following operations:

whenever we remove σ, we need to move the corresponding arrow to the beginning of the descending chain

whenever we insert σ, we anticipate for its future removal

Note: m ≤ i since some simplices may be removed in the prefix

12

Application 1: Persistence Computation

We compute of the persistent homology of:

K1 K2 · · · Ki Ki+1
σ · · · Kn−1 Kn

by maintaining a compatible homology basis for

K1 · · · Ki = K′m oo
τm

K′m−1
oo τm−1

K′m−2
oo τm−2 · · · oo

τ1 ∅︸ ︷︷ ︸
K[1; i]

[Maria, O. ’15]

K ∪ {σ}

· · · K hh
1

σ 77

K66
1

σgg

· · ·

K

K ∪ {τ}

· · · K ∪ {σ, τ}
uu
σ

ii
τ

K

τff

σxx
· · ·

K ∪ {σ}

- arrow reflection if
σ−→ is forward

- arrow transposition if
σ←− is backward

13

Application 1: Persistence Computation

Theorem: Exact Diamond Principle [Carlsson, de Silva ’10]
Under the exactness hypothesis on the diamond:

W := Wi

V1 · · · Vi−1

b 55

ii
a

Vi+1

dii

55
c

· · · Vn

V := Vi

Interval decompositions of V,W are related as follows:

ib d

∅

i - 1 i + 1

W
V

white arrows indicate greedy pairing: - dp is paired with i + 1, blp
with i − 1 - the previous match of dp has to pair up with the next right endpoint - the previous match of that next right endpoint pairs up with the last remaining right endpoint, which was the previous match of blp

generalizes the exact diamond / reflection functors theorem

13

Application 1: Persistence Computation

Theorem: Injective/Surjective Diamond Principles [Maria, O. ’15]
For f injective of corank 1 or surjective of nullity 1:

W := Wi

V1 · · · Vi−1

f 55

ii
1

Vi+1

fii

55
1

· · · Vn

V := Vi

Interval decompositions of V,W are related through greedy rule.

1 2 3 4 5 6 7

dp

blp

note: corank/nullity assumption implies that there is exactly one interval dying at i and one at i − 1

case study: depends of inj./surj. and on ith column in boundary matrix

the diamond is exact and each map a, b, c, d is either injective of corank 1 or surjective of nullity 1

13

Application 1: Persistence Computation

Theorem: Transposition Diamond Principle [Maria, O. ’15]
For an exact diamond + morphisms inj. of corank 1 or surj. of nullity 1:

W := Wi

V1 · · · Vi−1
uu
b

ii
a

Vi+1

dii

cuu
· · · Vn

V := Vi

Interval decompositions of V,W are related as follows:

ib i - 1

W
V

b’

}
or
}

}

14

Application 1: Persistence Computation

Concluding remarks on this application:

• extensions of Exact Diamond Principle / Reflection Functors

(cf. injective/surjective diamonds and transposition diamonds)

• same asymptotic complexity: O(n3) in the worst case

• better performances than [CdSM’09] in practice (×0.2)

• extension to cohomology → significant improvement expected

(×0.01)

15

Application 2: Zigzags for homology inference

K is the circle in this example, the pi’s form the point cloudSetup: K ⊂ Rd a compact set, p1, · · · , pn data points sampled along (or close to) K

Goal: infer the topology (homology) of K, knowing only p1, · · · , pn

Example: sampled periodic curve in the 2d flat torus, embedded into R4 through the Clifford embedding Note: find pictorial representation of Clifford torus on the Internet

16

Manufactured Data Set

(R
m

o
d
Z)

2 (u, v) 7→ 1√
2
(cos(2πu), sin(2πu), cos(2πv), sin(2πv))

⊂
S3
⊂
R
4

source: http://http://en.wikipedia.org/wiki/Clifford_torus

Application 2: Zigzags for homology inference

Example: sampled periodic curve in the 2d flat torus, embedded into R4 through the Clifford embedding Note: find pictorial representation of Clifford torus on the Internet

16

Manufactured Data Set

(R
m

o
d
Z)

2 (u, v) 7→ 1√
2
(cos(2πu), sin(2πu), cos(2πv), sin(2πv))

⊂
S3
⊂
R
4

source: http://http://en.wikipedia.org/wiki/Clifford_torus

2000 data points

Application 2: Zigzags for homology inference

16

Manufactured Data Set

Rips

2000 data points

Application 2: Zigzags for homology inference

16

Manufactured Data Set

Rips

comput. limit 3-sphere (37 · 109 simplices)

2000 data points

Application 2: Zigzags for homology inference

uses 8 GB of RAM. For comparison, the Delaunay triangulation has 5 million simplices

barcode of the mesh-based filtration from [HMOS10], drawn on a logarithmic scale (abcissa = log of geometric scale) Note: to be fair, this barcode is probably the noisiest obtained from the aforementioned filtrations. Nevertheless, in principle all these will contain extra topological noise since they approximate the wrong guys

16

Manufactured Data Set

[HMOS10]

mesh-based

2000 data points

(12 · 106 simplices)

Application 2: Zigzags for homology inference

16

Manufactured Data Set
2000 data points

[OS14]

(200 · 103 simplices)

Application 2: Zigzags for homology inference

16

Manufactured Data Set

What we learn from this experiment:

• commonly used filtrations (Čech, Rips, alpha, witness, graph-induced) become

huge at large scales and/or in high ambient dimensions: 2n, n
d
2 , etc.

• approximations (mesh-based, sparse Rips, simplicial maps) may introduce

defects in the barcodes: extra noise, over-simplification, etc.

• it is possible to take advantage of both worlds...

Application 2: Zigzags for homology inference

17

Application 2: Zigzags for homology inference

α

Rα(P) = clique complex of intersection graph of balls of radius α

6= nerve of union of balls of radius α (Čech complex)

Rips filtration

Rips filtration: {Rα(P)}+∞α=0

Input: P ⊂ Rd finite

17

Params: ρ ≥ η ≥ 0, ordering p1, · · · , pn of P (e.g. furthest-point order)

Application 2: Zigzags for homology inference
Approach

Input: P ⊂ Rd finite

17

Params: ρ ≥ η ≥ 0, ordering p1, · · · , pn of P (e.g. furthest-point order)

• let Pi = {p1, · · · , pi} be the i-th prefix, and εi = dH(Pi, P) the i-th scale

• ∀i, compute Rηεi(Pi) and Rρεi(Pi)

Rηε1(P1)

Rρε1(P1)

Rηε2(P2)

Rρε2(P2)

Rηε3(P3)

Rρε3(P3)

. . .

Application 2: Zigzags for homology inference
Approach

Input: P ⊂ Rd finite

17

Params: ρ ≥ η ≥ 0, ordering p1, · · · , pn of P (e.g. furthest-point order)

• let Pi = {p1, · · · , pi} be the i-th prefix, and εi = dH(Pi, P) the i-th scale

• ∀i, compute Rηεi(Pi) and Rρεi(Pi)

• [CO08] ∀i, compute r∗i = rank HRηεi(Pi)→ HRρεi(Pi)

Output: plot r∗i against εi

Rηε1(P1)

Rρε1(P1)

Rηε2(P2)

Rρε2(P2)

Rηε3(P3)

Rρε3(P3)

. . .

Application 2: Zigzags for homology inference
Approach

Input: P ⊂ Rd finite

17

Params: ρ ≥ η ≥ 0, ordering p1, · · · , pn of P (e.g. furthest-point order)

• let Pi = {p1, · · · , pi} be the i-th prefix, and εi = dH(Pi, P) the i-th scale

• ∀i, compute Rηεi(Pi) and Rρεi(Pi)

Rηε1(P1)

Rρε1(P1)

Rηε2(P2)

Rρε2(P2)

Rηε3(P3)

Rρε3(P3)

. . .

• [OS14] relate the Rηεi(Pi) −→ Rρεi(Pi) through the following zigzag:

Rρε1(P2) Rρε2(P3)

Application 2: Zigzags for homology inference
Approach

Input: P ⊂ Rd finite

17

Params: ρ ≥ η ≥ 0, ordering p1, · · · , pn of P (e.g. furthest-point order)

• let Pi = {p1, · · · , pi} be the i-th prefix, and εi = dH(Pi, P) the i-th scale

• ∀i, compute Rηεi(Pi) and Rρεi(Pi)

. . .

• [OS14] relate the Rηεi(Pi) −→ Rρεi(Pi) through the following zigzag:

Rρε1(P2) Rρε2(P3)

Rρε1(P1) Rρε2(P2) Rρε3(P3)

Rηε1(P1) Rηε2(P2) Rηε3(P3)

Application 2: Zigzags for homology inference
Approach

Input: P ⊂ Rd finite

17

Params: ρ ≥ η ≥ 0, ordering p1, · · · , pn of P (e.g. furthest-point order)

• let Pi = {p1, · · · , pi} be the i-th prefix, and εi = dH(Pi, P) the i-th scale

• ∀i, compute Rηεi(Pi) and Rρεi(Pi)

. . .

• [OS14] relate the Rηεi(Pi) −→ Rρεi(Pi) through the following zigzag:

Rρε1(P2) Rρε2(P3)

Rρε1(P1) Rρε2(P2) Rρε3(P3)

Rηε1(P1) Rηε2(P2) Rηε3(P3)

oR-ZZ

Application 2: Zigzags for homology inference
Approach

Input: P ⊂ Rd finite

better than Čech/Rips filtration since noise in the sweet range is ephemeral. In particular, the number of intervals intersecting a vertical line within the sweet range gives the homology of X in general (except at finitely many positions). Equivalently, in the persistence diagram, any open upper-left quadrant with apex on the diagonal within the sweet range shows the homology of X.

18

sweet range

Thm: ”If P is ε-close to X in the Hausdorff distance, with ε < Θ(1) wfs(X),
then there exists a sweet range of scales [O(ε), Ω(wfs(X))] such that the oR-ZZ
restricted to this range has a persistence barcode made only of full-length intervals,
revealing the homology of X, and of ephemeral (length zero) intervals.”

Application 2: Zigzags for homology inference

18

Thm: Let ρ and η be multipliers such that ρ > 10 and 3
ϑd

< η < ρ−4
2ϑd

. Let X ⊂ Rd

be a compact set and let P ⊂ Rd be such that dH(P,X) < ε with

ε < min

{
ϑdη − 3

6ϑdη
,
η − 3/ϑd

3ρ+ η
,
ρ− 2ϑdη − 4

6(ρ− 2ϑdη)
,

ρ− 2ϑdη − 4

(4ϑd + 1)ρ− 2ϑdη

}
wfs(X).

Then, for any k < l such that

max

{
3ε

ϑdη − 3
,

4ε

ρ− 2ϑdη − 4

}
≤ εk, εl < min

{
1

6
wfs(X)− ε,

1

ϑdρ+ 1
(wfs(X)− ε)

}
,

the oR-ZZ restricted to Rρεk (Pk+1) ← · · · ← Rηεl(Pl) has a persistence bar-
code made only of full-length intervals and ephemeral (length zero) intervals, the
number of full-length intervals being equal to the dimension of H∗(X

λ) for any
λ ∈ (0,wfs(X)).

Application 2: Zigzags for homology inference

18

Thm: Let ρ and η be multipliers such that ρ > 10 and 3
ϑd

< η < ρ−4
2ϑd

. Let X ⊂ Rd

be a compact set and let P ⊂ Rd be such that dH(P,X) < ε with

ε < min

{
ϑdη − 3

6ϑdη
,
η − 3/ϑd

3ρ+ η
,
ρ− 2ϑdη − 4

6(ρ− 2ϑdη)
,

ρ− 2ϑdη − 4

(4ϑd + 1)ρ− 2ϑdη

}
wfs(X).

Then, for any k < l such that

max

{
3ε

ϑdη − 3
,

4ε

ρ− 2ϑdη − 4

}
≤ εk, εl < min

{
1

6
wfs(X)− ε,

1

ϑdρ+ 1
(wfs(X)− ε)

}
,

the oR-ZZ restricted to Rρεk (Pk+1) ← · · · ← Rηεl(Pl) has a persistence bar-
code made only of full-length intervals and ephemeral (length zero) intervals, the
number of full-length intervals being equal to the dimension of H∗(X

λ) for any
λ ∈ (0,wfs(X)).

Θ(1)

Application 2: Zigzags for homology inference

18

Thm: Let ρ and η be multipliers such that ρ > 10 and 3
ϑd

< η < ρ−4
2ϑd

. Let X ⊂ Rd

be a compact set and let P ⊂ Rd be such that dH(P,X) < ε with

ε < min

{
ϑdη − 3

6ϑdη
,
η − 3/ϑd

3ρ+ η
,
ρ− 2ϑdη − 4

6(ρ− 2ϑdη)
,

ρ− 2ϑdη − 4

(4ϑd + 1)ρ− 2ϑdη

}
wfs(X).

Then, for any k < l such that

max

{
3ε

ϑdη − 3
,

4ε

ρ− 2ϑdη − 4

}
≤ εk, εl < min

{
1

6
wfs(X)− ε,

1

ϑdρ+ 1
(wfs(X)− ε)

}
,

the oR-ZZ restricted to Rρεk (Pk+1) ← · · · ← Rηεl(Pl) has a persistence bar-
code made only of full-length intervals and ephemeral (length zero) intervals, the
number of full-length intervals being equal to the dimension of H∗(X

λ) for any
λ ∈ (0,wfs(X)).

O(ε)

Ω(wfs(X))

Application 2: Zigzags for homology inference

this is after removing the ephemeral noise

18

[OS13]

(200 · 103 simplices)

2000 data points

Application 2: Zigzags for homology inference

19

proof strategy:

.

HRρεi−1(Pi) HRρεi(Pi+1)

HRηεi−1(Pi−1) HRηεi(Pi) HRηεi+1(Pi+1)

Application 2: Zigzags for homology inference

19

proof strategy:

- not much control over the topological behavior of Rips complexes

- exploit interleaving with Čech complexes (cf. standard persistence)

- turn oR-ZZ into some Čech-based zigzag while tracking changes in PD

- perform two types of low-level modifications:

• arrow reversal

• arrows composition / splitting

Application 2: Zigzags for homology inference

we decompose each module, then perform the low-level operations on each summand separately, then sum up the summands again to obtain the new module

19

Thm (Arrow Reversal):
”Any arrow in a zigzag module can be reversed while preserving the persistence
diagram. The properties of the reverse map also help preserve commutativity.”

Thm (Arrow Composition/Splitting):
”Contiguous arrows with same orientation in a zigzag module can be composed,
with the same effect on the persistence diagram as in standard persistence.”

Application 2: Zigzags for homology inference

we decompose each module, then perform the low-level operations on each summand separately, then sum up the summands again to obtain the new module

19

Thm (Arrow Reversal):
”Any arrow in a zigzag module can be reversed while preserving the persistence
diagram. The properties of the reverse map also help preserve commutativity.”

→ proofs by decomposition (use Gabriel’s theorem)

Thm (Arrow Composition/Splitting):
”Contiguous arrows with same orientation in a zigzag module can be composed,
with the same effect on the persistence diagram as in standard persistence.”

Application 2: Zigzags for homology inference

19

.

HRρεi−1(Pi) HRρεi(Pi+1)

HRηεi−1(Pi−1) HRηεi(Pi) HRηεi+1(Pi+1)

Application 2: Zigzags for homology inference

19

HCη̃εi−1(Pi−1)

HCρ̃εi−1(Pi−1)

HCη̃εi−1(Pi)

HCρ̃εi−1(Pi)

HCη̃εi(Pi)

HCρ̃εi(Pi)

HCη̃εi(Pi+1)

HCρ̃εi(Pi+1)

.

η̃ = ϑdη and ρ̃ = ρ
2

HRρεi−1(Pi) HRρεi(Pi+1)

HRηεi−1(Pi−1) HRηεi(Pi) HRηεi+1(Pi+1)

Application 2: Zigzags for homology inference

19

HCη̃εi−1(Pi−1)

HCρ̃εi−1(Pi−1)

HCη̃εi−1(Pi)

HCρ̃εi−1(Pi)

HCη̃εi(Pi)

HCρ̃εi(Pi)

HCη̃εi(Pi+1)

HCρ̃εi(Pi+1)

.

η̃ = ϑdη and ρ̃ = ρ
2

HRρεi−1(Pi) HRρεi(Pi+1)

HRηεi−1(Pi−1) HRηεi(Pi) HRηεi+1(Pi+1)

HCη̃εi(Pi+1)

Application 2: Zigzags for homology inference

19

HCη̃εi−1(Pi−1)

HCρ̃εi−1(Pi−1)

HCη̃εi−1(Pi)

HCρ̃εi−1(Pi)

HCη̃εi(Pi)

HCρ̃εi(Pi)

HCη̃εi(Pi+1)

HCρ̃εi(Pi+1)

.

η̃ = ϑdη and ρ̃ = ρ
2

HRρεi−1(Pi) HRρεi(Pi+1)

HRηεi−1(Pi−1) HRηεi(Pi) HRηεi+1(Pi+1)

HCη̃εi(Pi+1)

Application 2: Zigzags for homology inference

19

HCρ̃εi−1

η̃εi−1
(Pi−1) HCρ̃εi−1

η̃εi−1
(Pi) HCρ̃εiη̃εi

(Pi) HCρ̃εiη̃εi
(Pi+1)

η̃ = ϑdη and ρ̃ = ρ
2

HRρεi−1(Pi) HRρεi(Pi+1)

HRηεi−1(Pi−1) HRηεi(Pi) HRηεi+1(Pi+1)

.

Application 2: Zigzags for homology inference

19

HCρ̃εi−1

η̃εi−1
(Pi−1) HCρ̃εi−1

η̃εi−1
(Pi) HCρ̃εiη̃εi

(Pi) HCρ̃εiη̃εi
(Pi+1)

η̃ = ϑdη and ρ̃ = ρ
2

HRρεi−1(Pi) HRρεi(Pi+1)

HRηεi−1(Pi−1) HRηεi(Pi) HRηεi+1(Pi+1)

.

Application 2: Zigzags for homology inference

19

HCρ̃εi−1

η̃εi−1
(Pi−1) HCρ̃εi−1

η̃εi−1
(Pi) HCρ̃εiη̃εi

(Pi) HCρ̃εiη̃εi
(Pi+1)

η̃ = ϑdη and ρ̃ = ρ
2

HRρεi−1(Pi) HRρεi(Pi+1)

HRηεi−1(Pi−1) HRηεi(Pi) HRηεi+1(Pi+1)

.
'

'
'

'
'

Application 2: Zigzags for homology inference

20

Thm (size bound): Let m be the doubling dimension of (P, d). Then, at any time
the number of k-simplices in the current complex is:
- 2O(kd log ρ)|P | for the M-ZZ, oR-ZZ and iR-ZZ of parameters ρ ≥ η,

- 2
O(kd log ρ

ζ
)|P | for the dM-ZZ of parameters ρ, ζ.

Thm (running time bound): Let m be the doubling dimension of (P, d). Then,
the total number of k-simplices inserted in the zigzag is:
- 2O(kd log ρ)|P | for the M-ZZ and iR-ZZ of parameters ρ ≥ η,

- 2
O(kd log ρ

ζ
)|P | for the dM-ZZ of parameters ρ, ζ,

- 2O(kd log ρ)|P |2 for the oR-ZZ of parameters ρ ≥ η.

• Assume the ordering of P is by furthest point sampling.

Application 2: Zigzags for homology inference
Complexity bounds

21

• Rips-based zigzags with the following properties:

- controlled size and running time

- improved signal-to-noise ratio in the barcode

• Perspectives:

- zigzag with other complexes: witness complex, graph-induced complex, etc.

- to be coupled with efficient algorithms of zigzag persistence: cf. application 1

Concluding remarks on this application:

- Analysis based on arrow reflections (similar but 6= from reflection functors)

Application 2: Zigzags for homology inference

