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Related problems

e How deep is the deepest point?

Monocolor case: Cd(d_r:_l) [Barany, Gromov, Karasev, Matousek, and
Wagner]

d

Colorful case: ﬁn +1 [Karasev, Jiang]

e Colored Tverberg (Conjecture by Béarany and Larman)
Tverberg depth of p = max # disjoint colorful simplices o,
s.t. p € conv(o)

e Colorful simplicial depth conjecture (Colorful depth of a point in the core)
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Colorful Carathéodory Theorem, Barany 1982

Theorem (CCT, 1982)

Let Sq,...,S441 be d + 1 sets of points in RY. If p € conv(S;) for all i,
there exists a set T C | J'!'S; such that

|TNSi| <1foralliandp € conv(T).

Applications of this theorem:

» First selection lemma.

» Proof of Tverberg’s Theorem (generalization of Radon’s Theorem).



Colorful simplicial depth conjecture

Theorem (S. 2014)
If|Si| > d+1 for all i, there are at least d? + 1 colorful sets containing p.

Conjectured by Deza et. al 2006; successive improvements by Barany, Deza,
Matousek, Stephen, Thomas, Xie, Meunier, and S.
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A combinatorial counterpart: octahedral systems

An octahedral system is an (d + 1)-uniform, (d + 1)-partite hypergraph
satisfying the parity condition:

The number of edges induced by X, with |[X N Vi| =2 for all /, is even.
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Induction on the number of covered classes

Theorem
If k > 1 classes are covered, there are at least k(d — 1) + 2 edges.

Main idea of the proof:

The octahedral systems are the symmetric differences of elementary
octahedral systems: the umbrellas.
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Proof via a bipartite graph

Q=UAUA--- AU DN QAN -+ - ANQgya,

umbrellas of color 1

octahedral systems

Decomposition graph: G = (V, E)

: *Edge UiQ); of decomposition graph
" Edge in U;NQ;
* |Qf =3 [Ui| + 2 1Qy] - 2|E|
% Each Q); covers less classes (Induction)
* |E| = ¥ degs(0)
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PrRooF oF THE COLORFUL SIMPLICIAL
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A combinatorial counterpart: octahedral systems
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An umbrella is a set {x1} x {xo} x -+ x Vi x -+ x {xg41}-
An octahedral system is a symmetric difference of umbrellas.

A colorful point configuration defines an octahedral system.
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Colorful simplicial depth conjecture

Theorem (S., 2014)

If k > 1 classes are covered, there are at least k(d — 1) + 2 edges.

Theorem (Strong Colorful Carathéodory Theorem, Barany 1982)

Every point in U?:’Lll Si is a vertex of some colorful simplex containing p.

Corollary

The corresponding octahedral systems covers all classes, and hence there
are at least

(d+1)(d—-1)+2=d>+1

colorful simplices containing p.
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Thank you
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