THE COLORFUL SIMPLICIAL DEPTH CONIECTURE

Pauline Sarrabezolles CERMICS, ENPC

LIX, September, 24th

Outline of the talk

I Colorful Simplicial Depth

II Octahedral Systems

III Proof of the Conjecture

COLORFUL SIMPLICIAL DEPTH

 $\mathsf{depth}(p) = \# \ \mathsf{simplices} \ \sigma,$ s.t. $p \in \mathsf{conv}(\sigma)$

Related problems

• How deep is the deepest point?

Monocolor case: $c_d \binom{n}{d+1}$ [Bárány, Gromov, Karasev, Matoušek, and

Wagner]

Colorful case: $\frac{1}{(d+1)!}n^{d+1}$ [Karasev, Jiang]

• Colored Tverberg (Conjecture by Bárány and Larman)

Tverberg depth of $p = \max \# \text{ disjoint colorful simplices } \sigma$, s.t. $p \in \text{conv}(\sigma)$

Colorful simplicial depth conjecture (Colorful depth of a point in the core)

Related problems

• How deep is the deepest point?

Monocolor case: $c_d \binom{n}{d+1}$ [Bárány, Gromov, Karasev, Matoušek, and

Wagner]

Colorful case: $\frac{1}{(d+1)!} n^{d+1}$ [Karasev, Jiang]

• Colored Tverberg (Conjecture by Bárány and Larman)

Tverberg depth of $p = \max \# \text{ disjoint colorful simplices } \sigma$, s.t. $p \in \text{conv}(\sigma)$

• Colorful simplicial depth conjecture (Colorful depth of a point in the core)

Colorful Carathéodory Theorem in \mathbb{R}^2

Colorful Carathéodory Theorem in \mathbb{R}^2

Colorful Carathéodory Theorem, Bárány 1982

Theorem (CCT, 1982)

Let S_1, \ldots, S_{d+1} be d+1 sets of points in \mathbb{R}^d . If $p \in \text{conv}(S_i)$ for all i, there exists a set $T \subseteq \bigcup_{i=1}^{d+1} S_i$ such that

$$|T \cap S_i| \le 1$$
 for all i and $p \in conv(T)$.

Applications of this theorem:

- First selection lemma.
- Proof of Tverberg's Theorem (generalization of Radon's Theorem).

Colorful simplicial depth conjecture

Theorem (S. 2014)

If $|S_i| \ge d+1$ for all i, there are at least d^2+1 colorful sets containing p.

Conjectured by Deza et. al 2006; successive improvements by Bárány, Deza, Matoušek, Stephen, Thomas, Xie, Meunier, and S.

OCTAHEDRAL SYSTEMS

An octahedral system is an (d + 1)-uniform, (d + 1)-partite hypergraph satisfying the *parity condition:*

The number of edges induced by X, with $|X \cap V_i| = 2$ for all i, is even.

Induction on the number of covered classes

Theorem

If $k \ge 1$ classes are covered, there are at least k(d-1) + 2 edges.

Main idea of the proof:

The octahedral systems are the symmetric differences of elementary octahedral systems: the umbrellas.

Proof via a bipartite graph

$$\Omega = \underbrace{U_1 \triangle U_2 \triangle \cdots \triangle U_r}_{\text{umbrellas of color 1}} \triangle \underbrace{\Omega_2 \triangle \Omega_3 \triangle \cdots \triangle \Omega_{d+1}}_{\text{octahedral systems}},$$

Decomposition graph: G = (V, E)

 \bigstar Edge $U_i\Omega_j$ of decomposition graph

Edge in
$$U_i \cap \Omega_j$$

$$\bigstar |\Omega| = \sum |U_i| + \sum |\Omega_j| - 2|E|$$

 \bigstar Each Ω_j covers less classes (Induction)

$$\bigstar |E| = \sum \deg_G(\Omega_j)$$

Proof of the Colorful Simplicial Depth Conjecture

An umbrella is a set $\{x_1\} \times \{x_2\} \times \cdots \times V_i \times \cdots \times \{x_{d+1}\}$.

An octahedral system is a symmetric difference of umbrellas.

An umbrella is a set $\{x_1\} \times \{x_2\} \times \cdots \times V_i \times \cdots \times \{x_{d+1}\}$.

An octahedral system is a symmetric difference of umbrellas.

An umbrella is a set $\{x_1\} \times \{x_2\} \times \cdots \times V_i \times \cdots \times \{x_{d+1}\}$.

An octahedral system is a symmetric difference of umbrellas.

An umbrella is a set $\{x_1\} \times \{x_2\} \times \cdots \times V_i \times \cdots \times \{x_{d+1}\}$.

An octahedral system is a symmetric difference of umbrellas.

An umbrella is a set $\{x_1\} \times \{x_2\} \times \cdots \times V_i \times \cdots \times \{x_{d+1}\}$.

An octahedral system is a symmetric difference of umbrellas.

An umbrella is a set $\{x_1\} \times \{x_2\} \times \cdots \times V_i \times \cdots \times \{x_{d+1}\}$.

An octahedral system is a symmetric difference of umbrellas.

An umbrella is a set $\{x_1\} \times \{x_2\} \times \cdots \times V_i \times \cdots \times \{x_{d+1}\}$.

An octahedral system is a symmetric difference of umbrellas.

An umbrella is a set $\{x_1\} \times \{x_2\} \times \cdots \times V_i \times \cdots \times \{x_{d+1}\}$.

An octahedral system is a symmetric difference of umbrellas.

Colorful simplicial depth conjecture

Theorem (S., 2014)

If $k \ge 1$ classes are covered, there are at least k(d-1) + 2 edges.

Theorem (Strong Colorful Carathéodory Theorem, Bárány 1982)

Every point in $\bigcup_{i=1}^{d+1} S_i$ is a vertex of some colorful simplex containing p.

Corollary

The corresponding octahedral systems covers all classes, and hence there are at least

$$(d+1)(d-1) + 2 = d^2 + 1$$

colorful simplices containing p.

Thank you