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Motivation
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Spanning-tree packing (STP) number

Definition
T (G ) = maximum number of edge-disjoint spanning trees in G .

Example

T (G ) = 2.

Trivial upper bound

T (G ) ≤ min
{
δ,
⌊ d̄

2

⌋}
, where d̄

2 = m
n−1 .

An application

Measure of network strength/vulnerability.
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Arboricity

Definition
A(G ) = minimum number of spanning trees covering all edges of G ;

= minimum number of forests decomposing E (G ).

Example

A(G ) = 3.

Trivial lower bound

A(G ) ≥
⌈ d̄

2

⌉
, where d̄

2 = m
n−1 .

An application
Measure of density of subgraphs.
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k-orientability and load balancing

k-orientability
A graph is k-orientable if it admits an orientation of the edges s.t.
the maximum indegree is at most k .

Equivalent formulation:

Load balancing scenario

m balls (jobs) are assigned to n bins (machines) in a way that each
ball must pick between two randomly chosen bins. We wish to
minimise the load of the bins by allowing at most k balls in each
bin.

Connection to arboricity:

k-orientability determined by density of densest subgraph
(Hakimi ’65).
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Problem and previous results

Theorem (Palmer, Spencer ’95)

T
(
G (n, p)

)
= δ, for δ constant (p ∼ log n/n).

Theorem (Catlin, Chen, Palmer ’93){
T
(
G (n, p)

)
=
⌊ d̄

2

⌋
A
(
G (n, p)

)
=
⌈ d̄

2

⌉ , for p = C (log n/n)1/3.

Theorem (Chen, Li, Lian ’13+)

T
(
G (n, p)

)
= δ, for p ≤ 1.1 log n/n;

T
(
G (n, p)

)
> δ, for p ≥ 51 log n/n.

Question (Chen, Li, Lian)

What’s the smallest p such that T
(
G (n, p)

)
> δ?
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Our results (i)

Theorem

For every p = p(n) ∈ [0, 1], a.a.s. T
(
G (n, p)

)
= min

{
δ,
⌊ d̄

2

⌋}
.

(Same holds throughout the random graph process.)

Theorem
Let β = 2/ log(e/2) ≈ 6.51778.

If p =
β(log n− log log n

2 )−ω(1)

n−1 , then a.a.s. δ ≤
⌊ d̄

2

⌋
in G (n, p).

If p =
β(log n− log log n

2 )+ω(1)

n−1 , then a.a.s. δ >
⌊ d̄

2

⌋
in G (n, p).

(Same holds throughout the random graph process.)

Threshold for T
(
G (n, p)

)
=

{
δ⌊ d̄

2

⌋ at p ∼ β log n
n .
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Our results (ii)

Theorem

If p = o(1/n), then a.a.s. A
(
G (n, p)

)
≤ 1.

If p = Θ(1/n), then a.a.s. A
(
G (n, p)

)
∈ {k(p), k(p) + 1}.

If p = ω(1/n), then a.a.s. A
(
G (n, p)

)
∈ {
⌈ d̄

2

⌉
,
⌈ d̄

2

⌋
+ 1}.

For most values of p = ω(1/n), a.a.s. A
(
G (n, p)

)
=
⌈ d̄

2

⌉
.

(Same holds throughout the random graph process.)

Corollary

Threshold for k-orientability of G (n,m) for k →∞ at m ∼ kn.
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Tutte and Nash-Williams

P partition of V (G );
m(P) = number of edges in E (G )
with ends in distinct parts of P.

Theorem (Tutte ’61; Nash-Williams ’61)

A graph G has t edge-disjoint spanning trees iff every partition P
of V (G ) satisfies m(P) ≥ t(|P| − 1).

T (G ) is given by the smallest ratio
⌊

m(P)
|P|−1

⌋
.
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Proof STP number G (n, p)

0

Θ(log n)

d̄/2 < δ < d̄

δ < d̄/2

ω(logn)ω(logn/n)

Θ(log n/n)

β log n δ ≈ d̄/2

δ

d̄/2

(logn+ c)/n

δ ∼ d̄

p d̄/2 δ T

o(log n/n) o(log n)
0
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Proof STP number G (n, p)

trivial

Θ(logn)

d̄/2 < δ < d̄

δ < d̄/2

ω(logn)ω(logn/n)

Θ(logn/n)

β logn δ ≈ d̄/2

δ

d̄/2

(log n+ c)/n

δ ∼ d̄

medium

dense

δ > 3
4
d̄

sparse

δ < ǫd̄

p d̄/2 δ T

o(logn/n) o(logn)
00δ = 0
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Proof STP number G (n, p)

Different ranges

Trivial p ≤ 0.9
log n

n
: δ = 0.

Sparse 0.9
log n

n
≤ p ≤ γ1

log n
n

: δ < εd̄ .

Medium γ1
log n

n
≤ p ≤ γ2

log n
n

: δ ≈ d̄/2

Dense p ≥ γ2
log n

n
: δ ≥ 3

4 d̄ .

(γ1 > 1 small, γ2 large)
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Proof STP number G (n, p) — Sparse range

Recall: 0.9
log n

n
≤ p ≤ γ1

log n
n

, γ1 > 1 small

A.a.s. properties (A)

δ < εd̄ .
No pair of ε-light vertices (degree ≤ δ + εd̄) are adjacent or
have a common neighbour.
All small sets of vertices (size < ζn) induce very few edges.
Every pair of disjoint large sets of vertices (size ≥ ζn) has
many edges across.

Deterministic argument: ∀P, m(P)

|P| − 1
≥ δ.
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Proof STP number G (n, p) — Sparse range
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(size ≥ ζn)

(deg ≤ δ + ǫd̄)

ǫ-light vertices

other parts

partition P
large parts
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Proof STP number G (n, p) — Dense range

Recall: p ≥ γ2
log n

n
, γ2 large

A.a.s. properties (B)

δ ≥ 3
4 d̄ .

All small sets of vertices (size < ζn) induce very few edges.
Every pair of disjoint large sets of vertices (size ≥ ζn) has
many edges across.
Every large set of vertices (size ≥ ζn) has average degree close
to d̄ .
Every non-trivial set of vertices has at least d̄/2 edges in its
edge boundary.

Deterministic argument: ∀P, m(P)

|P| − 1
≥ m − 1

n
=

d̄
2
.

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs LIX 2013 14 / 22



Arboricity of G (n, p)

Theorem

If p = o(1/n), then a.a.s. A
(
G (n, p)

)
≤ 1.

If p = Θ(1/n), then a.a.s. A
(
G (n, p)

)
∈ {k(p), k(p) + 1}.

If p = ω(1/n), then a.a.s. A
(
G (n, p)

)
∈ {
⌈ d̄

2

⌉
,
⌈ d̄

2

⌉
+ 1}.

For most values of p = ω(1/n), a.a.s. A
(
G (n, p)

)
=
⌈ d̄

2

⌉
.

(Same holds throughout the random graph process.)
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Proof Arboricity G (n, p)

ω(1)

Θ(logn)

d̄/2 < δ < d̄

δ < d̄/2

< d̄/2

ω(logn)

p d̄/2 δ T A

ω(logn/n)

ω(1/n) 0

Θ(logn/n)

β logn δ ≈ d̄/2

d̄/2

0

δ

d̄/2

(log n+ c)/n

δ ∼ d̄

medium

trivial

δ = 0

dense

δ > 3
4
d̄

trivial

k-core

as densesparse

δ < ǫd̄

o(logn/n)

O(1/n) O(1)
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Proof Arboricity G (n, p) — Range p = ω(1/n)

Recall

T
(
G (n, p)

)
= min

{
δ,
⌊ m

n−1

⌋}
. Threshold at p ∼ β log n/n.

Supercritical range (δ >
⌊ m

n−1

⌋
)

if n − 1 | m, then T
(
G (n, p)

)
=

m
n − 1

= A
(
G (n, p)

)
.

if n − 1 - m, then use coupling

A
(
G (n, p)

)
= T

(
G (n, p)

)
+ 1 =

⌈ m
n − 1

⌉
.
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Proof Arboricity G (n, p) — Range p = ω(1/n)

Recall

T
(
G (n, p)

)
= min

{
δ,
⌊ m

n−1

⌋}
. Threshold at p ∼ β log n/n.

Subcritical range (δ ≤
⌊ m

n−1

⌋
)

Create G ′ from G = G (n, p):
Add o(n) new edges to G (n, p) so that

δ′ >
m′

n − 1
;

properties (B) are satisfied;
n − 1 | m′.

Then T (G ′) =
m′

n − 1
= A(G ′) and

A
(
G (n, p)

)
∈
{⌈ m

n−1

⌉
,
⌈ m

n−1

⌉
+ 1
}
.
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Proof Arboricity G (n, p) — Range p = Θ(1/n)

Theorem (Nash-Williams ’64)

Edges of G can be covered by t forests iff for every non-empty
S ⊆ V (G ) we have |E [S ]| ≤ t(|S | − 1).

A(G ) = max∅6=S⊆V (G)

⌈ |E [S ]|
|S | − 1

⌉
, (where 0/0 := 0).
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Proof Arboricity G (n, p) — Range p = Θ(1/n)

k-core
Largest subgraph with minimum degree k .

Theorem (Cain, Sanders, Wormald ’07)

For k ≥ 2, if the average degree of the (k + 1)-core of G (n, p) is at
most 2k − ε, then a.a.s. G (n, p) is k-orientable.

Theorem (Hakimi ’65)

A graph is k-orientable iff it has no subgraph with average degree
> 2k .

Corollary

For k ≥ 2, if the average degree of the (k + 1)-core of G (n, p) is at
most 2k + o(1), then a.a.s. G (n, p) has no subgraph with average
degree more than 2k + o(1).
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Proof Arboricity G (n, p) — Range p = Θ(1/n)

Summary of the argument

If p ≤ 1/n, then A ∈ {1, 2} (easy).

If p > 1/n:
Find k such that the (k + 1)-core of G (n, p) has average
degree at most 2k + o(1), and the k-core of G (n, p) has
average degree greater than 2(k − 1).
Then the densest subgraph of G (n, p) has average degree
> 2(k − 1) and ≤ 2k + o(1).
So A ∈ {k , k + 1}.
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Further work

Extend results to random hypergraphs (easy).
Extend results to other families of random graphs
(work in progress for random geometric graphs, sparse graphs
with a fix degree sequence).
Study other graph parameters with similar characterisations
following from matroid union
(work in progress for random directed graphs).
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Thank you
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