Arboricity and spanning-tree packing in random graphs with an application to load balancing

Xavier Pérez-Giménez[†]

joint work with

Jane (Pu) Gao* and Cristiane M. Sato[†]

[†]University of Waterloo

WATERLOO

*University of Toronto

TORONTO

Laboratoire d'Informatique de l'École Polytechnique, Paris, December 2013

Motivation

Definition

T(G) = maximum number of edge-disjoint spanning trees in G.

Example
$$T(G) = 2.$$

Trivial upper bound			
$T(G) \leq \min\left\{\delta, \left\lfloor \frac{ar{d}}{2} ight floor ight\},$	where	$\frac{\bar{d}}{2} = \frac{m}{n-1}.$	

An application

Measure of network strength/vulnerability.

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs

Definition

T(G) = maximum number of edge-disjoint spanning trees in G.

Example
$$T(G) = 2.$$

Trivial upper bound			
$T(G) \leq \min\left\{\delta, \left\lfloor \frac{ar{d}}{2} ight floor ight\},$	where	$\frac{\bar{d}}{2} = \frac{m}{n-1}.$	

An application

Measure of network strength/vulnerability.

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs

Definition

T(G) = maximum number of edge-disjoint spanning trees in G.

Example
$$T(G) = 2.$$

Trivial upper bound			
$\mathcal{T}(\mathcal{G}) \leq \min\left\{\delta, \left\lfloor \frac{\bar{d}}{2} ight floor ight\},$	where	$\frac{\bar{d}}{2}=\frac{m}{n-1}.$	

An application

Measure of network strength/vulnerability.

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs

Definition

T(G) = maximum number of edge-disjoint spanning trees in G.

Example
$$T(G) = 2.$$

Trivial upper bound			
$T(G) \leq \min\left\{\delta, \left\lfloor \frac{ar{d}}{2} ight floor ight\},$	where	$\frac{\bar{d}}{2} = \frac{m}{n-1}.$	

An application

Measure of network strength/vulnerability.

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs

Arboricity

Definition

A(G) = minimum number of spanning trees covering all edges of G; = minimum number of forests decomposing E(G).

Example
$$A(G) = 3.$$

Trivial lower bour	nd		
$A(G) \geq \left\lceil \frac{\overline{d}}{2} \right\rceil$,	where	$\frac{\bar{d}}{2} = \frac{m}{n-1}.$	

An application

Measure of density of subgraphs.

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs

Arboricity

Definition

A(G) = minimum number of spanning trees covering all edges of G; = minimum number of forests decomposing E(G).

Example
$$A(G) = 3.$$

Trivial lower bour	nd		
$A(G) \geq \left\lceil \frac{\overline{d}}{2} \right\rceil$,	where	$\frac{\bar{d}}{2} = \frac{m}{n-1}.$	

An application

Measure of density of subgraphs.

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs

Arboricity

Definition

A(G) = minimum number of spanning trees covering all edges of G; = minimum number of forests decomposing E(G).

Example
$$A(G) = 3.$$

Trivial lower bour	nd		
$A(G) \geq \left\lceil \frac{\overline{d}}{2} \right\rceil$,	where	$\frac{\bar{d}}{2} = \frac{m}{n-1}.$	

An application

Measure of density of subgraphs.

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs

k-orientability

A graph is k-orientable if it admits an orientation of the edges s.t. the maximum indegree is at most k.

Equivalent formulation:

Load balancing scenario

m balls (jobs) are assigned to n bins (machines) in a way that each ball must pick between two randomly chosen bins. We wish to minimise the load of the bins by allowing at most k balls in each bin.

Sar

5 / 22

→ @ ► < = ► </p>

Connection to arboricity:

k-orientability determined by density of densest subgraph (Hakimi '65).

Problem and previous results

Theorem (Palmer, Spencer '95) $T(\mathscr{G}(n,p)) = \delta$, for δ constant $(p \sim \log n/n)$.

Theorem (Catlin, Chen, Palmer '93)

$$\begin{cases} T(\mathscr{G}(n,p)) = \lfloor \frac{\bar{d}}{2} \rfloor \\ A(\mathscr{G}(n,p)) = \lceil \frac{\bar{d}}{2} \rceil \end{cases} , \quad \text{for } p = C(\log n/n)^{1/3}$$

Theorem (Chen, Li, Lian '13+)

$$T(\mathscr{G}(n,p)) = \delta, \quad \text{for } p \le 1.1 \log n/n; \\ T(\mathscr{G}(n,p)) > \delta, \quad \text{for } p \ge 51 \log n/n.$$

Question (Chen, Li, Lian)

What's the smallest p such that $T(\mathscr{G}(n,p)) > \delta$?

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs

LIX 2013 6 / 22

Sar

Theorem

For every
$$p = p(n) \in [0, 1]$$
, a.a.s. $T(\mathscr{G}(n, p)) = \min \left\{ \delta, \lfloor \frac{d}{2} \rfloor \right\}$.
(Same holds throughout the random graph process.)

Theorem

Let
$$\beta = 2/\log(e/2) \approx 6.51778$$
.
• If $p = \frac{\beta(\log n - \frac{\log \log n}{2}) - \omega(1)}{n-1}$, then a.a.s. $\delta \le \lfloor \frac{\overline{d}}{2} \rfloor$ in $\mathscr{G}(n, p)$.
• If $p = \frac{\beta(\log n - \frac{\log \log n}{2}) + \omega(1)}{n-1}$, then a.a.s. $\delta > \lfloor \frac{\overline{d}}{2} \rfloor$ in $\mathscr{G}(n, p)$.
(Same holds throughout the random graph process.)

Threshold for
$$T(\mathscr{G}(n,p)) = \begin{cases} \delta \\ \lfloor \frac{\bar{d}}{2} \rfloor \end{cases}$$
 at $p \sim \beta \frac{\log n}{n}$.

LIX 2013

7 / 22

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs

Theorem

- If p = o(1/n), then a.a.s. $A(\mathscr{G}(n, p)) \leq 1$.
- If $p = \Theta(1/n)$, then a.a.s. $A(\mathscr{G}(n,p)) \in \{k(p), k(p)+1\}$.
- If $p = \omega(1/n)$, then a.a.s. $A(\mathscr{G}(n, p)) \in \{\lfloor \frac{\bar{d}}{2} \rfloor, \lfloor \frac{\bar{d}}{2} \rfloor + 1\}$. For most values of $p = \omega(1/n)$, a.a.s. $A(\mathscr{G}(n, p)) = \lfloor \frac{\bar{d}}{2} \rfloor$.

(Same holds throughout the random graph process.)

Corollary

Threshold for k-orientability of $\mathscr{G}(n,m)$ for $k \to \infty$ at $m \sim kn$.

イロト 不得 トイヨト イヨト 二日

Tutte and Nash-Williams

 \mathcal{P} partition of V(G); $m(\mathcal{P}) =$ number of edges in E(G) with ends in distinct parts of \mathcal{P} .

9 / 22

Theorem (Tutte '61; Nash-Williams '61)

A graph G has t edge-disjoint spanning trees iff every partition \mathcal{P} of V(G) satisfies $m(\mathcal{P}) \geq t(|\mathcal{P}| - 1)$.

T(G) is given by the smallest ratio $\left|\frac{m(\mathcal{P})}{|\mathcal{P}|-1}\right|$.

Tutte and Nash-Williams

 \mathcal{P} partition of V(G); $m(\mathcal{P}) =$ number of edges in E(G) with ends in distinct parts of \mathcal{P} .

9 / 22

Theorem (Tutte '61; Nash-Williams '61)

A graph G has t edge-disjoint spanning trees iff every partition \mathcal{P} of V(G) satisfies $m(\mathcal{P}) \geq t(|\mathcal{P}| - 1)$.

T(G) is given by the smallest ratio $\left|\frac{m(\mathcal{P})}{|\mathcal{P}|-1}\right|$.

Tutte and Nash-Williams

 \mathcal{P} partition of V(G); $m(\mathcal{P}) =$ number of edges in E(G) with ends in distinct parts of \mathcal{P} .

9 / 22

Theorem (Tutte '61; Nash-Williams '61)

A graph G has t edge-disjoint spanning trees iff every partition \mathcal{P} of V(G) satisfies $m(\mathcal{P}) \geq t(|\mathcal{P}| - 1)$.

T(G) is given by the smallest ratio $\left|\frac{m(\mathcal{P})}{|\mathcal{P}|-1}\right|$.

Proof STP number $\mathscr{G}(n, p)$

р	$\bar{d}/2$	δ	Т
$o(\log n/n)$	$o(\log n)$	0	0
$ (\log n + c)/n -$			
$\Theta(\log n/n)$	$\Theta(\log n)$	$\delta < \bar{d}/2$	δ
$ \beta \log n$ $-$		$\delta \approx d/2$ $\bar{d}/2 < \delta < \bar{d}$	$\bar{d}/2$
$\omega(\log n/n)$	$\omega(\log n)$	$\delta \sim \bar{d}$	

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs LIX 2013 10 / 22

◆ロト ◆掃ト ◆注ト ◆注ト 注目 のへで

Proof STP number $\mathscr{G}(n, p)$

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs LIX 2013 10 / 22

イロト イポト イヨト イヨト

3

DQC

Different ranges

• Trivial $p \le 0.9 \frac{\log n}{n}$: $\delta = 0.$ • Sparse $0.9 \frac{\log n}{n} \le p \le \gamma_1 \frac{\log n}{n}$: $\delta < \epsilon \overline{d}.$ • Medium $\gamma_1 \frac{\log n}{n} \le p \le \gamma_2 \frac{\log n}{n}$: $\delta \approx \overline{d}/2$ • Dense $p \ge \gamma_2 \frac{\log n}{n}$: $\delta \ge \frac{3}{4}\overline{d}.$ $(\gamma_1 > 1 \text{ small, } \gamma_2 \text{ large})$

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs LIX 2013 11 / 22

Recall:
$$0.9 \frac{\log n}{n} \le p \le \gamma_1 \frac{\log n}{n}, \qquad \gamma_1 > 1 \text{ small}$$

A.a.s. properties (A)

•
$$\delta < \epsilon \bar{d}$$
.

- No pair of ϵ -light vertices (degree $\leq \delta + \epsilon \overline{d}$) are adjacent or have a common neighbour.
- All small sets of vertices (size $< \zeta n$) induce very few edges.
- Every pair of disjoint large sets of vertices (size ≥ ζn) has many edges across.

Deterministic argument:
$$\forall \mathcal{P}, \quad \frac{m(\mathcal{P})}{|\mathcal{P}|-1} \geq \delta$$

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs LIX 2013 12 / 22

- $\delta < \epsilon \overline{d}$.
- No pair of $\epsilon\text{-light}$ vertices (degree $\leq \delta + \epsilon \overline{d}$) are adjacent or have a common neighbour.
- All small sets of vertices (size $\langle \zeta n \rangle$ induce very few edges.
- Every pair of disjoint large sets of vertices (size $\geq \zeta n$) has many edges across.

- $\delta < \epsilon \overline{d}$.
- No pair of $\epsilon\text{-light}$ vertices (degree $\leq \delta + \epsilon \overline{d}$) are adjacent or have a common neighbour.
- All small sets of vertices (size $\langle \zeta n \rangle$ induce very few edges.
- Every pair of disjoint large sets of vertices (size $\geq \zeta n$) has many edges across.

- $\delta < \epsilon \overline{d}$.
- No pair of $\epsilon\text{-light}$ vertices (degree $\leq \delta + \epsilon \overline{d}$) are adjacent or have a common neighbour.
- All small sets of vertices (size $\langle \zeta n \rangle$ induce very few edges.
- Every pair of disjoint large sets of vertices (size $\geq \zeta n$) has many edges across.

- $\delta < \epsilon \overline{d}$.
- No pair of ϵ -light vertices (degree $\leq \delta + \epsilon \vec{d}$) are adjacent or have a common neighbour.
- All small sets of vertices (size $< \zeta n$) induce very few edges.
- Every pair of disjoint large sets of vertices (size $\geq \zeta n$) has many edges across.

- $\delta < \epsilon \overline{d}$.
- No pair of ϵ -light vertices (degree $\leq \delta + \epsilon \vec{d}$) are adjacent or have a common neighbour.
- All small sets of vertices (size $< \zeta n$) induce very few edges.
- Every pair of disjoint large sets of vertices (size $\geq \zeta n$) has many edges across.

Recall: $p \ge \gamma_2 \frac{\log n}{n}$, γ_2 large

A.a.s. properties (B)

- $\delta \geq \frac{3}{4}\bar{d}$.
- All small sets of vertices (size $< \zeta n$) induce very few edges.
- Every pair of disjoint large sets of vertices (size ≥ ζn) has many edges across.
- Every large set of vertices (size $\geq \zeta n$) has average degree close to \bar{d} .
- Every non-trivial set of vertices has at least $\bar{d}/2$ edges in its edge boundary.

Deterministic argument: $\forall \mathcal{P}, \quad \frac{m(\mathcal{P})}{|\mathcal{P}| - 1} \ge \frac{m - 1}{n} = \frac{\overline{d}}{2}.$ Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs LIX 2013 14/22

Theorem

- If p = o(1/n), then a.a.s. $A(\mathscr{G}(n, p)) \leq 1$.
- If $p = \Theta(1/n)$, then a.a.s. $A(\mathscr{G}(n,p)) \in \{k(p), k(p)+1\}$.
- If $p = \omega(1/n)$, then a.a.s. $A(\mathscr{G}(n, p)) \in \{\lceil \frac{d}{2} \rceil, \lceil \frac{d}{2} \rceil + 1\}$. For most values of $p = \omega(1/n)$, a.a.s. $A(\mathscr{G}(n, p)) = \lceil \frac{d}{2} \rceil$.

(Same holds throughout the random graph process.)

Proof Arboricity $\mathscr{G}(n, p)$

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs LIX 2013 16 / 22

€ 990

Proof Arboricity
$$\mathscr{G}(n,p)$$
 — Range $p = \omega(1/n)$

Recall

$$T(\mathscr{G}(n,p)) = \min\left\{\delta, \lfloor \frac{m}{n-1} \rfloor\right\}.$$
 Threshold at $p \sim \beta \log n/n$.

Supercritical range ($\delta > \lfloor \frac{m}{n-1} \rfloor$)

• if
$$n-1 \mid m$$
, then $T(\mathscr{G}(n,p)) = \frac{m}{n-1} = A(\mathscr{G}(n,p))$

• if $n-1 \nmid m$, then use coupling

$$A(\mathscr{G}(n,p)) = T(\mathscr{G}(n,p)) + 1 = \lceil \frac{m}{n-1} \rceil.$$

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs LIX 2013 17 / 22

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Proof Arboricity
$$\mathscr{G}(n, p)$$
 — Range $p = \omega(1/n)$

Recall

$$T(\mathscr{G}(n,p)) = \min\left\{\delta, \lfloor \frac{m}{n-1} \rfloor\right\}.$$

Threshold at $p \sim \beta \log n/n$.

Subcritical range
$$(\delta \leq \lfloor \frac{m}{n-1} \rfloor)$$

Create G' from $G = \mathscr{G}(n, p)$:
Add $o(n)$ new edges to $\mathscr{G}(n, p)$ so that
• $\delta' > \frac{m'}{n-1}$;
• properties (B) are satisfied;
• $n-1 \mid m'$.
Then $T(G') = \frac{m'}{n-1} = A(G')$ and
 $A(\mathscr{G}(n, p)) \in \left\{ \lceil \frac{m}{n-1} \rceil, \lceil \frac{m}{n-1} \rceil + 1 \right\}.$

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs

Theorem (Nash-Williams '64)

Edges of G can be covered by t forests iff for every non-empty $S \subseteq V(G)$ we have $|E[S]| \le t(|S| - 1)$.

$$A(G) = \max_{\emptyset \neq S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|-1} \right\rceil,$$
 (w

(where 0/0 := 0).

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs LIX 2013 18 / 22

Proof Arboricity
$$\mathscr{G}(n, p)$$
 — Range $p = \Theta(1/n)$

k-core

Largest subgraph with minimum degree k.

Theorem (Cain, Sanders, Wormald '07)

For $k \ge 2$, if the average degree of the (k + 1)-core of $\mathscr{G}(n, p)$ is at most $2k - \epsilon$, then a.a.s. $\mathscr{G}(n, p)$ is k-orientable.

Theorem (Hakimi '65)

A graph is k-orientable iff it has no subgraph with average degree > 2k.

Corollary

For $k \ge 2$, if the average degree of the (k + 1)-core of $\mathscr{G}(n, p)$ is at most 2k + o(1), then a.a.s. $\mathscr{G}(n, p)$ has no subgraph with average degree more than 2k + o(1).

nan

19 / 22

Summary of the argument

If $p \leq 1/n$, then $A \in \{1, 2\}$ (easy).

If p > 1/n:

- Find k such that the (k + 1)-core of $\mathscr{G}(n, p)$ has average degree at most 2k + o(1), and the k-core of $\mathscr{G}(n, p)$ has average degree greater than 2(k 1).
- Then the densest subgraph of $\mathscr{G}(n, p)$ has average degree > 2(k-1) and $\le 2k + o(1)$.

• So
$$A \in \{k, k+1\}$$
.

- Extend results to random hypergraphs (easy).
- Extend results to other families of random graphs (work in progress for random geometric graphs, sparse graphs with a fix degree sequence).
- Study other graph parameters with similar characterisations following from matroid union (work in progress for random directed graphs).

Thank you

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs LIX 2013 22 / 22

<ロト < 四ト < 三ト < 三ト = 三三

990