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Spanning-tree packing (STP) number

Definition J

T(G) = maximum number of edge-disjoint spanning trees in G.

T(G) < min {6, L%J} where % =

An application

Measure of network strength/vulnerability.
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Arboricity

Definition
A(G) = minimum number of spanning trees covering all edges of G;
= minimum number of forests decomposing E(G).

A(G) = 3. I

AG)>[9],  where ¢=_m
An application
Measure of density of subgraphs. J
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k-orientability and load balancing

A graph is k-orientable if it admits an orientation of the edges s.t.
the maximum indegree is at most k.

Equivalent formulation:

Load balancing scenario

m balls (jobs) are assigned to n bins (machines) in a way that each
ball must pick between two randomly chosen bins. We wish to

minimise the load of the bins by allowing at most k balls in each
bin.

Connection to arboricity:

k-orientability determined by density of densest subgraph
(Hakimi '65). J

o = = = ) A (
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Problem and previous results

Theorem (Palmer, Spencer '95)
T(4(n,p)) =6, foré constant (p ~ logn/n).

‘Theorem (Catlin, Chen, Palmer '93)
{T(g(n, p)) = |

A (n,p)) = |

D—

Nl

]J . for p= C(log n/n)*/3.

Theorem (Chen, Li, Lian '134)

T(4(n,p)) =6, forp<1lllogn/n;
T(4(n,p)) > 6, for p>5llogn/n.

What's the smallest p such that T(4(n, p)) > 67

= = = =

Nl

V.
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Our results (i)

For every p = p(n) € [0,1], a.a.s. T(Sf(n,p)) = min {5, L%J }
(Same holds throughout the random graph process.)

Theorem
Let 8 =2/ log(e/2) ~ 6.51778.
o 1f o Allon ) i

—2 , then a.as. § < L%J in 4(n, p).
log log n -
o lf p= H(logn- ng_zlg )+w(1), then a.a.s. 0 > L%J in 4(n, p).

(Same holds throughout the random graph process.)

4]

at p ~ Blo%n.

Threshold for T(¢(n, p)) = {

,_
Nl
| E—

=] 5 = = AN
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Our results (ii)

Theorem
o If p=o0(1/n), then a.as. A(4(n,p)) < 1.
o If p=0©(1/n), then a.as. A(4(n,p)) € {k(p), k(p) + 1}.
o If p=w(1/n), then a.as. A(¥(n,p)) € {[ 1, [g] +1}.
For most values of p = w(1/n), a.as. A(¥4(n, p)) = { 1.
(Same holds throughout the random graph process.)

Corollary

Threshold for k-orientability of 4(n, m) for k — oo at m ~ kn.

o & = = = 9vQQ
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Tutte and Nash-Williams

P partition of V(G);
m(P) = number of edges in E(G)
with ends in distinct parts of P.

A graph G has t edge-disjoint spanning trees iff every partition P
of V(G) satisfies m(P) > t(|P| — 1).

T(G) is given by the smallest ratio bg(ﬂ_))lJ

[m] = = =
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Proof STP number ¢(n, p)

trivial o(logn/n) o(logn)
0=0 0 0

sparse t == (logn+c¢)/n— = = =

beed V== === === il ST EEE
©(logn/n) ©(logn) 0<d/f2 0
medum| [ = = T Blogn —p = = = = — I~ df2
dj2<é<d
a2
dense
§>34 S~d
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Proof STP number ¢(n, p)

Different ranges

@ Trivial
@ Sparse
o Medium

@ Dense

<008, §=0.

09|0gn pgfleOgn: 0 < ed
Vllogn<p<72|ogn 5~ d)2
pZVzloin: 5> 3d

(71 > 1 small, , large)
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Proof STP number ¢(n, p) — Sparse range

I [
Recall: 0.9 o n <p< ’yl%, ~v1 > 1 small
e § < ed.

o No pair of e-light vertices (degree < & + ed) are adjacent or
have a common neighbour.

o All small sets of vertices (size < {n) induce very few edges.

@ Every pair of disjoint large sets of vertices (size > (n) has
many edges across.

m(P)

Deterministic argument: VP,
& Pl 1

> 4.

=] F = = C
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Proof STP number ¢(n, p) — Sparse range

@ §<ed.

@ No pair of e-light vertices (degree < § + ea) are adjacent or have a common
neighbour.

@ All small sets of vertices (size < ¢n) induce very few edges.

@ Every pair of disjoint large sets of vertices (size > ¢n) has many edges across.

.. ' large parts
e e-light vertices (size > Cn) partition P

(deg < 6 + ed)

other parts

Qe
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Proof STP number ¢(n, p) — Sparse range

@ §<ed.

@ No pair of e-light vertices (degree < § + ec_i) are adjacent or have a common
neighbour.

@ All small sets of vertices (size < ¢n) induce very few edges.

@ Every pair of disjoint large sets of vertices (size > ¢n) has many edges across.

e 20 > 26
« .. partition P
L] L] I
.... ° : 2 26
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Proof STP number ¢(n, p) — Dense range

Recall: p> 72|0$, 2 large
Aas properties (B)
e > %c_f
o All small sets of vertices (size < (n) induce very few edges.
@ Every pair of disjoint large sets of vertices (size > (n) has
many edges across.
o Every large set of vertices (size > (n) has average degree close
to d.
o Every non-trivial set of vertices has at least d/2 edges in its
edge boundary. )
Deterministic argument: VP, |$|(7_D)1 > m; 1 = g
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Arboricity of 4(n, p)

Theorem
o If p=o0(1/n), then a.as. A(¥(n,p)) < 1.
o If p=0(1/n), then a.as. A(4(n,p)) € {k(p), k(p) + 1}.
o If p=w(1/n), then a.ass. A(¥(n,p)) € {[g], |—§-| +1}.
For most values of p = w(1/n), a.a.s. A(¥4(n, p)) = |—%-|
(Same holds throughout the random graph process.)

] = =
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Proof Arboricity ¢(n, p)

P
P /2 ) T A
k-core
trivial o(logn/n)
=0 w(l/n) w(1) v v
sparse t === (logn+c¢)/n —= = = = as dense
f<ed V == ===== =+ - === F-"=-=—=|-~- -~ 1
O(logn/n) O(logn) 0<d/2 0 ~
d/2
1 Lo — < 7 co oo
medium Plogn 4~ df2
dj2<d<d

d_'/-2 trivial
dense
§>3d d~d
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Proof Arboricity ¢(n, p) — Range p = w(1/n)

Recall
T(4(n, p)) = min {(5, | -2 | }

Threshold at p ~ Blogn/n.
Supercritical range (6 > |- )
e if n—1|m, then T(4(n,p)) = m

n
e if n— 11 m, then use coupling

—1 = A(g(n,p))
A(%(n,p)) = T(4(n,p)) +1

=[]

n—1"
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Proof Arboricity ¢(n, p) — Range p = w(1/n)

T(%(n,p)) = min {5, L%J } Threshold at p ~ B logn/n.

Subcritical range (0 < [LJ)

n—1
Create G’ from G = ¥(n, p):
Add o(n) new edges to ¥4(n, p) so that
m/
n—1'
@ properties (B) are satisfied;

o ¢ >

en—1|m.

Then T(G') = o A(G') and
A (n,p)) € {[25], [:2] +1}.

<

[} [
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Proof Arboricity ¢(n, p) — Range p = ©(1/n)

Theorem (Nash-Williams '64)

Edges of G can be covered by t forests iff for every non-empty
S C V(G) we have |E[S]| < t(|S]| —1).

(where 0/0 := 0).

IE[S]IW

A(G) = maxgxscv(c) [|5| —1|

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs LIX 2013 18 / 22



Proof Arboricity ¢(n, p) — Range p = ©(1/n)

Largest subgraph with minimum degree k. l

Theorem (Cain, Sanders, Wormald '07)

For k > 2, if the average degree of the (k + 1)-core of ¥(n, p) is at
most 2k — ¢, then a.a.s. 4(n, p) is k-orientable.

A graph is k-orientable iff it has no subgraph with average degree
> 2k.

Corollary

For k > 2, if the average degree of the (k + 1)-core of ¥(n, p) is at
most 2k + o(1), then a.a.s. ¢(n, p) has no subgraph with average
degree more than 2k + o(1).

y

Qe
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Proof Arboricity ¢(n, p) — Range p = ©(1/n)

Summary of the argument
If p<1/n, then A€ {1,2} (easy).

If p>1/n:

@ Find k such that the (k + 1)-core of ¥(n, p) has average
degree at most 2k + o(1), and the k-core of ¢(n, p) has
average degree greater than 2(k — 1).

@ Then the densest subgraph of ¥(n, p) has average degree
> 2(k —1) and < 2k + o(1).

@ So Ae {k k+1}.
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Further work

o Extend results to random hypergraphs (easy).

@ Extend results to other families of random graphs
(work in progress for random geometric graphs, sparse graphs
with a fix degree sequence).

@ Study other graph parameters with similar characterisations

following from matroid union
(work in progress for random directed graphs).
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Thank you
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